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Abstract: For subsurface sensing and imaging (SSI) applications, parallel computers enable massive 
processing of large datasets, using shared memory processing and sophisticated restoration algorithms 
for higher resolution images.  Techniques were developed to characterize an application's serial 
execution and map large data sets onto Beowulf-class clusters and shared memory multiprocessor 
systems using MPI.  Two example SSI applications are given to demonstrate the power of our 
techniques: parallelizing a Monte Carlo Simulation of Acousto-Photonic Imaging (API), and the 
Steepest Descent, Fast Multipole Method (SDFMM). Acousto-Photonic Imaging is used in soft-tissue 
imaging, and combines both optical tomography with ultrasound imaging. A 52 times speedup over the 
original Matlab code on a 16-node cluster was achieved SDFMM is a fast algorithm for hybridization 
of the Method of Moments (MoM), the Fast Multipole Method (FMM) and the Steepest Descent 
Integration rule (SDP).  SDFMM is used to solve large-scale linear systems of equations produced in 
electromagnetic scattering problems. An overall speedup of 7.2 has been achieved on the 32-processor 
Beowulf cluster and a significant reduced runtime is achieved on the 4-processor 667MHz Alpha 
shared-memory system. 
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1  INTRODUCTION 
 
In the Center for Subsurface Sensing 
and Imaging Systems, researchers use 
a diverse set of signal processing, 
electromagnetics, acoustics and optics 
techniques and algorithms to apply to 
applications in the field of subsurface 
imaging [CenSSIS, 2002].  The goal of 
many of these techniques is to 
understand the interaction of different 
types of waves, separating the object of 
interest from the imaging medium.  
One of the objectives of the Center is 
to solve problems using a common set 
of computational techniques, including 
Finite Difference Frequency Domain 
(FDFD), Finite Difference Time 

Domain (FDTD), Semi-Analytic Mode 
Matching (SAMM), and SDFMM; the 
computation associated with these 
approaches tends to be very time 
consuming.  The size and complexity 
of these algorithms typically present a 
computational barrier to a researcher's 
ability to obtain results within a few 
days on current computing platforms.  
 
In practice, large realistic input data 
sets often cannot be processed at all on 
a single processor.  Parallel computers 
and parallel I/O can be used to 
significantly reduce the runtime of 
these applications.  Academic and 
industrial research groups are actively 
developing techniques to parallelize 
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scientific applications written in 
Matlab [Almasi and Padua, 2002], 
[RTExpress, 2002], [Quinn et al, 
1998]. These techniques include 
packages based on message passing 
within Matlab sessions, calls to parallel 
libraries, and compiler environments 
that directly parallelize Matlab.  
However, the relative effectiveness of 
these techniques is not currently well 
understood [Moler, 1995]; they differ 
in the amount of extra programming 
effort they require and their resulting 
performance gains [Quinn et al, 1998]. 
 
Our approach is to instead develop 
tools that first profile the serial 
application to allow us to identify the 
most critical portions of the execution 
in a program, as well as to identify 
program paths.  One goal is to limit the 
amount of message passing by 
carefully partitioning the work to be 
done in the application.  Our 
techniques are designed to address a 
range of applications and programming 
environments.  We utilize a number of 
standardized Unix and Matlab utilities 
in our work.  We will describe how we 
first profile an application, identifying 
the critical control and data flow 
present in the application.  We then 
discuss how we identify hot paths and 
utilize this data to guide 
parallelization.  While our present 
implementation performs offline 
optimization and parallelization, we 
can envision our profiling techniques 
to be integrated into a runtime system 
that monitors performance and 
performs optimization based on 
runtime dynamics. 
 
This paper is organized as followed.  
In Section 2, we will describe our 
profile-based approach to program 
optimization.   In Sections 3 and 4 we 
describe the application of this 
approach to both the Acousto-Photonic 
Imaging and the Steepest Descent Fast 

Multipole Method application, and 
report on the level of speedup 
obtained. In Section 5 we summarize 
the contributions of this paper. 
 
2  PROFILE-GUIDED 
OPTIMIZATION 

 
Profiling has been used to guide a 
number compilation and program 
restructuring algorithms.  Some 
examples of the classes of 
optimizations that have been reported 
include: 

• Code and data profiling 
[Kalamatianos et al, 1999], 
[Mowry and Luk, 2000], 

• Instruction scheduling and 
function inlining [Conte et al, 
1996], [Merten et al, 1999], and 

• Distributed and parallel 
processing  [Blume et al, 1996], 
[Harzallah and Sevcik, 1995], 
[Miller et al, 1995]. 

