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Abstract: Bootstrap resampling is an extremely practical and effective way of studying the distributional properties of 
simulation output when this is subject to random variation. The purpose of this paper is to show that many problems of 
sensitivity analysis (SA) and validation can be very simply handled by this method. We consider classical non-parametric 
version of the bootstrap and show that it can be applied in a natural way in simulation studies without becoming immersed 
in complicated statistical methodology. The main message of the paper is that the bootstrap method should be the 
statistical method of first resort in SA and validation studies. 
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1 INTRODUCTION 
 
Bootstrapping is a well-understood method for 
studying the distribution of statistical variables by 
resampling [Davison and Hinkley 1997, Chernick 
1999]. This latter reference, with its 84 page 
bibliography, indicates the huge interest in the 
topic. Thus the common initial reaction of many 
non-experts that it is a suspect method where one 
tries to get 'something for nothing', is quite 
unfounded. It is true that for finite sample sizes an 
approximation is involved; however as has been 
amply demonstrated both theoretically and in 
practice, the method is often especially effective 
when sample sizes are small, when other well-
used and much relied on methods have properties 
that are dubious [Hall, 1992]. 
 
The purpose of this article is to point out the 
generality of application of bootstrapping by 
considering, in a unified way, how it can be 
applied to a range of problems involving 
sensitivity analysis (SA) and validation of 
simulation output. 
 
To structure the discussion we shall think of a 
simulation experiment as being made up of a 
number of runs. Each simulation run produces an 
output that is a vector function: 
 

y = {y(t), 0<t<T}. 
 

In discrete event simulation this output is not 
deterministic but is a stochastic process. It may be 
of interest to study this stochastic process in its 
own right. However we shall refine our problem 
to the study of statistics 

 
q = q(y) 
 

calculated from y. A typical example is where q is 
an average value 

q = 
T
1 Ξy(t)dt. 

Technically q is thus a vector functional of y, but 
we need not concern ourselves with this; all we 
need to note is that q is a random variable so that 
its study reduces to considering its distributional 
properties. 
 
In the next section we consider in more detail the 
ssetting typically encountered in a simulation 
model. Section 3 describes the bootstrap method 
in general terms, whilst in Section 4 it is applied 
to two basic problems in sensitivity analysis and 
in validation. Section 5 discusses two, more 
advanced, problems covering (i) local behaviour 
of the statistic of interest, and (ii) optimisation of 
performance measures.  Section 6 contains some 
concluding remarks. 
 
 
2 STRUCTURE OF SIMULATION OUTPUT 
 
We follow the simulation setting adopted in 
[Cheng 1995]. However our formulation here is 
somewhat more general, allowing the simulation 
output to depend on a larger set of possible 
factors. 
 
We suppose that there are n simulation runs 
yielding the observations: 
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 qj = q(uj, vj, θ(w), xj) j = 1, 2, ..., n 
 
In our formulation we have allowed for q to 
depend on a number of quantities that we now 
explain. 
 
Firstly uj denotes the stream of uniformly 
distributed U(0,1) random numbers used in the jth 
run. Typically the uniforms are not used directly, 
but are transformed into random variables drawn 
from distributions other than the uniform. 
However such transforms are allowed for in 
supposing that q is a function of the u so the 
transforms do not have to be explicitly displayed. 
 
Next comes v.  This represents a sequence of 
inputs that are random, but that has been 
generated independently of the simulation model. 
A typical instance is where v comprises sampled 
real observations taken from some real system, 
separate from the system being modelled, but on 
which q depends. Such a sampled real process is 
sometimes called a trace. An example is where v 
is a set of observed true daily temperatures in the 
simulation of daily gas demand over a given 
period of time. It could be that v is itself a 
stochastic process, i.e. v = {v(t), 0<t<T}. We shall 
not consider this general form here but simply 
think of v as being just a sample of observations. 
 
In addition there may be further quantities which 
may affect q. These are denoted by x and θ. There 
is no essential difference between x and θ in the 
way that they influence q. They are simply 
variables on which q depends. However we make 
a distinction in supposing that x comprises those 
quantities whose values are known exactly in the 
simulation run; x thus includes decision variables, 
i.e. quantities that can be selected by the 

simulator. However we also include in x   
parameters whose values are known, and that 
might affect q, but which are not selectable by the 
simulator. The reason for adopting this convention 
is that it then allows us to assume θ to be those 
parameter values, whose values are not known, 
and so have to be estimated. We will therefore 
assume that in addition to v, there exists input data 
w that is used exclusively to estimate θ. The θ can 
in principle be allowed to depend on the run j, but 
there is no loss of generality in assuming that it is 
the same θ in all runs. 
 
