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Abstract: Fluid queues consist of a buffer or reservoir controlled by a continuous-time Markov process evolving
in the background. The content of the fluid buffer is a nonnegative real number, usually called the level, and
the state of the underlying Markov process is called the phase. The renewal approach to fluid queues, originally
developed by Ramaswami, is very efficient in that it allows for the analysis of different systems by a common
set of tools. This is illustrated here with feedback fluid queues, that is, systems for which the rules of evolution
of the phase process change when the buffer is either empty or full.
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INTRODUCTION

The purpose of this paper is to analyze feedback
fluid queues using matrix analytic techniques, and
to show how to derive performance measures of in-
terest. A fluid queue consists of a buffer, or reservoir,
controlled by a continuous time Markov process. We
call it a feedback fluid queue if the control of the
buffer content changes whenever it is empty or full,
in order to regulate the amount of fluid in the buffer.
For example, when a buffer with finite capacity be-
comes full, the behavior of the underlying Markov
process might change so as to avoid, or at least re-
duce, fluid loss.

Our motivation for studying such a system is a model
of an Internet congestion control protocol, namely
the Transport Control Protocol (TCP), which is
based on feedback (see van Foreest et al. [7, 8]).
It roughly works as follows: a source sends packets
into the network, the TCP receiver sends an acknowl-
edgement to the source for each correctly received
packet. As long as the source is informed that all
the packets arrive at their destination, it increases
its sending rate linearly in time. At some point in
time, buffers along the network path start to fill and
eventually overflow. When this happens, packets do
not arrive correctly at the receiver, which, therefore,
does not send acknowledgements to the source. The
source reacts by reducing its sending rate exponen-
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tially fast in time, until congestion is cleared out.
This scheme is called linear increase/ multiplicative
decrease.

Fluid queues have a long tradition of being used to
model the stochastic behaviour of telecommunica-
tion systems (see Anick et al. [1]). The authors in
[7, 8] model the TCP protocol as a finite buffer fluid
queue. As long as the buffer is not full, the send-
ing rate increases according to a pure birth process;
this corresponds to the ’linear increase’ part of the
protocol. When the buffer is full, the sending rate
decreases according to a generator which implements
a mechanism for the multiplicative decrease. The so-
lution is obtained by spectral methods.

Our approach is based on renewal arguments and we
treat separately the borders from the interior of the
buffer, thereby being allowed to change in any way
we want the evolution of the system when it reaches
any of the two borders. The application of Markov
renewal techniques in the analysis of fluid queues, as
well as the connection with discrete time, discrete
state space Quasi Birth-and-Death (QBD) processes,
have shown their great efficiency; both were intro-
duced and first exploited by Ramaswami [6]. In
[4], we use renewal arguments to derive the sta-
tionary densities of the contents of both finite and
infinite capacity fluid buffers; we show here that it
is straightforward to adapt these results to feedback
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fluid queues.

The organization of this paper goes as follows. We
define in the next section an infinite buffer model
where the transition generator of the phase process
changes whenever the buffer is empty, and we obtain
its stationary density. In the third section, we deal
with the finite buffer model and analyze a system
where the generator of the phase process changes
when the buffer is either empty or full. To simplify
the equations, we temporarily only allow the input
rates of fluid into the buffer to be equal to +1 or —1.
This assumption is without loss of generality and we
show later how to deal with the general setting. In
addition to the distribution function of the buffer
content, we compute the first and second moments
of the buffer content. Finally, in the last section, we
present an illustrative example.

Throughout the paper, vectors are denoted by low-
ercase boldface letters, and 0 and 1 denote vectors
of zeros and ones, respectively.

INFINITE BUFFER

An infinite buffer fluid queue is a two-dimensional
Markov process {(X (t),¢(t)) : t € Rt} where X(t)
is called the level and denotes the content at time
t of the fluid buffer, and ¢(t), called the phase, is
the state at time ¢ of the underlying Markov process
which regulates the buffer content. The level X (t)
takes values in RT and evolves as follows: at time ¢,
if (t) =1, then

dX(t) | r;, if X(t) >0,
dt | max(0,r;), if X(t)=0,

where r; can take any real value, including zero. The
process {p(t) : t € Rt} is assumed to be irreducible
and to have a finite state space S.

We assume without loss of generality that the net
input rates r; are all equal to +1 or —1. We show in
the section on general input rates how to return to
the general setting. We decompose the state space of
{¢(t)} into two disjoint subsets S, and S_, such that
S,={ieS:r;=1tand S_={ieS:r,=-1},
and we assume that neither S, nor S_ are empty.