 
In this work we describe techniques 
that profile a serial implementation of 
the program.  Our objective is to 
provide guidance when parallelizing 
the program, focusing our attention on 
portions of the program that dominate 
overall performance.   
 
The two forms of program execution 
information are contained in control 
flow and data flow graphs.  In this 
work we are focused on understanding 
program control flow, though we have 
also looked at data flow to determine 
the amount of data dependence in an 
application. Next we discuss program 
control flow as it relates to mapping a 
serial application onto a MPI 
programming model. 
 
2.1 Function Call Graphs 
 
The control flow of a program 
determines the ordering and frequency 
of execution of the various functions 
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included in the application.  It is very 
important to understand this behavior 
since it quickly helps us to effectively 
parallelize an application.   
 
A function call graph is a directed 
graph where each node represents a 
function/procedure in the code, and 
edges indicate a call to that function.  
Figure 1 shows a call graph for a 
program that contains 6 functions A-F.   
The edges in the graph represent that 
the function at the tail of the edge calls 
the function at the head of the edge.  
The label on the edge indicates the 
calling frequency (number of calls 
executed).  Note that returns do not 
increment the edge weight.   
 
Figure 1 also shows 3 possible 
execution paths that could have been 
followed during the execution of the 
program that produced the edge 
profile.  The first path profile indicates 
that function A called function B 10 
times, and on the last call, function B 
called function C 200 times.  On the 
last call to function C, function D is 
called 250 times, followed by function 
E being called 10 times, and finally 
function F being called 50 times.   
 
In the second path profile, we follow a 
different set of paths through the 
program, with function A calling 
function B five times, followed by 
function B calling function C 100 
times.  This sequence repeats once 
more. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Function call graph.  This 
example shows that there are a large 
number of potential paths through the 
function call graph.} 
 
On the last call to C, function D is 
called 25 times, function E is called 
once, function F is called 10 times, and 
the sequence is repeated 5 times.  The 
third path profile produces yet another 
unique sequence of paths that are 
followed. 
 
To efficiently parallelize a serial 
application, it is helpful to know both 
the execution frequency of each 
program component (functions in this 
case), as well as understand the order 
of execution of these components.  
Path profiles have been shown to be an 
effective mechanism for capturing 
basic block path execution [Ball and 
Larus, 1994] [Ball and Larus, 1996].  
In this work we are studying program 
dynamics using a coarser grain 
(functions).  To obtain accurate path 
profiles of function execution, we 
would need to identify the call 
locations in the basic block graph. 
Then we could utilize the techniques 
described in [Ball and Larus, 1996] to 
capture full path profiles of function 
execution.   
An additional problem occurs when 
studying applications that implement 
indirect function calls.  From a single 
calling location in a program we can 
invoke a number of functions (e.g., 
indirect method calls in C++).  This 
makes analysis with path profiling 
techniques more complicated.  Control 
can be passed conditionally to more 
than two locations.  Indirect branches 
were not considered in [Ball and Larus, 
1996].  We are presently studying this 
issue, and have already described a 
highly accurate methodology to 
estimate the temporal locality of 
program units using a Temporal 
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Relationship Graph [Kalamatianos et 
al, 1999]. 
 
Another important criterion for 
parallelizing an application is to focus 
our attention on the functions that 
dominate the overall execution.   We 
will refer to these functions as hot 
functions. We can utilize standard 
Unix utilities, such as gprof [Graham, 
1982], to obtain sampled function 
runtimes.  We can then quickly 
identify the portions of an application 
where a majority of the execution time 
is spent.  Most time-based profiling 
applications utilize a timer interrupt to 
provide a timestamp and location 
where the program is currently 
executing.  The granularity of the 
profile is individual functions, and 
compiler support is needed to provide 
debug and symbol information in the 
executable binary. 
 
In Figure 2 we show a portion of a 
labeled profile directed graph 
generated for SDFMM.  In this graph, 
nodes represent a program function, 
and directed edges represent a caller-
callee relationship. Edges are labeled 
with the number of calls made from the 
tail function to the head function.  
Each node is labeled with the name of 
the function, the amount of time spent 
in each function, as well the time spent 
in child nodes of this function.  Not all 
child nodes are shown in the graph in 
this example.  Hot nodes (functions 

 that consume a significant portion of 
the overall execution time) are shaded 
in gray. 
 