A simple example is a simulation model of a 
multiserver queue, where y(t) is the queue length 
over a given period, v might be a previously 
observed set of interarrival times, x might be the 
(scalar) number of servers and θ the service rates 
of servers. Here we treat x as being selectable by 
the simulator so that it is a design variable, θ may 
not be known and have to be estimated from 
available sampled real service times, w. 
 
Our study focuses on identifying the distribution 
of q. Before discussing this we describe the basic 
method that we shall use for doing this. 
 
 
3. BOOTSTRAP METHOD 
 
In classical statistical inference, many, if not most, 
problems reduce to studying the distributional 
properties of a test statistic calculated from a 
random sample of observations. Mathematical 
statistics focuses on obtaining such distributions, 
or, where this is not possible, on obtaining the 
asymptotic distribution. 

 
 

Figure 1: Basic Sampling Process 
 
 
 
 
 
   Null Distribution           Sample      Test Statistic 
 

F0(.)   z T(z)
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An alternative strategy is possible with the 
increased power of computers. Bootstrapping is a 
computer intensive method for determining the 
distribution of a (test) statistic in a very direct and 
intuitive way. It is a resampling method that 
operates by sampling from the original data used 
to calculate the statistic There are many accounts 
of this, see for example [Efron and Tibshirani, 
1993]. 
 
The initial way the problem arises is illustrated in 
Figure 1. This depicts the steps of drawing a 
sample z = (z1, z2, ..., zn) of size n from a 
distribution F0(.), and then calculating the statistic 
of interest T from z. 
 
If we could repeat this a large number of times, B 
say, this would give a large sample {T1, T2,..., TB} 
of test statistics, and the sample distribution of 
these estimates, namely the empirical distribution 
function (EDF) itself estimates the distribution of 
T. 
 
From now on we shall use the notation G{z} or 
G{zj}, whichever is more convenient, to denote 
the EDF formed from a sample z  or from a 
sample with typical observation zj. 
 
The fundamental theorem of sampling says that: If 
z is a random sample of size n, and if n tends to 
infinity, then G{z} will tend with probability one 

to F0(.), the underlying cumulative distribution 
function (CDF), of the distribution from which the 
sample is drawn. Applying this in our case shows 
that as B tends to infinity then G{Tj} will tend to 
the CDF .of T. 
 
Unfortunately to apply this result requires 
repeating the basic process of Figure 1 many 
times. This is often too expensive to do as the step 
of obtaining z from F0(.) may involve a 
complicated and time-consuming experimental 
procedure. 
 
The bootstrap method is based on the idea of 
replacing F0(.) by the best estimate we have for it. 
This is simply G{z}. Thus we mimic the basic 
process depicted in Figure 1 but instead of 
sampling from F0(.) we sample from G{z}. This is 
exactly the same as sampling with replacement 
from z. We carry out this process B times to get B 
bootstrap samples z1

*, z2
*, ..., zB

*. From each of 
these bootstrap samples we calculate a 
corresponding bootstrap test statistic value Tj*.= 
T(zj

*,) i = 1,2,...,B. The process is depicted in 
Figure 2 
 
The EDF of the bootstrap sample of Ti*s, namely 
G{Ti*}, now estimates the distribution of T. This 
is depicted in Figure 3, where, without loss of 
generality we have assumed the sample to be 
reordered so that T1* < T2* <...< TB*,  

  
 
 

Figure 2: Bootstrap Process: 
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Figure 3: Empirical Distribution Function of the Ti

* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Also included in the Figure is the test statistic 
value T calculated from the original sample. In the 
present situation, if the bootstrap process has 
worked properly, then both T and the bootstrap Ti

* 
values will have been drawn from near identical 
distributions. If B is large, T should typically be 
an unexceptional value, with p-value that is not 
extreme (as depicted in the Figure). 
 
As will be seen later, there will be situations 
where T and Ti

* only have near identical 
distributions under a null hypothesis. The 
procedure of examining the p-value of T thus 
provides a simple statistical test of the null 
hypothesis. 
 