Traditional fluid queues are such that the environ-
ment process {¢(t)} has, independently of the level
of the buffer, the same generator T' which we parti-
tion according to the decomposition of S = S, US_;

thus,
| Ty, T,
T_[T_+ -
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We denote by £ its steady state probability vector,
that is, the solution of the system £&7° = 0, £1 = 1,
and we write that £ = (£,,£_).

Consider now an infinite buffer fluid queue with
feedback: (Xy,pr) = {(Xf(t),ps(t)) : t € Rt }, that
is, suppose that the infinitesimal generator of ¢ (t)
remains 7' when X (t) > 0, but that it is 7(°) when

the buffer is empty, with 7© = [T9 7] Ob-
serve that we need not define Ti(jo) for i € S+ since
X¢(t) cannot remain equal to zero when r; > 0.

For i € S and z > 0, let Fi(z;t) = Pr[X(t) <
x,p(t) = 1] be the joint distribution of the level and
the phase at time t. Define f;(z;t) = 0/0xF;(x;t)
as the density of (X (%),¢(t)) evaluated at (z,%)
for i € S, x > 0, and fixed ¢, with f;(0;t) =
lim,_,o+ fi(x;t). The stationary density of the buffer
content 7w(x) = (m;(x) : 1 € S) is the limit of f(x;t)
as t goes to infinity. Let p = lim; , F'(0;t) be
the steady state probability mass vector of the
empty buffer. Since it is not possible to have an
empty buffer with a phase in S,, the sub-vector
p, = {pi : i € S;} is equal to 0 and, therefore,
p=(0,p_).

The stationary density of the buffer content exists if
and only if p = £, 1—-£_1 < 0, which means that the
mean drift of fluid into the buffer is negative. This
condition will be referred to later on as the stability
condition.

Theorem 1 If u < 0, then the stationary density of
the buffer content of the process (X, pys) for x > 0
is given by

w(z) = p_T)N,(0,2)

where (N,(0,x));; is the ezpected number of visits to
(z,7), under taboo of level zero, starting from (0,1),
for all j and for i in S.. This may also be written
as

n(2) = p.T Ve (1 7] (1)
where K =T, , + UT_, and VU is the minimal non-
negative solution of the equation

T, +T,,O+3T_ _+3IT T =0.

The vector p_ is the unique solution of the system

p UO = 0
_op@p—1qy  _ (2)
p_(1-2T7%K-11) 1
where
v =79 4 170y (3)

is the infinitesimal generator of the censored Markov
process on the states (0,S_).

ISSN 1473-804x online, 1473-8031 print



A. DA SILVA SOARES & G. LATOUCHE: A MATRIX-ANALYTIC APPROACH ...

Proof We omit the details because the proof is very
similar to Theorems 2.1 and 2.2 in [4]: we repeat the
same sequence of arguments and we only have to take
into consideration the fact that the transition rates
at level zero are not the same as elsewhere. O

To obtain the stationary distribution of the buffer
content, one only needs to determine the matrix V.
This may be done by following the very efficient pro-
cedure introduced by Ramaswami [6] and for which
the authors gave a probabilistic interpretation in
[3]. This procedure is based on the Logarithmic-
Reduction algorithm designed for discrete-level,
discrete-time QBD processes (see Latouche and Ra-
maswami [5, Section 8.4]).

Since K and ¥ do not depend on T?), we see from
(1, 2) that one may change the behavior at level
zero and obtain the new stationary distribution at
no cost.

FINITE BUFFER

We now assume that the buffer has finite capacity
b, and we denote by (X® ) = {(X®) (1), (1)) :
t € Rt} the resulting fluid queue. The level X (®)(t)
takes values in the bounded interval [0,d], and its
evolution is governed as follows: if ¢(t) =1,

; if 0 < X®O () <b

X (0) Tis 1 ’
dT:(t) =1 max(0,r;), if X®)(t) =0,
min(0,r;), if X®(t) =b.

The fluid process is positive recurrent for any value
of the drift u.

The feedback fluid queue (X ](cb), ¢y) is a finite buffer

fluid queue which differs from (X, ) by the fact
that the rates of the phase transitions change each
time the buffer is empty or full. When it is empty

(Xfcb) (t) = 0) and (pf(t) is in S_, the phase transi-

tion generator is 7@ = [T') T'9): when it is full

( X}b) (t) = b) and ¢y (t) is in S,, the generator is
b) (b

7O =" 7.