3  EXAMPLE SUBSURFACE 
APPLICATION  
 
Next we will present examples of 
profile-guided parallelization using the 
API and SDFMM applications. 
 
3.1 Acousto-Photonic Imaging 
 
Acousto-Photonic Imaging is a new 
frequency domain technique for non-
invasive medical imaging combining 
Diffusive Optical Tomography (DOT) 
and focused ultrasound [Dimarzio and 
Gaudette, 1998]. The objective is to 
generate acoustically virtual sources to 
improve spatial resolution as well as to 
acquire the optical properties of human 
tissue.  We are attempting to accelerate 
Monte Carlo simulations for the 
interaction of Near-InfraRed light 
(NIR) and ultrasound in dense turbid 
media with high albedo. Figure 3 
shows a pseduocode description of the 
processing involved with API. 
 
The original serial code is written in 
Matlab. We are using Matlab versions 
5.3 and 6.1 in this work.  Our target 
system is a 192-node Silicon Graphics 
Origin 2000 system at the Boston 
University Scientific and Visualization 
Center, which is part of the NCSA. We 
only utilize up to 16 nodes in this 
work. We begin by profiling the 
application using the built-in Matlab 
profiler and found that more than 90% 
of the program execution is spent in 
two inner loops of the program. 
 
The next step in our approach to 
parallelize this Matlab application is to 
compile the code to C code using the 
Matlab compiler. 
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Figure 2:  Profile graph for SDFMM.  Example contains only a subset of the complete 
program graph.  Each node is labeled with the name of the function, as well the 
amount of time spent in each function, as well as in child nodes of this function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Pseudocode for the Monte Carlo Acousto-Photonic Imaging code evaluated 
in this work. 
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Program MonteCarloAPI
  Program Initialization 
  for (i = 1 to n ) 
     /* perform computations */ 
     Call to intersect function; 
     for ( j = 1 to upper-limit1) 
        /* some computations contain loop-carried 
          dependencies */ 
     end for; 
     for (k = 1 to upper-limit2) 

/* some computations that contain loop-
carried dependencies  */ 

     end for; 
  end for; 
End MonteCarloAPI; 
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The speedup obtained from performing 
this step ranges form 8-28 times, and 
depends upon on the problem size 
chosen (the larger the problem size, the 
larger the speedup).  This speedup is a 
result of the fact that compiled code is 
much faster than interpreted code, 
especially when the application's 
execution spends most of its time in 
loops. Table 1 shows that as problem 
size increases, so does the degree of 
speedup.  
 
Number of 
photons 

3000 60000 100000

Matlab code 
execution time 
(seconds) 

1440 24000 28800 

C code 
execution time 
(seconds) 

180 960 1024 

Speedup 
(Matlab vs. C) 

8.0 25.0 28.1 

Table 1: Execution time of the Matlab 
and C versions of the serial code for 
different problem sizes. 
 
Profiling the C code with gprof further 
indicates that two inner loops consume 
about 50% of the total run time.  The 
other time consuming portion of the 
application is in the Matlab intersect 
function. After converting the intersect 
Matlab code to C, we found we have 
reduced the function’s execution time 
by 75%.  Next, we will try to further 
reduce the execution time of these 
codes by applying parallelization and 
algorithm optimization to the two time 
consuming parts (i.e., the two loops 
and the intersect function). 
 
The execution of the API code spends 
almost all of its execution time in one 
outer loop. Other than this loop, the 
program executes some initialization 
code, though the execution time for 
this code is negligible.  Loop-level 
analysis for the outer loop has been 
done in order to determine 

dependences across iterations of the 
loop. The analysis shows that there is 
loop-carried dependence between 
different iterations of the loop.  Data 
values that are written at some earlier 
point in the execution and are read at 
some later point in the execution. 
 
If there is no loop-carried dependence, 
then the loop can be easily parallelized.  
It is also possible to parallelize a loop 
containing a loop-carried dependence 
as long as the dependence is not 
circular.  A loop-carried dependence is 
called circular if there is a value which 
depends on previous iteration(s) of 
itself or there are at least two 
statements S1 and S2 which depend on 
one another. If the loop-carried 
dependence is not circular, the loop 
can be transformed in such a way that 
its different iterations can be run in 
parallel. However, if the loop-carried 
dependence is indeed circular, the loop 
cannot be parallelized. 
 