In practice typical values for B are 500 or 1,000. 
 
The version we have described of the bootstrap is 
the non parametric case where resampling of the 
original observations is carried out. There is an 
alternative strategy known as the parametric 
bootstrap. This can be applied where F0(.) is 
known apart from parameters ϕ on which it 
depends, i.e. 
 

 F0(.) = F0(.,ϕ). 
 
The parameters ϕ can be estimated from z. We 
then have a fitted distribution 
 
 F̂ 0(.) = F0(., ϕ̂ ). 
 
The parametric bootstrap replaces G{z} in Figure 
2 by this fitted distribution. 
  
For more details of different bootstrap methods 
see [Davison and Hinkley, 1997]. 
 
 
4. ELEMENTARY SA AND VALIDATION 
 
We focus now on the use of bootstrap in 
simulation experiments. This is a subject which 
has only received limited study. For some initial 
discussion of bootstrapping as applied to 
simulation see [Barton and Schruben, 1993], [Kim 
et al, 1993], [Shiue et al 1993]. 
 
We consider first an elementary problem of 
Sensitivity Analysis (SA). Suppose that x is held 

T1
* Tj

*
 TB

*       T 
(OriginalValue)

P-Value 
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fixed. The basic question of sensitivity analysis is 
then: 
 
(A) What is the distribution of the random 
variable 
 

q = q(u, v, θ(w), x), 
 

taking into account the probabilistic variation due 
to u, v and w? A discussion of this problem is 
given in [Cheng and Holland, 1995a and 1995b]. 
 
If we have enough input data we can answer (A) 
by making n runs 
 
 qj = q(uj, vj, θ(wj), x),  j = 1, 2, ..., n 
 
If n is sufficiently large then G{qj} estimates the 
distribution of q. 
 
Here we suppose that we have access to enough 
input data to be able to use independent sets vj 
(each having the same joint distribution) in each 
run. Likewise we suppose the wj are separate 
samples, each drawn from the same joint 
distribution. The qj are thus independently and 
identically distributed and they incorporate the 
variation due to variation in v and w. 
 
This formulation is likely to be unsatisfactory on 
two grounds. Firstly, if, as we have supposed, θ is 
unknown and we use w simply to estimate θ, then 
it would be perverse to divide up w just to provide 
separate estimates of θ in the different runs in 
order to gauge how the variability in the estimate 
of θ influences the distribution of q. We would in 
practice almost certainly use the whole of w to 
estimate θ. The simulation outputs are thus of the 
form: 
 
 qj = q(uj, vj, θ(w), x) j = 1, 2, ..., n 
 
and the distribution of q as estimated by G{qi} is 
conditional on θ = θ(w). The same problem arises 
with v. If there are insufficient observations to 
divide up v into parts vj for the different runs then 
we will have to use the same v in each run giving: 
 
 qj = q(uj, v, θ(w), x) j = 1, 2, ..., n 
 
and the distribution of q is conditional on both 
V=v and θ = θ(w). 
 
We can overcome both problems by using 
bootstrapping on v and w. In terms of Figure 1, u, 

v and w play the role of z; whilst q plays the role 
of T. The only difference is that we do not bother 
to bootstrap u, as this is easy to generate. This 
gives 
 
          qj

* = q(uj, vj
*, θ(wj

*), x) j = 1, 2, ..., n 
 
The distribution of q is now estimated by the 
bootstrap EDF G{qj

*}. 
 
 
Next we consider a basic validation problem: 
 
(B) Does the output of the simulation model 
accurately represent the output of the system 
being modelled? 
 
A discussion of validation involving trace-driven 
simulation is described in [Kleijnen et al., 2000]. 
We adopt a more general approach here. 
 
We suppose that we wish to compare the 
distribution of the simulation output q with its 
counterpart obtained either from an existing or a 
hypothetical system. Suppose that {qj} is a sample 
of simulation outputs and {qj

0} is a sample of 
outputs obtained from an existing system. A 
natural way to compare the distributions is to use 
a statistic that measures the difference between 
G{qj} and G{qj

0}. A particularly effective 
goodness-of-fit statistic (less subjective than the 
usual chi-squared goodness-of-fit, and more 
powerful than Kolmogorov-Smirnov) is the two 
sample Cramer - von Mises statistic [cf Anderson, 
1962]: 
 

W2 = Ξ[G{qj
0} ? G{qj}]2dG{qj}. 

