
M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

40

PROFILE-BASED CHARACTERIZATION AND TUNING
FOR SUBSURFACE SENSING AND IMAGING

APPLICATIONS

M. ASHOUEI1, D. JIANG1, W. MELEIS1, D. KAELI1, M. EL-SHENAWEE2, E.
MIZAN1, Y. WANG1, C. RAPPAPORT1 and C. DIMARZIO1

Department of Electrical and Computer Engineering1

Northeastern University
Boston, MA 02115

meleis,kaeli,rappaport,dimarzio@ece.neu.edu

Department of Electrical Engineering2
University of Arkansas
Fayetteville, AR 72701

magda@uark.edu

Abstract: For subsurface sensing and imaging (SSI) applications, parallel computers enable massive
processing of large datasets, using shared memory processing and sophisticated restoration algorithms
for higher resolution images. Techniques were developed to characterize an application's serial
execution and map large data sets onto Beowulf-class clusters and shared memory multiprocessor
systems using MPI. Two example SSI applications are given to demonstrate the power of our
techniques: parallelizing a Monte Carlo Simulation of Acousto-Photonic Imaging (API), and the
Steepest Descent, Fast Multipole Method (SDFMM). Acousto-Photonic Imaging is used in soft-tissue
imaging, and combines both optical tomography with ultrasound imaging. A 52 times speedup over the
original Matlab code on a 16-node cluster was achieved SDFMM is a fast algorithm for hybridization
of the Method of Moments (MoM), the Fast Multipole Method (FMM) and the Steepest Descent
Integration rule (SDP). SDFMM is used to solve large-scale linear systems of equations produced in
electromagnetic scattering problems. An overall speedup of 7.2 has been achieved on the 32-processor
Beowulf cluster and a significant reduced runtime is achieved on the 4-processor 667MHz Alpha
shared-memory system.

Keywords: Profiling, Parallelization, Clusters, SMPs, Subsurface Sensing Applications

1 INTRODUCTION

In the Center for Subsurface Sensing
and Imaging Systems, researchers use
a diverse set of signal processing,
electromagnetics, acoustics and optics
techniques and algorithms to apply to
applications in the field of subsurface
imaging [CenSSIS, 2002]. The goal of
many of these techniques is to
understand the interaction of different
types of waves, separating the object of
interest from the imaging medium.
One of the objectives of the Center is
to solve problems using a common set
of computational techniques, including
Finite Difference Frequency Domain
(FDFD), Finite Difference Time

Domain (FDTD), Semi-Analytic Mode
Matching (SAMM), and SDFMM; the
computation associated with these
approaches tends to be very time
consuming. The size and complexity
of these algorithms typically present a
computational barrier to a researcher's
ability to obtain results within a few
days on current computing platforms.

In practice, large realistic input data
sets often cannot be processed at all on
a single processor. Parallel computers
and parallel I/O can be used to
significantly reduce the runtime of
these applications. Academic and
industrial research groups are actively
developing techniques to parallelize

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

41

scientific applications written in
Matlab [Almasi and Padua, 2002],
[RTExpress, 2002], [Quinn et al,
1998]. These techniques include
packages based on message passing
within Matlab sessions, calls to parallel
libraries, and compiler environments
that directly parallelize Matlab.
However, the relative effectiveness of
these techniques is not currently well
understood [Moler, 1995]; they differ
in the amount of extra programming
effort they require and their resulting
performance gains [Quinn et al, 1998].

Our approach is to instead develop
tools that first profile the serial
application to allow us to identify the
most critical portions of the execution
in a program, as well as to identify
program paths. One goal is to limit the
amount of message passing by
carefully partitioning the work to be
done in the application. Our
techniques are designed to address a
range of applications and programming
environments. We utilize a number of
standardized Unix and Matlab utilities
in our work. We will describe how we
first profile an application, identifying
the critical control and data flow
present in the application. We then
discuss how we identify hot paths and
utilize this data to guide
parallelization. While our present
implementation performs offline
optimization and parallelization, we
can envision our profiling techniques
to be integrated into a runtime system
that monitors performance and
performs optimization based on
runtime dynamics.

This paper is organized as followed.
In Section 2, we will describe our
profile-based approach to program
optimization. In Sections 3 and 4 we
describe the application of this
approach to both the Acousto-Photonic
Imaging and the Steepest Descent Fast

Multipole Method application, and
report on the level of speedup
obtained. In Section 5 we summarize
the contributions of this paper.

2 PROFILE-GUIDED
OPTIMIZATION

Profiling has been used to guide a
number compilation and program
restructuring algorithms. Some
examples of the classes of
optimizations that have been reported
include:

• Code and data profiling
[Kalamatianos et al, 1999],
[Mowry and Luk, 2000],

• Instruction scheduling and
function inlining [Conte et al,
1996], [Merten et al, 1999], and

• Distributed and parallel
processing [Blume et al, 1996],
[Harzallah and Sevcik, 1995],
[Miller et al, 1995].

In this work we describe techniques
that profile a serial implementation of
the program. Our objective is to
provide guidance when parallelizing
the program, focusing our attention on
portions of the program that dominate
overall performance.