We denote by p(® and p® the probability vectors
of levels zero and b for the process (X ](tb), ¢y). Like
in the preceding section, p(®) = (O,p(_o)); similarly,
p® = (pgrb), 0) since the buffer cannot be full with a
phase in S_.

The next theorem gives the stationary density in
terms of the boundary probability mass vectors
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p(_o) and pgrb), and of the matrices NJ(rb)(x,y) and
N® (z,y) of expected number of visits to level y,
under taboo of the boundary levels, starting from a
state in (z,S,) or in (z,S_), respectively.

Theorem 2 For 0 < z < b, the stationary density
vector of the finite buffer fluid queue with feedback

(X](cb),QOf) is given by

(@) = V1), p'TL?)

®) (0 2 ]
N—+—b (07 ) . (4)

N1, 2)

If u # 0, this may also be written as

eKa: eKq:lI; T
0@ = ©0092) | kg kon | O

where

(vy,v) = (6)
I eKvg 1t
b) (b
o000 | iy |
the matrices K and ¥ are given in Theorem 1,
K =T _+4+9T,_ and ¥ is the minimal nonnega-

tive solution of the equation
T  +T G+ 9T, +9T, ¥ =0.

Proof To prove (4), we follow the steps in [4, The-
orem 3.1]. The matrices Nib) (0,z) and N® (b, z)
only deal with the system behavior between levels
zero and b; therefore, they are the same as for the
process (X(®), ) and we apply [4, Lemmas 4.1 and
4.2] to conclude the proof. O

It is worth mentioning that K and ¥ play the same
role as the matrices K and ¥ for the level-reversed
fluid model. That process has the same character-
istics as (X(®),¢), except for the net flow rates #;
which are equal to —r;. Therefore, when the phase
is in S, , the fluid level decreases, while when it is in
S_, the level increases.

We shall need various matrices of first passage prob-
abilities between levels zero and b, which we now
define: Ag) is the probability, starting from (0,7)
with ¢ in S, of reaching level b in phase j in S,
before returning to level zero, and lIlgz), with &k in
S_, is the probability of returning to level zero in
phase k, without reaching level b. Similarly, AEZ),
with ¢ and k in S_, is the probability, starting from
(b,1), of reaching down to (0, k) without returning
to level b and \ilg’) is the probability of returning to
(b, j) before reaching down to level zero.
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These probabilities only depend on the system be-
havior between the buffer boundaries. Therefore,
they are the same as for the fluid model (X® ),
and, for p # 0, are given by

o0 = (W — P weU) (I — FeVbpelt) !
FO = (T — U FeU) (I — TeUPFelb) !
AP (I — TVt (1 — TeUPFelt)—
AD = (71— W)eU (1 — FelPwelt) !

as shown in [4], with U = T__ + T_,¥ and
U=T,,+T,_V.

The following theorem gives a procedure to deter-

mine (p$", p'?).

Theorem 3 The vector (p() p(_)) is equal to

c(xy,x_), where (x,.,x_) is the unique solution of
the system

(0,0)

{ (i, z_ )W ) )

z,1+z_1

with

T®A®
7© 7O g®

T8 + TP

W =
TAL)

The normalizing factor c is given by

b
¢ = {a:+1+a:_1+/ y(@)1ds} !
0

b
{93+1+93_1+z+/ X1 W)dz1
0
b A
42 / K= 1)dz1}! (8)
0

where the vectors y(x) and (z,,z_) are obtained by
replacing (P, p) by (z,,x_) in (5, 6).

Proof The vector (p(+), © )) is proportional to the
steady state probability vector of the restricted pro-
cess obtained by observing the feedback fluid queue
(X}b), ¢y) only at those intervals of time where it is
n (0,S8_) or in (b,S,). It is easy to see, using the
definition of the matrices lIl(fz, lil(_bi, A(ﬂ and A(_”l,
that the generator of the censored process is W. The
remainder of the proof is immediate. O

The normalizing equation here is not as simple as
in [4, Theorem 5.1]. In order to express the inte-
grals in (8) in a simple manner, we will need to use
generalized matrix inverses, because either K or K
or both are singular as we show in Theorem 4 be-
low. We use the group inverse, defined as follows:

L.J.of SIMULATION Vol. 6 No. 1-2

the group inverse of a matrix M, when it exists, is
the unique matrix M# such that MM#M = M,
M#FMM#* = M# and MM# = M#M. A useful
property, which makes M# easy to compute, is that
M#, when it exists, is the unique solution of the
system

M#¥M = T—ou
{ M#y = 0 (9)

where u and v respectively denote the left and right
eigenvectors of M for the eigenvalue 0, normalized
by uv =1, ul = 1. See Campbell and Meyer [2] for
details.