 
The distribution of W2 is not easy to obtain, 
especially when parameters have to be estimated. 
 
We can use a bootstrap technique in this case as 
follows. We obtain B pairs of bootstrap samples 
{qj

*}1i, {qj
*}2i, i = 1,2,...,B, each sample of the 

pair being obtained by resampling with 
replacement from {qj}, with {qj

*}1i the same 
sample size as {qj}, and {qj

*}2i the same sample 
size as {qj

0}. Denote the EDFs of the samples of 
each pair by G1i{ qj

*} and G2i{ qj
*} i = 1,2,...,B. 

We can now calculate B bootstrap Cramer - von 
Mises statistics from each pair: 
 
        Wi

2* = Ξ[G2i{qj*} ? G1i{qj*}]2dG1i{qj*}. 
 
Under the null assumption that G{qj} and G{qj

0} 
have the same distribution it follows that each 
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Wi
2* is just a bootstrap version of W2. Thus a 

critical value can be obtained from corresponding 
p-value of G{Wi

2*} and the null hypothesis that 
G{qj} and G{qj

0} have the same distribution can 
be tested simply by checking if the original W2 
exceeds this p-value or not. 
 
Figure 3 illustrates this situation if we take z to be 
q and T to be W2. 
 
 
5. ADVANCED PROBLEMS IN SA 
 
The situation is more complicated if we allow q to 
depend on x as well as on v and θ. We consider 
two problems: (i) how strong is this dependence? 
and (ii) how does this dependence vary as the 
position of the design point x varies?. In either 
case we shall treat the problem as one of 
regression analysis. We use the metamodel 
approach [Kleijnen and Van Groenendaal, 1992] 
where we assume that the output from the jth run 
takes the form 
 
 qj = η(xj, β) + ε.j 
 
Here η(xj, β) is the regression function or 
metamodel. It is dependent on x, the values of the 
decision variables used in the run. We assume it is 
also dependent on β, a set of unknown parameter 
values that have to be estimated from the observed 
output values qj. The term εj is a random 'error'; 
this has a distribution that is either of some 
assumed form, or that will have to be estimated. 
 
In terms of the metamodel, the question 
concerning the strength of dependence on 
particular components of x can be readily 
formulated in statistical terms if we restrict 
ourselves to considering just the local behaviour 
of q for values of decision variables in the 
neighborhood of some specific operating point x0. 
Mathematically we are simply asking the 
question: 
 
C: Which derivatives ∂η(x0)/∂xi (evaluated at x0) 
are large? 
 
Though readily formulated the problem can be 
hard to solve fully. For example if the number of 
decision variables, s say, is large, then even the 
problem of identifying the subset of k largest 
derivatives can be a difficult problem [Cheng and 
Holland, 1995a, b ]. 
 

The second question, concerning how the 
dependence of q varies with x, encompasses a 
number of interesting problems. 
(i) A basic problem is where the precise form of η 
is not known and we suppose that 

η(x, β) = ∑
=

K

1k

βkηk(x) 

is the linear combination of basis functions ηk(x), 
k = 1,2,...,K. The problem is then a statistical one 
where we have to estimate the coefficients βk. It 
may also be necessary to decide on how many 
terms are needed. This is equivalent to deciding 
how many of the βk are non zero and which are 
sufficiently small to be treated as being zero. 
 
Uncertainty in the number of terms to take can be 
handled by bootstrapping. We simply take K to be 
a statistic of interest and to be one of the 
components of q. Thus we have a problem of type 
(A).  
 
(ii) A more difficult version of the problem arises 
where it is thought that η is one of a number of 
possible competing functions, ηk, k = 1,2,...,K, 
and we take 

η(x, β, θ) = ∑
=

K

1k

βkηk(x, θk) 

subject to∑
=

K

1k

βk = 1. If one of the ηk is the correct 

model then this can be obtained by estimating the 
βk, when the correct βk will be close to unity and 
the others near zero. The complication here is that 
the ηk each are functions involving unknown 
parameters θk. This turns out to be a much more 
difficult statistical problem than the previous case 
as it does not satisfy the usual statistical regularity 
conditions. [Cheng and Traylor, 1995] have 
discussed this problem from a statistical 
standpoint. (See also McLachlan and Basford, 
1988].) 
 
