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Abstract: This work presents a new hybrid neuro-fuzzy model for automatic learning of actions taken by agents. 

The main objective of this new model is to provide an agent with intelligence, making it capable, by interacting 

with its environment, to acquire and retain knowledge for reasoning (infer an action). This new model, named 

Reinforcement Learning Hierarchical Neuro-Fuzzy Politree (RL-HNFP), and its improved version (RL-HNFP
+
), 

descends from the Reinforcement Learning Hierarchical Neuro-Fuzzy BSP (RL-HNFB) that applies binary 

hierarchical partitioning methods, together with the Reinforcement Learning (RL) methodology. These two 

characteristics permit the autonomous agent to automatically learn its structure and its necessary action in each 

position in the environment. The RL-HNFP model and its extension (RL-HNFP
+
) are evaluated in a well known 

benchmark application in the area of autonomous agents: the Mountain Car Problem. The results obtained 

demonstrate the potential of these models, which operate without any prior information, such as number of rules, 

rules specification, or number of partitions that the input space should have, providing good performance and 

demonstrating the agent’s autonomy.  
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1. INTRODUCTION 

This work presents the hybrid Reinforcement 

Learning Hierarchical Neuro-Fuzzy Politree model 

(RL-HNFP) [Figueiredo et al., 2004], [Figueiredo et 

al., 2005] and its new improved version (RL-

HNFP
+
), which accomplishes the learning process 

through Reinforcement Learning algorithm.  

 

Hybrid Intelligent Systems conceived with the use of 

techniques such as Fuzzy Logic (FL) [Klir and 

Yuan, 1995], [Mendel, 1995] and Neural Networks 

(NN) [Bishop, 1995], [Haykin, 1998] have been 

applied in areas where traditional approaches were 

unable to provide satisfactory solutions. Many 

researchers have attempted to integrate these two 

techniques by generating hybrid models that 

associate their advantages and minimize their 

limitations and deficiencies. With this objective in 

mind, hybrid neuro-fuzzy systems, or simply, neuro-

fuzzy systems [Jang and Sun, 1997], [Lin and Lee, 

1996] have been created. These systems combine the 

learning capacity of neural networks with the 

linguistic interpretability of fuzzy inference systems. 

Traditional neuro-fuzzy models [Abraham, 2005], 

such as ANFIS [Jang, 1993], NEFCLASS [Kruse 

and Nauck, 1995] and FSOM [Vuorimaa, 1994], 

have a limited capacity for creating their own 

structure and rules [Souza et al., 2002a]. In addition, 

most of these models employ grid partition of the 

input space, which, due to the rule explosion 

problem, makes them more adequate for applications 

with a smaller number of inputs. When a greater 

number of input variables are necessary, the 

system’s performance deteriorates.  

 

Finally, most of these traditional neuro-fuzzy 

systems depend on supervised training, where a 

desired output must be provided for each input 

pattern. When the information about the desired 

output is not available (usually the case in 

autonomous agent applications), the learning 

procedure must be carried out by means of a 

Reinforcement Learning algorithm. Furthermore, 

when the environment is large and/or continuous, 

the application of traditional Reinforcement 

Learning (RL) methods based on lookup tables (a 

table that stores value functions for a small or 

discrete state space) is no longer feasible because the 

state space becomes too large. This problem is 

known as the curse of dimensionality [Sutton, 1996], 

[Boyan and Moore, 1995], [Jouffe, 1998]. In order 
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to bypass it, some form of generalization must be 

incorporated into the representation of states. 

In general, in addition to their limitation regarding 

the number of input variables, the main RL- and 

Fuzzy Logic-based models require predefinitions 

such as: number and format of the fuzzy sets used in 

the fuzzy rules’ antecedents and consequents; 

number of rules; and even the specification of the 

antecedents that compose the rules. 

 

Thus, the main motivation of this work was to 

devise neuro-fuzzy models that could overcome 

these basic limitations, so that an autonomous agent 

could learn the actions that must be carried out in 

large and/or continuous environments, without prior 

knowledge of the environment’s dynamics and with 

the least possible prior definitions. 

 

The models described in this paper were, therefore, 

developed based on an analysis of the limitations in 

the existing models and of the desirable 

characteristics for RL-based learning systems, 

particularly in applications involving continuous 

and/or high dimensional environments [Sutton, 

1996], [Boyan and Moore, 1995], [Jouffe, 1998], 

[Moore, 1991]. Thus, a recursive space partitioning 

methodology (which had already been explored with 

excellent results in previous works [Jang and Sun, 

1997], [Gonçalves et al., 2004], [Vellasco et al., 

2004] and [Souza et al., 2002b]) was chosen, which 

significantly reduces the limitations of the existing 

neuro-fuzzy systems. The use of recursive 

partitioning, combined with Reinforcement 

Learning, resulted in a new class of Neuro-Fuzzy 

Systems called Reinforcement Learning-

Hierarchical Neuro-Fuzzy Politree System (RL-

HNFP) [Figueiredo et al., 2004] and [Figueiredo et 

al., 2005].  