Theorem 4 If 4 <0, the matriz K is non-singular
and the matriz K is singular. The group inverse of
K egists. Conversely, if p > 0, the matriz K is non-
singular and the matriz K is singular. The group
inverse of K exists.

Proof We only prove the first assertion because the
second is obtained in a similar manner.

Consider the QBD process obtained by restricting
the infinite buffer fluid queue to those epochs when
the level is a multiple of b. Its transition matrices
are

AY o o o
Ao = | A+ A= o 7|
o [ A BT ISl

0 O
and A2 = |: 0 A(_bz :| .

Define R as the matrix which records the expected
number of visits by the QBD to level 1, starting from
level 0, before the first return to level 0. It is shown
in [6] that eX? is the matrix of expected number of
visits to the level b, for the fluid queue, starting from
level 0 and before the first return to zero. Thus, we

see that Ko Kb
e et
e[ 4]

Since p < 0, the drift is downwards and the spectral
radius sp(R) of R is strictly less than one [5, Corol-
lary 7.1.2]; therefore, sp(eX?) < 1. This implies that
all the eigenvalues of K must have a strictly nega-
tive real part, leading us to the conclusion that K is
nonsingular.

To show that K is singular and that its group inverse
exists, consider the QBD process obtained from (10)

by reversing the levels. For this process, the matrix
R of expected number of visits is given by

. 0 0
R= [ Kb ekb]-
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For the level-reversed process, the drift is upwards,

which implies that sp(R) = 1 and, by [5, Theo-
rem 7.2.2], the eigenvalue 1 has multiplicity one.
Therefore, sp(eX?) = 1, 0 is an eigenvalue of K
and K is singular; all other eigenvalues of K have
a strictly negative real part. Since the eigenvalue 0
has multiplicity one, the group inverse of K exists
(see [2, Section 7.2]). O

The following lemma allows one to easily compute
the integrals in (8).

Lemma 5 If M is non-singular, then
b
/ eM?dy = (I — eM¥)(—M)~L. (11)
0
If M is singular and its group inverse ezists, then
b
/ eMO=2) gy = (I — M) (=M)# + bvu  (12)
0

where u and v respectively denote the left and right
eigenvectors of M for the eigenvalue 0, normalized
byuv=1,ul =1.

Proof If M is invertible, equation (11) is easily
proved [5, Equation 2.9]. Otherwise, we write that

b b bn+1
/ eMb—2) gy — / eM?dr = Z —M".
0 0 = (n+1)!

By (9), I = MM# + vu and we may write

b
/eMzd:I: = Z
0

n>0

bn+1
(n+1)!

n+1M#

bn+1

+ z ——— M™vu
= (n+1)!
= Y —(bM') M#* + bou
n!
n>1

since Mv = 0. This finally reduces to
b
/ eMedy = (I — eM®)(—=M)* + bou,
0

and the proof is complete. O

GENERAL INPUT RATES

We briefly indicate in this section how to obtain the
solution for fluid queues with arbitrary input rates
once we have the solution using input rates equal to
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1or —1.

Denote by (X;b),gbf) a finite buffer feedback fluid
queue with arbitrary input rates ;. The state space
of @(t) is now decomposed in three disjoint subsets
So={ieS:r,=0},S, ={ieS:r >0}and
S_ ={i € §:r <0}. The generators are denoted
by T, T and T.

We follow the procedure in the Appendix of [4]
and obtain the following expressions for the prob-
ability mass vectors p® = (13(()0);0713(_0)) and
P = (i)(()b),i)g_b),O), and the density #®(z) =
(7 (@), 7 (2), 7" (2)):

PO =qa |C |7, B =pOTR (T,

i’s.b) = 7$+|é+|_17 f)(()b) = i)gb)T-;(-?))(_Tég))_la
#0(z) = vy, (2)|C, |7,

7 (z) = yy_(=)|C_| ",

and

+70 (2)T_o(=Too)

where C' = diag(7; : i € S, US_) and ., _ and
y(z) are defined in Theorem 3.

The normalizing constant +y is given by
vy = {m+w£rb) +z_w?