The two forms of program execution
information are contained in control
flow and data flow graphs. In this
work we are focused on understanding
program control flow, though we have
also looked at data flow to determine
the amount of data dependence in an
application. Next we discuss program
control flow as it relates to mapping a
serial application onto a MPI
programming model.

2.1 Function Call Graphs

The control flow of a program
determines the ordering and frequency
of execution of the various functions

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

42

included in the application. It is very
important to understand this behavior
since it quickly helps us to effectively
parallelize an application.

A function call graph is a directed
graph where each node represents a
function/procedure in the code, and
edges indicate a call to that function.
Figure 1 shows a call graph for a
program that contains 6 functions A-F.
The edges in the graph represent that
the function at the tail of the edge calls
the function at the head of the edge.
The label on the edge indicates the
calling frequency (number of calls
executed). Note that returns do not
increment the edge weight.

Figure 1 also shows 3 possible
execution paths that could have been
followed during the execution of the
program that produced the edge
profile. The first path profile indicates
that function A called function B 10
times, and on the last call, function B
called function C 200 times. On the
last call to function C, function D is
called 250 times, followed by function
E being called 10 times, and finally
function F being called 50 times.

In the second path profile, we follow a
different set of paths through the
program, with function A calling
function B five times, followed by
function B calling function C 100
times. This sequence repeats once
more.

Figure 1: Function call graph. This
example shows that there are a large
number of potential paths through the
function call graph.}

On the last call to C, function D is
called 25 times, function E is called
once, function F is called 10 times, and
the sequence is repeated 5 times. The
third path profile produces yet another
unique sequence of paths that are
followed.

To efficiently parallelize a serial
application, it is helpful to know both
the execution frequency of each
program component (functions in this
case), as well as understand the order
of execution of these components.
Path profiles have been shown to be an
effective mechanism for capturing
basic block path execution [Ball and
Larus, 1994] [Ball and Larus, 1996].
In this work we are studying program
dynamics using a coarser grain
(functions). To obtain accurate path
profiles of function execution, we
would need to identify the call
locations in the basic block graph.
Then we could utilize the techniques
described in [Ball and Larus, 1996] to
capture full path profiles of function
execution.
An additional problem occurs when
studying applications that implement
indirect function calls. From a single
calling location in a program we can
invoke a number of functions (e.g.,
indirect method calls in C++). This
makes analysis with path profiling
techniques more complicated. Control
can be passed conditionally to more
than two locations. Indirect branches
were not considered in [Ball and Larus,
1996]. We are presently studying this
issue, and have already described a
highly accurate methodology to
estimate the temporal locality of
program units using a Temporal

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

43

Relationship Graph [Kalamatianos et
al, 1999].

Another important criterion for
parallelizing an application is to focus
our attention on the functions that
dominate the overall execution. We
will refer to these functions as hot
functions. We can utilize standard
Unix utilities, such as gprof [Graham,
1982], to obtain sampled function
runtimes. We can then quickly
identify the portions of an application
where a majority of the execution time
is spent. Most time-based profiling
applications utilize a timer interrupt to
provide a timestamp and location
where the program is currently
executing. The granularity of the
profile is individual functions, and
compiler support is needed to provide
debug and symbol information in the
executable binary.

In Figure 2 we show a portion of a
labeled profile directed graph
generated for SDFMM. In this graph,
nodes represent a program function,
and directed edges represent a caller-
callee relationship. Edges are labeled
with the number of calls made from the
tail function to the head function.
Each node is labeled with the name of
the function, the amount of time spent
in each function, as well the time spent
in child nodes of this function. Not all
child nodes are shown in the graph in
this example. Hot nodes (functions

 that consume a significant portion of
the overall execution time) are shaded
in gray.

3 EXAMPLE SUBSURFACE
APPLICATION

Next we will present examples of
profile-guided parallelization using the
API and SDFMM applications.

3.1 Acousto-Photonic Imaging

Acousto-Photonic Imaging is a new
frequency domain technique for non-
invasive medical imaging combining
Diffusive Optical Tomography (DOT)
and focused ultrasound [Dimarzio and
Gaudette, 1998]. The objective is to
generate acoustically virtual sources to
improve spatial resolution as well as to
acquire the optical properties of human
tissue. We are attempting to accelerate
Monte Carlo simulations for the
interaction of Near-InfraRed light
(NIR) and ultrasound in dense turbid
media with high albedo. Figure 3
shows a pseduocode description of the
processing involved with API.

The original serial code is written in
Matlab. We are using Matlab versions
5.3 and 6.1 in this work. Our target
system is a 192-node Silicon Graphics
Origin 2000 system at the Boston
University Scientific and Visualization
Center, which is part of the NCSA. We
only utilize up to 16 nodes in this
work. We begin by profiling the
application using the built-in Matlab
profiler and found that more than 90%
of the program execution is spent in
two inner loops of the program.

The next step in our approach to
parallelize this Matlab application is to
compile the code to C code using the
Matlab compiler.