The outer loop in our API code has 
circular loop-carried dependences, and 
therefore cannot be parallelized. 
However, there is no loop-carried 
dependence in the two inner loops, 
each of which consumes 25% of the 
execution time.  So our goal is to 
parallelize the two inner loops that take 
50% of the execution time. To 
compute the expected speedup of our 
parallelization we will treat the other 
50% of code execution as serial 
computation.  If Tp is the execution 
time of the code after parallelizing the 
two inner loops, t is the execution time 
of the serial component in the parallel 
code, Ts is the execution time of the 
serial code, and p is the number of 
processors, then based on Amdahl's 
law we have: 

 
Tp = ((Ts – t) / p) + t 
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p (the number of processors) 1 2 4 8 16 
Execution time of parallelized code 1045 970 651 587 534 
Speed-up vs. C code 1 1.1 1.6 1.8 2.0 
Theoretical Speedup (2p / (p+1)) 1 1.3 1.6 1.8 1.9 
Speed-up vs. Matlab code 28.0 30.8 44.8 49.6 52.6 

Table 2: Execution time after parallelizing the two inner loops.
 

Therefore: 
 
Speedup= Ts/Tp  = Ts/ (((Ts – t)/ p) + t) 
 
 
Here t = 0.5 * Ts, therefore  

 
Speedup = (2 * p) / (1 + p) 

 
The results of parallelizing the two 
inner loops, the expected speedup by 
parallelizing the two loops, and the 
speedup over the Matlab codes, are 
shown in Table 2. 
 
One way to parallelize the two inner 
loops is to use a master-slave paradigm 
[Shao and Wolski, 2000].  A master 
processor executes the sequential 
portions of the code, and then 
distributes the necessary data to a 
number of slave processors to execute 
the parallel workload.  Next, the 
master gathers the results from slaves 
and assigns them new tasks if any 
exist.  When using a master-slave 
model, the master must compute both 
the initialization and any sequential 
execution during each iteration of the 
outer loop. Then the master 
disseminates the data necessary to 
perform the inner loops in parallel to 
the slaves, and then gathers data from 
all slaves and starts the next iteration 
of the outer loop. In parallelizing each 
of the two inner loops, we divide the 
computation into tasks, where each 
task is defined as consecutive iterations 
of the loop.  Therefore, task generation  
is performed statically. Also the 
assignment of tasks to slave processors  
 

 
is done statically, based on the 
processor ID in the following way: 
 

• Assume p is the number of 
processors and n is the number 
of iteration of a loop.  

• Furthermore, assume that n is 
divisible by p.  

• Then processor i will compute 
iterations (i-1) * (n/p) to (i * 
n/p) - 1, inclusive.  

 
Another possible approach to 
parallelizing the code is to allow all 
processors to participate in the 
initialization phase as well as to 
execute the sequential portion of the 
code in each outer iteration, instead of 
waiting idly while the master 
completes them. Also each processor 
performs its assigned parallel 
execution (which is statically defined, 
based on processor ID, as described in 
the previous approach). The motivation 
behind this approach is to reduce 
communication overhead by 
replicating computations.  The 
execution times shown in Table 2 are 
based on using this approach of 
parallelizing the two inner loops.  
 
3.2 A More Efficient intersect 

Function 
 
As mentioned earlier, the calls to the 
intersect function take 25% of the total 
execution time in the C version of the 
application. Our next goal is to make 
the intersect function run faster by 
both parallelization and algorithm 
optimization.  The Matlab intersect(A, 
B) (where A and B are vectors) returns 
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the values common to both A and B. 
The resulting vector is sorted in 
ascending order. 
 
To find out where time is spent in the 
intersect function, we have run the 
following code: 
 

A = random ('Normal', 
0, 1, 35000,1); 
B = random ('Normal', 
0, 1, 35000, 1); 
profile on 
C = intersect(A, B); 
profile report 

 
The example above takes 
approximately 1.5 seconds, with more 
than 90% of the time spent in the sort 
function using Matlab v5.3.1. In 
Matlab version 6.1, the example takes 
0.31 seconds, with 45-50% of the time 
spent in the sort function. Based on the 
information obtained from The 
MathWorks, there have been 
substantial changes to the built-in sort 
function from version 5.3.1 to 6.1. 