Though there are complications, again 
bootstrapping can be used to establish 
distributional properties of K in this as in the 
previous case. 
 
(iii) Estimation of η usually requires that we give 
an indication of how accurate the estimated 
function η̂  is. We may be interested in 
calculating confidence intervals at particular 
design points x. A typical confidence interval 
statement at x0 takes the form: 'The unknown true 
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value of η(x0) lies in the interval η̂ (x0)±δ(x0) 
with confidence α'. Alternatively it may be of 
interest to calculate a confidence band which takes 
the form: 'The unknown true value of η(x) lies in 
the interval η̂ (x)±δ(x), for all a ≤ x ≤ b, with 
confidence α'. In either case we can use bootstrap 
instead of more traditional confidence interval 
calculations. 
 
The first case is really just a type (A) problem if 
we treat η̂ (x0) as being the q of interest. 
 
The second case is more interesting [cf Hall and 
Pittelkow, 1990]. It can be tackled by 
bootstrapping if we generate B bootstrap fitted 
curves η̂ i

*(x), for all a ≤ x ≤ b, i=1,2,...,B. We 
now select a proportion (1- α) of the B curves, the 
selection being random, with each curve equally 
likely to be selected. Suppose, with no loss of 
generality we label the selected curves as i=1,2,3, 
..., S=(1-α)B. Then the envelope created by these 
selected curves, with lower and upper limits: 
     ηL(x) = min1≤i≤S η̂ i

*(x), for all a ≤ x ≤ b 
and 
     ηU(x) = max1≤i≤S η̂ i

*(x), for all a ≤ x ≤ b 
 
is a band that includes at least (1-α) of the fitted 
curves in their entirety; and so for large B, it will 
be a conservative (1-α) confidence band for the 
unknown true curve. 
 
(iv) Variations of the previous problem occur 
when we consider system optimisation. Suppose 
that q is a scalar performance index. We may then 
be interested in optimal operating points, that is, 
values of x for which η(x) is a minimum or a 
maximum. Again we may be interested in 
constructing a confidence interval either for the 
optimum value or a confidence region for the 
optimum point. 
 
In the former instance construction of a 
confidence interval for the optimal value is readily 
treated as being a type (A) problem. 
 
Construction of a confidence region for the 
optimum point can be handled in a similar way to 
that used for constructing a confidence band. We 
generate B bootstrap fitted curves η̂ i

*(x), for all a 
≤ x ≤ b, i=1,2,...,B. For each we find the minimum 
point xi

(min), say.  Now select a proportion (1- α) 
of the points, the selection being random, with 

each minimum point equally likely to be selected. 
Suppose, with no loss of generality we label the 
selected points as i=1,2,3, ..., S=(1-α)B. Then the 
convex hull of these selected points contains (1-α) 
of these points at least. Assuming smooth 
behaviour of η, for large B this convex hull will 
be a (conservative) (1-α) confidence region for 
the optimum design point. 
 
The problem of obtaining optimum conditions can 
be posed in a non parametric setting. Here we take 
the observations as having the form 
 
 qj = η(xj) + εj 
 
without supposing η(x) has any specific form 
other than that it has a minimum. Optimisation 
must therefore be carried out in a non-parametric 
context. The biggest bugbear is the problem of 
dimensionality when s, the number of components 
of x, is large. The solution space is then large, and 
it can be extremely expensive to locate a 
minimum especially in the presence of 
measurement uncertainty. 
 
 
6 CONCLUSIONS 
 
The above examples and methodology hopefully 
provide an indication of the simplicity and general 
applicability of the use of bootstrap resampling in 
simulation experiments. Subject to weak, very 
generally satisfied conditions, the method can be 
used to handle the widely encountered situation 
where we have an output q that is a function of a 
sample z and the problem of interest is the 
determination of the distribution of q. 
 
Bootstrap resampling seems a natural 
accompaniment to simulation experiments. All the 
sampling routines for the required random 
variables are bound to be already in place for the 
simulation itself. It is thus a simple extension to 
use these for the resampling procedures of the 
bootstrap. The methodology has much to 
recommend it and will surely gain much wider 
acceptance and use as its power and simplicity 
become recognised. 
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