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

44

Figure 2: Profile graph for SDFMM. Example contains only a subset of the complete
program graph. Each node is labeled with the name of the function, as well the
amount of time spent in each function, as well as in child nodes of this function.

Figure 3: Pseudocode for the Monte Carlo Acousto-Photonic Imaging code evaluated
in this work.

Main
0/2502

Multdibobj
2/25

Tfqmr
1/1604

3/35

Mult1
1/1602Multdibso

4/59

Mult
4/1599

Multdib
50/680

Diflinit
0/852

Multdibos
3/27

Multfaflone4m
523/6

Multfaflone4
359/5

Multdifl
706/0

Snuin7
121/84

Epsumag
290/94

Epsued
42/637Suin7

29/227

0/0

0/0

0/0

18/0

16/0

Function
Self /Children Runtime

Function
Self /Children Runtime

Number of
calls

0/0
0/0

1

1018

1018

1018

1018

14.4 M

14.4 M
14.4 M

14.4 M

1
1

1
1

273

273

273

273

273

273

273

54K
2.4M

0.6M

HOT

Key

Program MonteCarloAPI
 Program Initialization
 for (i = 1 to n)
 /* perform computations */
 Call to intersect function;
 for (j = 1 to upper-limit1)
 /* some computations contain loop-carried
 dependencies */
 end for;
 for (k = 1 to upper-limit2)

/* some computations that contain loop-
carried dependencies */

 end for;
 end for;
End MonteCarloAPI;

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

45

The speedup obtained from performing
this step ranges form 8-28 times, and
depends upon on the problem size
chosen (the larger the problem size, the
larger the speedup). This speedup is a
result of the fact that compiled code is
much faster than interpreted code,
especially when the application's
execution spends most of its time in
loops. Table 1 shows that as problem
size increases, so does the degree of
speedup.

Number of
photons

3000 60000 100000

Matlab code
execution time
(seconds)

1440 24000 28800

C code
execution time
(seconds)

180 960 1024

Speedup
(Matlab vs. C)

8.0 25.0 28.1

Table 1: Execution time of the Matlab
and C versions of the serial code for
different problem sizes.

Profiling the C code with gprof further
indicates that two inner loops consume
about 50% of the total run time. The
other time consuming portion of the
application is in the Matlab intersect
function. After converting the intersect
Matlab code to C, we found we have
reduced the function’s execution time
by 75%. Next, we will try to further
reduce the execution time of these
codes by applying parallelization and
algorithm optimization to the two time
consuming parts (i.e., the two loops
and the intersect function).

The execution of the API code spends
almost all of its execution time in one
outer loop. Other than this loop, the
program executes some initialization
code, though the execution time for
this code is negligible. Loop-level
analysis for the outer loop has been
done in order to determine

dependences across iterations of the
loop. The analysis shows that there is
loop-carried dependence between
different iterations of the loop. Data
values that are written at some earlier
point in the execution and are read at
some later point in the execution.

If there is no loop-carried dependence,
then the loop can be easily parallelized.
It is also possible to parallelize a loop
containing a loop-carried dependence
as long as the dependence is not
circular. A loop-carried dependence is
called circular if there is a value which
depends on previous iteration(s) of
itself or there are at least two
statements S1 and S2 which depend on
one another. If the loop-carried
dependence is not circular, the loop
can be transformed in such a way that
its different iterations can be run in
parallel. However, if the loop-carried
dependence is indeed circular, the loop
cannot be parallelized.

The outer loop in our API code has
circular loop-carried dependences, and
therefore cannot be parallelized.
However, there is no loop-carried
dependence in the two inner loops,
each of which consumes 25% of the
execution time. So our goal is to
parallelize the two inner loops that take
50% of the execution time. To
compute the expected speedup of our
parallelization we will treat the other
50% of code execution as serial
computation. If Tp is the execution
time of the code after parallelizing the
two inner loops, t is the execution time
of the serial component in the parallel
code, Ts is the execution time of the
serial code, and p is the number of
processors, then based on Amdahl's
law we have:

Tp = ((Ts – t) / p) + t

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

46

p (the number of processors) 1 2 4 8 16
Execution time of parallelized code 1045 970 651 587 534
Speed-up vs. C code 1 1.1 1.6 1.8 2.0
Theoretical Speedup (2p / (p+1)) 1 1.3 1.6 1.8 1.9
Speed-up vs. Matlab code 28.0 30.8 44.8 49.6 52.6

Table 2: Execution time after parallelizing the two inner loops.

Therefore:

Speedup= Ts/Tp = Ts/ (((Ts – t)/ p) + t)

Here t = 0.5 * Ts, therefore

Speedup = (2 * p) / (1 + p)

The results of parallelizing the two
inner loops, the expected speedup by
parallelizing the two loops, and the
speedup over the Matlab codes, are
shown in Table 2.