To speedup intersect, we wrote a new 
function which has the same 
functionality and then parallelized it.  
Figure 4 shows the pseudocode of the 
algorithm for the new intersect that is 
implemented. 
 
3.3 Steepest Descent Fast Multipole 

Method 
 
The Steepest Descent Fast Multipole 
Method (SDFMM) was developed at 
the University of Illinois at Urbana 
Champaign to analyze large-scale three 
dimension (3-D) scattering problems 
[El-Shenawee et al, 1999], [Jandhyala, 
1998], [Jandhyala et al, 1998].  We 
have recently modified the base 
algorithm to be used in modeling 
subsurface sensing applications. In the 
version of the program we are 
evaluating in this paper, the application 
looks at scattering from a penetrable 
spheroid object buried under a two-
dimensional randomly rough ground 
surface [El-Shenawee et al, 2001a] [El-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Pseudocode for an improved intersect function. 
 
 
 

 

Function Intersect(Vector A, Vector B)
   Sort(A); 
   Sort(B); 
   aptr = bptr = cptr = 0; 
   while ((aptr < size(A)) and (bptr < size(B))  
    do { 
     if (A[aptr] = B[aptr]) 
        {  
         C[cptr++] = A[aptr++]; 
         bptr ++; 
        } 
      else 
        { 
         while (A[aptr] < B[bptr])  
         do {  
               aptr ++; 
               while (B[bptr] < A[aptr]) 
                   bptr++; 
          } 
        } 
     } 
   return C; 
End Intersect;



M. ASHOUEI et al: PROFILE BASED CHARAC. . 

I. J. of SIMULATION Vol. 3 No. 1-2                                       ISSN 1473-804x online, 1473-8031 print 
 

48

Shenawee, 2001b]. The spheroid 
represents a buried land mind, resting 
in a bed of soil. 
 
The SDFMM has computational 
complexity for CPU time and memory 
equal to only O(N) per iteration versus 
O(N2) for the Method of Moments, 
where N is the total number of the 
unknowns~\cite{Jandhyala98}. This 
level of complexity provides SDFMM 
with a significant advantage over 
several other techniques and has 
enabled us to utilize Monte Carlo 
simulation methods [El-Shenawee et 
al, 2001a].  While SDFMM provides 
us with an efficient subsurface 
modeling tool, to process large images 
at high resolution, the time to compute 
a single result can be many days, so we 
need to exploit parallel computers. In 
our parallel cluster work we used the 
MPI library for the parallel 
implementation of the SDFMM code 
[MPI, 1994], [Li et al, 2000], 
[Velamparambil et al, 1999], [Walker, 
1994], [Walker and Dongarra, 1996]. 
 
4 PARALLELIZATION OF 

SDFMM 
 
The SDFMM is used to solve the linear 
system of equations given by 
[Jandhyala, 1998]: 
 
  

Z I = V   (3.1) 
 
where Z is the impedance matrix, I is 
the vector of unknown coefficients of 
the electric and magnetic surface 
currents and V is associated with the 
incident waves on the rough ground 
surface.  The matrix  Z, which is filled 
in by Method of Moments 
formulations, becomes sparse with 
SDFMM and the system of equations 
in (1a) can be written as: 

 
Z' I +  Z" I = V (3.2) 

The sparse matrix Z' has its non-zero 
elements calculated and stored using 
the conventional MoM, which are then 
multiplied by the vector (near field 
interactions), while the matrix-vector 
multiply Z"I is computed in one step 
without calculating or storing any 
elements of the matrix Z". This is 
achieved by using the FMM hybridized 
with the SDP integration rule.  
 
By inspecting Figure 2, we can clearly 
identify the portions of the code where 
time is being spent.  From using our 
profile-guided approach we are able to 
identify three bottlenecks in the 
SDFMM code that can benefit from 
parallelization: 
 

(i.) the functions that calculates 
the elements of the sparse 
matrix Z';  

(ii.) the functions that execute 
the matrix vector 
multiplication Z" I in each 
iteration of the solver;  

(iii.) and the functions that 
execute the fast multipole 
method for Z" I  (far field 
interactions).   