+ / 'y, @w, +y_ (@)w_)ds} "

where
w = O+ T (-T) ")
w? = (O I+ TR TR )
w, = |C.| {1+ To(~Too) 1}
w_ = |C_|_1{1 + T_()(—TO())_II}.

Note the similarity to ¢ in Theorem 3.

PERFORMANCE MEASURES

We are interested now in computing some perfor-
mance measures for the marginal distribution of the
fluid level, in a system with feedback and with arbi-
trary net input rates.

The probability masses Mg and my at levels zero and
b are

o = P01 = 'y.'z:_w(_o)
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and ,
my = i)(b)]- = ’Y-’B+w(+)>

and the density p(z) for 0 < z < b is

w(z) = 7(2)1 = {y, (r)w, +y_(z)w_}.
A first performance measure is the probability that

the buffer overflows in the stationary regime, it is
equal to my.

Remark 6 In the infinite buffer case, the density is
w(z) = af{m, (z)w,+m_(z)w_} and the probability

mass at level zero is mo = ap_w'” | where m(z) and

p_ are given in Theorem 1. The normalizing factor
a is given by

a= (p_w(_o)

+ [T, i)

-1

Next, we compute the stationary distribution func-
tion P®)(z) = limy_, o Pr[)?}b) (t) < x]. We assume
throughout that p < 0, so that K is nonsingular and
K is singular; the equations have to be changed in
an obvious manner in case p > 0.

Proposition 7 If p < 0, the stationary distribu-
tion function of the buffer content of the process

(X'}b),géf) is given by
P(b) (.’L‘) = mo

+7{Z+A($)[Iv ¥] +z_B($)[‘il7I]} [ ;wu‘j ]

for 0 <z < b, where A(z) = (I - eX?)(=K)™! and
B(z) = eK0=2) (] — eK2) (- K)# + @1, and where G
and v respectively denote the left and right eigenvec-

tors ofK for the eigenvalue 0, normalized by ud = 1,
ul =1. O

The proof is similar to the proof of Lemma 5 and is
omitted.

The stationary mean and second moment of
5(b) ~ .
(X;”, @) are given next.

Proposition 8 If u < 0, the mean M and second
moment V of X](cb) in stationary regime are given by

M = bing (13)

sz

+y {Z+E[Ia ] +z—F[¢’I]} [ w! ]
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where

(15)
D = (=Kl — (I - )(-K)#]
+§fm (16)

= 2(=K)7'C - (=K) 'p%eK?
. R 3
= 2K#*D + b (-K)* + %vu

and where . and ¥ are defined in Proposition 7.

Proof The expected value of the stationary dis-
tribution is M = by, + fob zu(z)dz and, by Theo-
rem 3, is given by the right-hand side of (13), where
C = [} zeKde and D = [} zeK=2)dy.

By following the same argument as in Lemma 5, we
show that

/eKwdw = K& 4 My

/ef{mdx = K#eK* 4 zpa+ M,
where M; and M, are arbitrary matrices. It is then
easy to prove (15, 16) by part integration, keeping
in mind that K#¢ = 0.

One proves (14) in a similar manner. O

We finally turn to the Laplace-Stieltjes transform
of the buffer content in equilibrium. We need to
define the set 6 of eigenvalues of K and the set
A={-X:X2eds,A#0}.

Theorem 9 If p < 0, the Laplace-Stieltjes trans-
form ¢(s) of P® is given by

¢(s) = o + e 1y (17)

+7{=:CIL ¥ + z-D(s)[¥, 1)} [ w! ] ’

for R(s) > 0, where

C(s) = —(K — sI)~' (I — B=sDb)  (18)

D(s) = (—K)#(e "1 — )1 + sK#)~
+%(I —e "o (19)

if s € A, D(s) being defined by continuity on A.
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Proof The Laplace-Stieltjes transform of P(®) ig
given by ¢(s) = g +e’s”ﬁzb+f0b e *%u(z)dx which,
by Theorem 3, is clearly seen to be equivalent to (17),

where
b
/ e(Kst)wd:L,
0
b ,
/ etz eKe o
0

We have seen in the proof of Theorem 4 that all
the eigenvalues of K have a strictly negative real
part, leading to the conclusion that the eigenvalues
of K — sI also have a strictly negative real part since
R(s) > 0. Therefore, K — sI is nonsingular and (18)
is proved.