One way to parallelize the two inner
loops is to use a master-slave paradigm
[Shao and Wolski, 2000]. A master
processor executes the sequential
portions of the code, and then
distributes the necessary data to a
number of slave processors to execute
the parallel workload. Next, the
master gathers the results from slaves
and assigns them new tasks if any
exist. When using a master-slave
model, the master must compute both
the initialization and any sequential
execution during each iteration of the
outer loop. Then the master
disseminates the data necessary to
perform the inner loops in parallel to
the slaves, and then gathers data from
all slaves and starts the next iteration
of the outer loop. In parallelizing each
of the two inner loops, we divide the
computation into tasks, where each
task is defined as consecutive iterations
of the loop. Therefore, task generation
is performed statically. Also the
assignment of tasks to slave processors

is done statically, based on the
processor ID in the following way:

• Assume p is the number of
processors and n is the number
of iteration of a loop.

• Furthermore, assume that n is
divisible by p.

• Then processor i will compute
iterations (i-1) * (n/p) to (i *
n/p) - 1, inclusive.

Another possible approach to
parallelizing the code is to allow all
processors to participate in the
initialization phase as well as to
execute the sequential portion of the
code in each outer iteration, instead of
waiting idly while the master
completes them. Also each processor
performs its assigned parallel
execution (which is statically defined,
based on processor ID, as described in
the previous approach). The motivation
behind this approach is to reduce
communication overhead by
replicating computations. The
execution times shown in Table 2 are
based on using this approach of
parallelizing the two inner loops.

3.2 A More Efficient intersect

Function

As mentioned earlier, the calls to the
intersect function take 25% of the total
execution time in the C version of the
application. Our next goal is to make
the intersect function run faster by
both parallelization and algorithm
optimization. The Matlab intersect(A,
B) (where A and B are vectors) returns

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

47

the values common to both A and B.
The resulting vector is sorted in
ascending order.

To find out where time is spent in the
intersect function, we have run the
following code:

A = random ('Normal',
0, 1, 35000,1);
B = random ('Normal',
0, 1, 35000, 1);
profile on
C = intersect(A, B);
profile report

The example above takes
approximately 1.5 seconds, with more
than 90% of the time spent in the sort
function using Matlab v5.3.1. In
Matlab version 6.1, the example takes
0.31 seconds, with 45-50% of the time
spent in the sort function. Based on the
information obtained from The
MathWorks, there have been
substantial changes to the built-in sort
function from version 5.3.1 to 6.1.

To speedup intersect, we wrote a new
function which has the same
functionality and then parallelized it.
Figure 4 shows the pseudocode of the
algorithm for the new intersect that is
implemented.

3.3 Steepest Descent Fast Multipole

Method

The Steepest Descent Fast Multipole
Method (SDFMM) was developed at
the University of Illinois at Urbana
Champaign to analyze large-scale three
dimension (3-D) scattering problems
[El-Shenawee et al, 1999], [Jandhyala,
1998], [Jandhyala et al, 1998]. We
have recently modified the base
algorithm to be used in modeling
subsurface sensing applications. In the
version of the program we are
evaluating in this paper, the application
looks at scattering from a penetrable
spheroid object buried under a two-
dimensional randomly rough ground
surface [El-Shenawee et al, 2001a] [El-

Figure 4: Pseudocode for an improved intersect function.

Function Intersect(Vector A, Vector B)
 Sort(A);
 Sort(B);
 aptr = bptr = cptr = 0;
 while ((aptr < size(A)) and (bptr < size(B))
 do {
 if (A[aptr] = B[aptr])
 {
 C[cptr++] = A[aptr++];
 bptr ++;
 }
 else
 {
 while (A[aptr] < B[bptr])
 do {
 aptr ++;
 while (B[bptr] < A[aptr])
 bptr++;
 }
 }
 }
 return C;
End Intersect;

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

48

Shenawee, 2001b]. The spheroid
represents a buried land mind, resting
in a bed of soil.

The SDFMM has computational
complexity for CPU time and memory
equal to only O(N) per iteration versus
O(N2) for the Method of Moments,
where N is the total number of the
unknowns~\cite{Jandhyala98}. This
level of complexity provides SDFMM
with a significant advantage over
several other techniques and has
enabled us to utilize Monte Carlo
simulation methods [El-Shenawee et
al, 2001a]. While SDFMM provides
us with an efficient subsurface
modeling tool, to process large images
at high resolution, the time to compute
a single result can be many days, so we
need to exploit parallel computers. In
our parallel cluster work we used the
MPI library for the parallel
implementation of the SDFMM code
[MPI, 1994], [Li et al, 2000],
[Velamparambil et al, 1999], [Walker,
1994], [Walker and Dongarra, 1996].

4 PARALLELIZATION OF

SDFMM

The SDFMM is used to solve the linear
system of equations given by
[Jandhyala, 1998]:

Z I = V (3.1)

where Z is the impedance matrix, I is
the vector of unknown coefficients of
the electric and magnetic surface
currents and V is associated with the
incident waves on the rough ground
surface. The matrix Z, which is filled
in by Method of Moments
formulations, becomes sparse with
SDFMM and the system of equations
in (1a) can be written as:

Z' I + Z" I = V (3.2)

The sparse matrix Z' has its non-zero
elements calculated and stored using
the conventional MoM, which are then
multiplied by the vector (near field
interactions), while the matrix-vector
multiply Z"I is computed in one step
without calculating or storing any
elements of the matrix Z". This is
achieved by using the FMM hybridized
with the SDP integration rule.