 
These three bottlenecks correspond to 
the following functions identified in 
Figure 2: 
 

• Dflinit for producing the 
sparce matrix Z', 

• Multdifl for computing the 
matrix vector multiply, and 

• Multfaflone and 
Multfaflone4m for 
computing the Fast Multipole 
Method (the amount of time 
spent in this code depends up a 
user-specified threshold value). 

The source code has been parallelized 
using MPI routine, attempting to 
exploit the underlying available data 
parallelism. The key data structure in 
function (i) is the sparse matrix Z', 
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which is stored as blocks of nonzero 
elements. These blocks are distributed 
among all processors, and no 
additional communication is needed. 
When this routine is parallelized we 
achieved near-linear speedups on 32 
processors. In the matrix-vector 
multiplication Z" I, the computation is 
parallelized by distributing I to all 
processors in each iteration. The 
resulting vector components produced 
by the multiplication are then 
distributed to all processors. For 
bottleneck (iii), the two functions 
involved with computing the far field 
interactions consist of a series of loops 
with complex interdependences. Each 
loop is separately parallelized, with 
collective communication used to 
distribute the results to all processors 
after executing each function. In 
addition, these two functions are 
executed in parallel, followed by 
subsequent distribution of the results to 
all processors. Load balancing between 
these two functions is achieved using a 
detailed performance model based on 
the serial execution time of each 
routine, the time required for collective 
communication operations, and the 
amount of communication overhead 
needed.  The structure of the 
parallelized SDFMM application is 
shown in Figure 6. 
 
4.1 Evaluation Environment 
 
We evaluated the parallel 
implementation of the SDFMM 
computer code on a 32-node Intel 
Pentium-based Beowulf cluster. 
Thirty-one nodes of the Beowulf 
cluster are 350MHz Intel Pentium IIs 
with 256 MB of RAM and one node is 
a 4x450MHz Intel Pentium II Xeon 
shared memory processor with 2GB of 
RAM. The nodes are connected to a 
100 BaseTX Ethernet network and 
they use the SuSE 6.1 operating system 

with Linux kernel 2.2.13, and the 
MPICH 1.2.1 implementation of the  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  Structure of the parallelized 
SDFMM application. 
 
MPI library. We also tested the 
parallelized code on a 4-node shared 
memory Compaq Alpha-based 
workstation (667Mhz Alpha 21264) of 
16GB total RAM. The processor uses 
the UNIX OSF/1 V5.1 operating 
system with the MPICH 1.1.2 MPI 
library. Our benchmark includes three 
small-scale cases executed on the 
256MB Intel cluster, and in addition 
one medium-scale case that is executed 
on the Alpha workstation. All results 
obtained by executing the parallel 
version of the code are validated with 
those computed by the serial version of 
the code [El-Shenawee et al, 2001a], 
[El-Shenawee et al, 2001b].  
 
4.2 Evaluation Parameters 
 
The scattering problem configurations 
used in [El-Shenawee et al, 2001a} are 
employed here, but for only one rough 
surface realization. The rough ground 
(characterized by Gaussian statistics 
with zero mean for the height) is 
described by the rms height σ and the 
correlation length (lc). In all cases, the 
relative dielectric constant of the 
ground soil (dry sand) and the 
penetrable buried object (TNT in a 
land mine) are εr = 2.5 - j0.18 and εr =  
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Case Number of 
unknowns 

σ Object System Number of 
Processors 

Seral/Parallel 
Time 

Speedup

1 8800 0.3λ None Cluster 32 99/14 7.1 
2 8800 0.1λ Sphere Cluster 32 90/14 6.2 
3 8800 0.04λ Spheroid Cluster 32 88/12 7.2 
4 60,32 0.04λ Spheroid Alpha SMP 32 96/37 2.5 

Table 3:  Runtime parameters and runtime performance data. 
 
2.0 - j0.0092, respectively, and the 
ground correlation length is lc = 0.5λ0. 
   
A Gaussian beam with horizontal 
polarization  is employed for the 
incident waves [El-Shenawee et al, 
2001a].  In Case 2, the buried sphere 
has radius of a = 0.16λ0 with burial 
depth equal to z = -0.32λ0 measured 
from its center to the mean plane of the 
ground while in Case 3 and 4 the 
buried spheroid has dimensions a = 3λ0 
and b = 0.15λ0, and is buried at z = -
0.3λ0. The ground dimensions are 3λ0 

by 3λ0 in Cases 1-3, and 8λ0 by 8λ0 in 
Case 4. Table I summarizes the 
parameters and output results for Cases 
1-4.  