We integrate by parts the expression for D(s) and,
keeping in mind the fact that K and K# commute,
we find after some simple but tedious manipulations
that

D(s)(I + sKH) =
(—R)# (=T — Kb + é([ — e Db

If s is not in A, then I + SK # is invertible and, us-
ing the fact that K and K# commute and @(I +
sK#)~! = 41, we finally obtain (19). O

NUMERICAL ILLUSTRATION

We now illustrate the results obtained in the preced-
ing section. Consider a water reservoir of capacity
b. There are N processes which consume water from
the reservoir. Each process is either idle or it taps
water at a constant rate c; it stays in the idle state
for an exponentially distributed amount of time,
with parameter §, then it enters in the active state
and taps a quantity of water which is exponentially
distributed, with parameter a/c. Under normal cir-
cumstances, therefore, a process leaves its active
state at the constant rate a.

When the level of water is strictly between zero and
b, the reservoir is normally filled at a constant rate R.

When the reservoir is full, there is a trigger which
reacts after a random interval of time, and which
reduces the rate at which the reservoir is filled, from
R to R/2. If the reservoir remains full, a second trig-
ger reacts, the input rate is reduced to zero and the
reservoir stops being filled. The filling rate returns
to R when another trigger reacts to the fact that the
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reservoir is not full anymore. The reaction time of
each trigger is exponential with parameter y.

For the reservoir to be empty, it is necessary that
the number 7 of active processes should be such that
i > R/c. At such a time, we assume that the in-
coming water is equally shared among the active
processes. The consequence is that each process
needs more time to accumulate the amount of water
that it requests and the rate of transition to the idle
state is (aR)/(ic) for each active process. When
a probe detects this situation, the input rate is in-
creased and becomes aR, where a > 1. At a later
time, the level becomes positive again, and the filling
rate returns to R when a trigger reacts to the fact
that the reservoir has started filling.

We illustrate four different cases:

1. There is no feedback effect, the matrices T(®
and T®) are equal to T.

2. Each process reduces its tapping rate at level
zero, and there is no probe to detect that the
reservoir is empty or full. In this case, T is
different but T and T® are still equal.

3. This is the same as Case 2, but now there are
probes to detect that the reservoir is full. In
this case, T, T and T(® are different.

4. This is the same as Case 3, with an additional
probe to detect that the reservoir is empty.

The parameters chosen are the following: a =1 and
¢ = 1, so that the unit of volume is fixed to be the ex-
pected quantity of water which is taken by a process
and the unit of time is the expected duration of the
active state, under normal conditions; the number of
processes is N = 20; we set R = 1.01Nfc/(a + 3) so
that the normal filling rate of the reservoir is slightly
above what is required by the processes, on the av-
erage, and the drift yu is positive; finally, § = 0.1,
v=10, a =2 and b = 2R.

The probability masses g and 7 of levels zero and
b, and the first two moments are given in Figure 1
below, and the distribution function of the content
of the reservoir in stationary regime is given in Fig-
ure 2.

The difference between the first two cases is due
to the fact that, at level zero, each process receives
water at a lower rate and this creates a positive feed-
back loop: the processes remain active longer, this
in turns give more opportunities for idle processes
to become active, which further increases the time
spent by each process in its active state, etc.
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Case | 1 2 3 4
mo 0.1500 0.4171 0.4202 0.1040
mp 0.1764 0.1210 0.0784 0.1126
M 1.7574 1.2053 1.0607 1.7460
Vv 5.1293 3.5177 2.9635 5.0432

Figure 1: Steady State Probability Masses of Lev-
els 0 and b, Mean M and Second Moment V of the
Reservoir Content
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Figure 2: Stationary Distribution Function

In Case 4, the probe at level zero is fast (y = 10)
and the input rate to the reservoir is quickly doubled,
so that the system spends little time at level zero.
By increasing a, we may force 7 to be even smaller.

The comparison of Cases 2 and 3 shows, as expected,
that the probability of overflowing decreases when
there are probes to detect that the reservoir is full.
It appears that the idea of reducing the inflow by
one half before cutting it altogether might not be
very efficient.
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Figure 3: Stationary Density Function

The density function of the reservoir content in sta-
tionary regime is given in Figure 3. One clearly
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sees that the density is nearly uniform over most of
the interval (0,b). This is due to the fact that the
drift is positive. If b were infinite, the fluid queue
would be transient; with b finite, the stationary dis-
tribution tends to spread evenly over the whole state
space. If we had chosen p < 0, the density would
be more concentrated on the left of the interval (0, b).
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