By inspecting Figure 2, we can clearly
identify the portions of the code where
time is being spent. From using our
profile-guided approach we are able to
identify three bottlenecks in the
SDFMM code that can benefit from
parallelization:

(i.) the functions that calculates
the elements of the sparse
matrix Z';

(ii.) the functions that execute
the matrix vector
multiplication Z" I in each
iteration of the solver;

(iii.) and the functions that
execute the fast multipole
method for Z" I (far field
interactions).

These three bottlenecks correspond to
the following functions identified in
Figure 2:

• Dflinit for producing the
sparce matrix Z',

• Multdifl for computing the
matrix vector multiply, and

• Multfaflone and
Multfaflone4m for
computing the Fast Multipole
Method (the amount of time
spent in this code depends up a
user-specified threshold value).

The source code has been parallelized
using MPI routine, attempting to
exploit the underlying available data
parallelism. The key data structure in
function (i) is the sparse matrix Z',

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

49

which is stored as blocks of nonzero
elements. These blocks are distributed
among all processors, and no
additional communication is needed.
When this routine is parallelized we
achieved near-linear speedups on 32
processors. In the matrix-vector
multiplication Z" I, the computation is
parallelized by distributing I to all
processors in each iteration. The
resulting vector components produced
by the multiplication are then
distributed to all processors. For
bottleneck (iii), the two functions
involved with computing the far field
interactions consist of a series of loops
with complex interdependences. Each
loop is separately parallelized, with
collective communication used to
distribute the results to all processors
after executing each function. In
addition, these two functions are
executed in parallel, followed by
subsequent distribution of the results to
all processors. Load balancing between
these two functions is achieved using a
detailed performance model based on
the serial execution time of each
routine, the time required for collective
communication operations, and the
amount of communication overhead
needed. The structure of the
parallelized SDFMM application is
shown in Figure 6.

4.1 Evaluation Environment

We evaluated the parallel
implementation of the SDFMM
computer code on a 32-node Intel
Pentium-based Beowulf cluster.
Thirty-one nodes of the Beowulf
cluster are 350MHz Intel Pentium IIs
with 256 MB of RAM and one node is
a 4x450MHz Intel Pentium II Xeon
shared memory processor with 2GB of
RAM. The nodes are connected to a
100 BaseTX Ethernet network and
they use the SuSE 6.1 operating system

with Linux kernel 2.2.13, and the
MPICH 1.2.1 implementation of the

Figure 6: Structure of the parallelized
SDFMM application.

MPI library. We also tested the
parallelized code on a 4-node shared
memory Compaq Alpha-based
workstation (667Mhz Alpha 21264) of
16GB total RAM. The processor uses
the UNIX OSF/1 V5.1 operating
system with the MPICH 1.1.2 MPI
library. Our benchmark includes three
small-scale cases executed on the
256MB Intel cluster, and in addition
one medium-scale case that is executed
on the Alpha workstation. All results
obtained by executing the parallel
version of the code are validated with
those computed by the serial version of
the code [El-Shenawee et al, 2001a],
[El-Shenawee et al, 2001b].

4.2 Evaluation Parameters

The scattering problem configurations
used in [El-Shenawee et al, 2001a} are
employed here, but for only one rough
surface realization. The rough ground
(characterized by Gaussian statistics
with zero mean for the height) is
described by the rms height σ and the
correlation length (lc). In all cases, the
relative dielectric constant of the
ground soil (dry sand) and the
penetrable buried object (TNT in a
land mine) are εr = 2.5 - j0.18 and εr =

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

50

Case Number of
unknowns

σ Object System Number of
Processors

Seral/Parallel
Time

Speedup

1 8800 0.3λ None Cluster 32 99/14 7.1
2 8800 0.1λ Sphere Cluster 32 90/14 6.2
3 8800 0.04λ Spheroid Cluster 32 88/12 7.2
4 60,32 0.04λ Spheroid Alpha SMP 32 96/37 2.5

Table 3: Runtime parameters and runtime performance data.

2.0 - j0.0092, respectively, and the
ground correlation length is lc = 0.5λ0.

A Gaussian beam with horizontal
polarization is employed for the
incident waves [El-Shenawee et al,
2001a]. In Case 2, the buried sphere
has radius of a = 0.16λ0 with burial
depth equal to z = -0.32λ0 measured
from its center to the mean plane of the
ground while in Case 3 and 4 the
buried spheroid has dimensions a = 3λ0
and b = 0.15λ0, and is buried at z = -
0.3λ0. The ground dimensions are 3λ0

by 3λ0 in Cases 1-3, and 8λ0 by 8λ0 in
Case 4. Table I summarizes the
parameters and output results for Cases
1-4.

The speedup of a parallelized
application is defined as the ratio of the
serial runtime divided by the parallel
runtime. In Figure 6, the overall
speedup and the speedup for the
initialization routine (filling matrix Z')
are plotted versus the number of
processors for Case 1. The speedup
curves for Cases 2 and 3 (not shown)
are similar, with slightly different peak
values of 6.2 and 7.2, respectively. The
results show a significant speedup in
the initialization code that fills the
sparse matrix Z”. This initialization
speedup dramatically affects the
overall speedup of the code, as shown
in Figure 6.