The speedup of a parallelized 
application is defined as the ratio of the 
serial runtime divided by the parallel 
runtime. In Figure 6, the overall 
speedup and the speedup for the 
initialization routine (filling matrix Z') 
are plotted versus the number of 
processors for Case 1.  The speedup 
curves for Cases 2 and 3 (not shown) 
are similar, with slightly different peak 
values of 6.2 and 7.2, respectively. The 
results show a significant speedup in 
the initialization code that fills the 
sparse matrix Z”. This initialization 
speedup dramatically affects the 
overall speedup of the code, as shown 
in Figure 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  Speedup of the parallelized SDFMM code versus the number of processors 
for the three separate bottlenecks in the code on the Beowulf cluster for Case 1. The 
overall speedup is also shown. 
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In each case, the peak overall speedup 
is observed when running on 32 
processors, but most of this speedup is 
achieved using only 12 processors.  
The efficiency of an application for a 
given number of processors is defined 
as the ratio of the speedup to the 
number of processors. Over Cases 1-3, 
the average speedup on 32 processors 
is 6.8, giving an efficiency of 0.21. 
Based on the serial runtimes, 88% of 
the code is executed in parallel. 
Therefore by Amdahl's Law [Amdahl, 
1967], the peak speedup achievable for 
the current parallelization of the code 
is 8.3. We conclude that 
communication overhead and load 
imbalance among the processors 
accounts for the reduction in speedup 
from 8.3 to 6.8.  
 
A comparison between the speedups 
achieved in the other bottlenecks (i)-
(iii) mentioned in previously is also 
shown in Figure 6. These results 
demonstrate that the overall speedup is 
almost the same as that achieved in the 
matrix-vector multiplication Z" I, 
which is the bottleneck in (ii).  
 
In the second set of experiments, we 
solved the medium-scale problem of 
Case 4 (60,320 unknowns) on an 
Alpha SMP using all four processors. 
The overall speedup in this case is 2.5, 
which is close to the predicted peak 
speedup of 2.9. This implies that 
executing the parallel code on the 4-
Alpha 667 MHz processors gives an 
impressive absolute runtime for this 
medium-scale case. The serial version 
of the code requires 950MB of 
memory, while the parallel version 
requires 1154MB of memory 
distributed over four processors (288, 
290, 289 and 287MB each).  The 
results of the parallel solution were 
identical to those of the serial 
implementation presented in [El-
Shenawee et al, 2001a]. 

The results described in this section 
demonstrate that by exploiting fine-
grained parallelism within a single 
surface realization (one run of the 
code), we have achieved significant 
speedups.  However, when the number 
of rough surface realizations is much 
larger than the number of available 
processors, as with Monte Carlo 
simulations, larger speedups are 
possible. This situation occurs when 
we need to run Monte Carlo 
simulations [El-Shenawee et al, 
2001a].  In this case we assign a group 
of these realizations (runs of the code) 
to be executed in parallel on each 
processor. Since the computations are 
independent and little communication 
is needed, this coarse-grained 
parallelism gives a perfect speedup that 
is only limited by the number of 
available processors. In other 
subsurface scattering configurations, 
we may need to obtain multiple views 
of a target buried under the same rough 
surface realization [El-Shenawee et al, 
2001], which requires running the code 
only a few times. A combination of 
fine and coarse-grained parallelism can 
make efficient use of all available 
processors. 
 
5 SUMMARY 
 
In this paper we have discussed how 
informed profiling can guide the 
efficient parallelization of subsurface 
sensing and imaging application.  We 
discussed how we utilized the profiling 
capabilities within Matlab, as well as 
compilation to C, to obtain a 52.6 
speedup over a serial Matlab 
implementation of a Monte Carlo 
Simulation running Acousto-Photonic 
Imaging.  For SDFMM, a speedup of 
7.2 was achieved on the 32-processor 
Beowulf cluster and a dramatic 
reduction in runtime is obtained using 
a 4-processor Alpha shared-memory 
machine. The greatest potential for 
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speedup occurs in the sparse matrix 
filling and far field interaction steps. 
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