Figure 6: Speedup of the parallelized SDFMM code versus the number of processors
for the three separate bottlenecks in the code on the Beowulf cluster for Case 1. The
overall speedup is also shown.

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

51

In each case, the peak overall speedup
is observed when running on 32
processors, but most of this speedup is
achieved using only 12 processors.
The efficiency of an application for a
given number of processors is defined
as the ratio of the speedup to the
number of processors. Over Cases 1-3,
the average speedup on 32 processors
is 6.8, giving an efficiency of 0.21.
Based on the serial runtimes, 88% of
the code is executed in parallel.
Therefore by Amdahl's Law [Amdahl,
1967], the peak speedup achievable for
the current parallelization of the code
is 8.3. We conclude that
communication overhead and load
imbalance among the processors
accounts for the reduction in speedup
from 8.3 to 6.8.

A comparison between the speedups
achieved in the other bottlenecks (i)-
(iii) mentioned in previously is also
shown in Figure 6. These results
demonstrate that the overall speedup is
almost the same as that achieved in the
matrix-vector multiplication Z" I,
which is the bottleneck in (ii).

In the second set of experiments, we
solved the medium-scale problem of
Case 4 (60,320 unknowns) on an
Alpha SMP using all four processors.
The overall speedup in this case is 2.5,
which is close to the predicted peak
speedup of 2.9. This implies that
executing the parallel code on the 4-
Alpha 667 MHz processors gives an
impressive absolute runtime for this
medium-scale case. The serial version
of the code requires 950MB of
memory, while the parallel version
requires 1154MB of memory
distributed over four processors (288,
290, 289 and 287MB each). The
results of the parallel solution were
identical to those of the serial
implementation presented in [El-
Shenawee et al, 2001a].

The results described in this section
demonstrate that by exploiting fine-
grained parallelism within a single
surface realization (one run of the
code), we have achieved significant
speedups. However, when the number
of rough surface realizations is much
larger than the number of available
processors, as with Monte Carlo
simulations, larger speedups are
possible. This situation occurs when
we need to run Monte Carlo
simulations [El-Shenawee et al,
2001a]. In this case we assign a group
of these realizations (runs of the code)
to be executed in parallel on each
processor. Since the computations are
independent and little communication
is needed, this coarse-grained
parallelism gives a perfect speedup that
is only limited by the number of
available processors. In other
subsurface scattering configurations,
we may need to obtain multiple views
of a target buried under the same rough
surface realization [El-Shenawee et al,
2001], which requires running the code
only a few times. A combination of
fine and coarse-grained parallelism can
make efficient use of all available
processors.

5 SUMMARY

In this paper we have discussed how
informed profiling can guide the
efficient parallelization of subsurface
sensing and imaging application. We
discussed how we utilized the profiling
capabilities within Matlab, as well as
compilation to C, to obtain a 52.6
speedup over a serial Matlab
implementation of a Monte Carlo
Simulation running Acousto-Photonic
Imaging. For SDFMM, a speedup of
7.2 was achieved on the 32-processor
Beowulf cluster and a dramatic
reduction in runtime is obtained using
a 4-processor Alpha shared-memory
machine. The greatest potential for

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

52

speedup occurs in the sparse matrix
filling and far field interaction steps.

ACKNOWLEDGEMENTS

The authors would like to thank W.
Chew and E. Michielssen for access to
the SDFMM Fortran code. This
research was sponsored by the ERC
Program of the NSF under award
number EEC-9986821, in part by an
NSF MRI grant MRI-9871022, by an
ARO MURI grant DAA 0-55-97-0013,
and in part by the College of
Engineering at the University of
Arkansas.

REFERENCES

Almasi G. and Padua D., “MaJIC:
Compiling MATLAB for Speed and
Responsiveness,” Proceedings of
PLDI, to appear, 2002.

Amdahl G.M., “Validity of Single-
processor Approach to Achieving
Large-scale Computing Capability,
Proceedings of AFIPS Conference,
Reston, VA, pp. 483-485, 1967.

Ball T. and Larus J.R., “Efficient Path
Profiling,” Proceedings of MICRO29,
pp. 46-57, 1996.

Ball T. and Larus J.R., 1994,
“Optimally Profiling and Tracing
Programs,” ACM Transactions on
Programming Languages and Systems,
16(4), pp. 1319-1360, July 1994.

Blume W., Doallo R., Eigenmann R.,
Grout J., Hoeflinger J., Lawrence T.,
Lee T., Padua D., Paek Y., Pttenger B.,
Rauchwerger L. and Tu P., “Parallel
Programming with Polaris,” IEEE
Computer, 29(12), pp. 78-82, 1996.

CenSSIS, The Center for Subsurface
Sensing and Imaging Systems,
http://www.censsis.neu.edu,

Northeastern University, Boston, MA,
2002.

Conte T.M., Patel B.A., Menezes K.N.
and Cox J.S., 1996, “Hardware-Based
Profiling: An Effective Technique for
Profile-Driven Optimization,”
International Journal of Parallel
Programming, 24(2), pp. 187-206,
1996.

DiMarzio C. and Gaudette T.J., 1998,
“Point-Spread Functions for Acousto-
Photonic Imaging,” Proceedings of the
Conference on Lasers and Electro-
Optics (CLEO), 1998.

El-Shenawee M., Jandhyala V.,
Michielssen E. and Chew W.C., “The
Steepest Descent Fast Multipole
Method (SDFMM) for Solving the
Combined Field Integral Equation
Pertinent to Rough Surface
Scattering,” Proceedings of the IEEE
AP-S International Symposium and
URSI Radio Science Meeting, Orlando,
FL, pp. 534-537, July 1999.

El-Shenawee M., Rappaport C., Miller
E. and Silevitch M., “3-D Subsurface
Analysis of Electromagnetic Scattering
from Penetrable/PEC Objects Buried
Under Rough Surfaces: Use of the
Steepest Descent Fast Multipole
Method (SDFMM),” IEEE
Transactions on Geoscience and
Remote Sensing, 39(6), pp.1174-1182,
June 2001.

El-Shenawee M., Rappaport C. and
Silevitch M., “Monte Carlo
Simulations of Electromagnetic Wave
Scattering from Random Rough
Surface with 3-D Penetrable Buried
Object: Mine Detection Application
Using the SDFMM,” Journal of the
Optical Society of America A, to
appear 2002.

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

53

Graham S.L., Kessler P.B. and
McKusick M.K., “gprof: a Call Graph
Execution Profiler,” SIGPLAN
Symposium on Compiler Construction,
pp. 120-126, 1982.

Harallah K. and Sevcik K.C.,
“Predicting Application Behavior in
Large-Scale Shared-memory
Multiprocessors,” Proceedings of
Supercomputing, 1995.

Jandhyala V., Fast Multilevel
Algorithms for the Efficient
Electromagnet Analysis of Quasi-
Planar Structures, University of
Illinois, 1998.

Jandhyala V., Shanker B.,
Michielssenand E., and Chew W.C.,
“A Fast Algorithm for the Analysis of
Scattering by Dielectric Rough
Surfaces,” Journal of the Optical
Society of America A, 15(7), pp. 1877-
1885, July 1998.

Kalamatianos J., Khalafi A., Kaeli D.
and Meleis W., “Analysis of
Temporal-based Program Behavior for
Improved Cache Performance,” IEEE
Transactions on Computers, 48(2), pp.
168-175, February, 1999.

Li S., Chan C.H., Tsang L., Li Q. and
Zhou L., “Parallel Implementation of
the Sparse Matrix/Canonical Grid
Method for the Analysis of Two-
dimensional Random Rough Surfaces
(three-dimensional scattering problem)
on a Beowulf System,” IEEE
Transactions on Geoscience Remote
Sensing, 30(4), pp. 1600-1608, July
2000.

Merten M.C., Trick A.R., George
C.N., Gyllenhaal J.C. and Hwu W., “A
Hardware-Driven Profiling Scheme for
Identifying Program Hot Spots to
Support Runtime Optimization,” ISCA,
pp. 136-147, 1999.

Miller B.P, Callaghan M.D., Cargille
J.M., Hollingsworth J.K., Irvin R.B.,
Karavanic K.L., Kunchithapadam K.
and Newhall T., “The Paradyn Parallel
Performance Measurement Tool,”
IEEE Computer, 28(11), pp. 37-46,
1995.

Moler C., “Why There Isn't a Parallel
MATLAB,” The MathWorks,
http://www.mathworks.com/company/n
ewletter/pdf/spr95cleve.pdf, 1995.

Mowry T.C. and Luk C.-K.,
“Understanding Why Correlation
Profiling Improves the Predictability of
Data Cache Misses in Nonnumeric
Applications,” IEEE Transactions on
Computers, 49(4), pp. 369-384, April
2000.

MPI, “Message Passing Interface
Forum, MPI: A Message-Passing
Interface Standard,” UT-CS-94-230,
University of Tennessee, 1994.

RTExpress, Parallel MATLAB
Development for High Performance
Computing,
http://www.rtexpress.com/isi/rtexpress,
Utica, NY, 2002.

Quinn M.J., Malishevsky A., Seelam
N. and Zhao Y., “Preliminary Results
from a Parallel MATLAB Compiler,”
Proceedings of the 12th International
Parallel Processing Symposium, pp.
81-87, 1998.

Shao G., Berman F. and Wolski R.
2000, “Master/Slave Computing on the
Grid,” 9th Heterogeneous Computing
Workshop, May, 2000.

Velamparambil S.V., Schutt-Aine E.,
Nickel J.G., Song J.M. and Chew
W.C., “Problems Using a Linux
Cluster and Parallel MLFMA,” IEEE
Antennas Propagation Symposium,

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

54

Solving Large Scale Electromagnetics,
pp. 635-639, July, 1999.

Walker D.W. and Dongarra J.J., “MPI:
A Standard Message Passing
Interface,” Supercomputing, 12(1), pp.
56-68, 1996.

Walker D.W., “The Design of a
Standard Message Passing Interface
for Distributed Memory Concurrent
Computers,” Parallel Computing,
20(4), pp. 657-673, 1994.

Maryam Ashouei is an
MS students in the
Electrical and Computer
Engineering Department
at Northeastern
University, Boston, MA.
In 1998 she received her
BSc in Computer
Engineering from Sharif
University, Tehran, Iran.

Desheng Jiang
received his B.S. in
Chemistry from Jiangxi
Normal University in
1993, M.S in
Oceanography from
Texas A&M University
in 1999, M.S. in
Electrical Engineering
from Northeastern
University in 2001, respectively. He currently
is working for Openwave Systems Inc. He can
be reached at djiang@ece.neu.edu.

Waleed M. Meleis
received the BSE
degree in electrical
engineering from
Princeton University in
1990 and the MS and
PhD degrees in
computer science and
engineering from the
University of Michigan
in 1992 and 1996, respectively. He is an
associate professor in the Department of
Electrical and Computer Engineering at

Northeastern University, Boston. His research
interests are in scheduling algorithms and
bounds for modern processors and compilers.

David Kaeli received
his B.S. in Electrical
Engineering from
Rutgers University,
his M.S. in Computer
Engineering from
Syracuse University,
and his PhD in
Electrical Engineering
from Rutgers
University. He is currently an Associate
Professor on the faculty of the Department of
Electrical and Computer Engineering at
Northeastern University. Prior to 1993, he
spent 12 years at IBM, the last 7 at IBM T.J.
Watson Research in Yorktown Heights, N.Y..
In 1996 he received an NSF CAREER Award.
He currently directs the Northeastern
University Computer Architecture Research
Laboratory (NUCAR). He is also a research
thrust leader in the NSF-funded CenSSIS
Engineering Research Center.

Magda El-Shenawee
received the Ph.D.
degree in electrical
engineering from the
University of
Nebraska-Lincoln in
1991. In 1992, she
worked as a Research
Associate in the
Center for Electro-
Optics at the University of Nebraska. In 1997,
she worked as Visiting Scholar at the
University of Illinois at Urbana-Champaign
and in 1999, she joined the Center for
Electromagnetics Research at Northeastern
University, Boston. Currently, Dr. El-
Shenawee is an assistant professor in the
Department of Electrical Engineering at the
University of Arkansas, Fayetteville. Her
research areas are rough surface scattering,
computational electromagnetics, subsurface
sensing of buried objects, breast cancer
modeling and medical imaging, numerical
methods, and micro-strip circuits. Dr. El-
Shenawee is a member of Eta Kappa Nu
electrical engineering honor society.

Elias Mizan received his MS degress in
Electrical Engineering from Northeastern
University, Boston MA, in 2002. He will be

M. ASHOUEI et al: PROFILE BASED CHARAC. .

I. J. of SIMULATION Vol. 3 No. 1-2 ISSN 1473-804x online, 1473-8031 print

55

attending the University of Texas at Austin for
his PhD degree starting Sept. 2002.

Yijian Wang is a PhD
student in the Electrical
and Computer
Engineering
Department at
Northeastern
University, Boston,
MA. He received his
BS in Computer
Science from Xian
Jiaotong University, China and his MS in
Electrical Engineering from the Chinese
Academy of Sciences. He worked at CAS on
the design of an underwater digital
communication system for the Chinese Navy.

Carey M. Rappaport
received five degrees
from the
Massachusetts
Institute of
Technology: the SB in
Mathematics, the SB,
SM, and EE in
Electrical Engineering
in June 1982, and the
PhD in Electrical Engineering in June 1987
Prof. Rappaport joined the faculty at
Northeastern University in Boston, MA in
1987. He has been Professor of Electrical and
Computer Engineering since July 2000.
During Fall 1995, he was Visiting Professor of
Electrical Engineering at the Electromagnetics
Institute of the Technical University of
Denmark, Lyngby, as part of the W. Fulbright
International Scholar Program. He has
consulted for Geo-Centers, Inc., PPG, Inc., and
several municipalities on wave propagation
and modeling, and microwave heating and
safety. He is Principal Investigator of an
ARO-sponsored Multidisciplinary University
Research Initiative on Demining and Co-
Principal Investigator of the NSF sponsored
Center for Subsurface Sensing and Imaging
Systems (CenSSIS) Engineering Research
Center.

Charles DiMarzio
holds a BS in
Engineering Physics
from the University
of Maine, an MS in
Physics from
Worcester
Polytechnic Institute,
and a Ph.D. in
Electrical and
Computer Engineering from Northeastern
University. He worked on coherent laser
radars for atmospheric measurements, at
Raytheon Company. He is presently an
associate professor of electrical and computer
engineering at Northeastern University, where
he directs the Optical Science Laboratory.
This laboratory is involved in optics research
in such diverse fields as landmine detection,
medical and biological imaging, and remote
sensing.