 

The functionality of the model’s fuzzy component is 

to aggregate states that have similar behaviours and 

associate them with one and the same action. The 

RL component makes the model able to learn the 

most suitable action to be executed for a given state. 

The hierarchical aspect is related to the fact that each 

partition of the input space defines a subsystem 

which, if necessary, may have a subsystem with the 

same structure as its consequent (recursiveness). 

This means that the hierarchical tree structure 

increases according to the complexity of the 

problem. This characteristic smoothens the value 

function generalization process (with the 

hierarchical fuzzy tree as the function approximator) 

without affecting the results, which is a good 

requirement for process convergence [Sutton, 1996]. 

In this manner, the RL-HNFP model presents the 

following important characteristics: it automatically 

learns the model’s structure; it performs self-

adjustment of the parameters associated with the 

structure; it is capable of learning an action to be 

taken when the agent is in a given state of the 

environment; it is able to deal with a greater number 

of inputs when compared with traditional neuro-

fuzzy systems; and it automatically generates 

linguistic rules. These characteristics represent an 

important differential in relation to the existing 

intelligent agent learning systems. 

 

However, the original RL-HNFP presents a 

drawback related to the defuzzification method, 

which caused longer training process. In the original 

model, rules associated with low activated partitions 

were considered in the defuzzification process, 

which deteriorated the model’s output.  

 

Therefore, this paper also presents an extended 

version of RL-HNFP model, where the resultant 

output value (y) depends only on the most activated 

rules, which improves the model’s performance. 

 

This paper has been organized in four additional 

sections. Section 2 contains a brief description of the 

Politree partitioning. Section 3 introduces the RL-

HNFP model, describing its basic cell, its 

architecture and its learning method. Section 4 

presents the results obtained with the mountain-car 

problem [Sutton, 1996], a benchmark of the area. 

The results obtained by the RL-HNFP model and its 

extension are compared with models developed by 

other researchers. Lastly, section 5 presents the 

conclusions. 

 
2. POLITREE PARTITIONING  

The partitioning process of the input/output space 

has great influence on the neuro-fuzzy system 

performance in relation to its desirable features 

(accuracy, generalization, automatic generation of 

rules, etc). This work proposes the use of recursive 

partitioning methods of the input/output space, 

resulting in a new class of neuro-fuzzy system that 

overcomes two of the main weaknesses of current 

Neuro-Fuzzy Systems: their fixed structure and 

limited number of inputs. 

 

The Politree partitioning was inspired by the 

quadtree structure proposed by Finkel and Bentley 

[Finkel and Bentley, 1974], which has been widely 

used in the area of images manipulation and 

compression. In this partitioning, the n-dimensional 

space is successively subdivided in quadrants that, in 

turn, can be again subdivided in four regions 

(quadrants) in a recursive operation. The limitation 

of the Quadtree partitioning (fixed or adaptive) is in 

the fact that it works only in two-dimensional 

spaces. The Politree partitioning, used in the 

Reinforcement Learning - Hierarchical Neuro-Fuzzy 

Politree model (RL-HNFP), is a generalization of 

this idea. In this partitioning the subdivision of the 
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n-dimensional space is accomplished in m=2
n
 

subdivisions.  

 

The Politree partitioning can be represented by a tree 

structure. Figure 1a shows the partitioning for the 

particular case when n = 2 (two inputs) and Figure 

1b presents the generic politree partitioning (with n 

inputs).  

 

Politree partitioning is flexible and minimizes the 

exponential rule growth problem, since it creates 

new rules locally according to the learning process. 

This type of partitioning is considered recursive 

because it makes use of a recursive process to 

generate partitions. In this manner, the resulting 

models have a hierarchy in their structure and 

consequently, hierarchical rules. 

 
Figure 1. (a) tree representation of a Politree 
structure with two inputs; (b) generic tree 
representation of the  politree partitioning with n 

inputs, where m = 2
n
. 

 
 

3. REINFORCEMENT LEARNING – 

HIERARCHICAL NEURO-FUZZY 
POLITREE (RL_HNFP)  

 
The RL-HNFP model is made up of one or several 

standard cells called RL-Neuro-Fuzzy politree (RL-

NFP) cells. These cells are arranged in a hierarchical 

structure in the form of a tree. The outputs of the 

cells in the lower levels are the consequents of the 

cells in the higher levels. The following sub-sections 

describe the basic cell, the hierarchical structure and 

the learning algorithm. 

 

3.1. Original RL Neuro-Fuzzy Politree Cell  

An RL-NFP cell is a mini-neuro-fuzzy system that 

performs politree partitioning in a given space 

according to the membership functions described in 

equation (1), where ρ(x) and µ(x) represent the low 

and high membership functions, respectively. The 

RL-NFP cell generates a precise (crisp) output after 

the defuzzification process. The values of the input 

variables are read by the agent’s sensors and then 

are inferred in the antecedents’ fuzzy sets (low and 

high).  
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Each cell receives all the inputs that are being 

considered in the problem. For illustration purpose, 

Figure 2 depicts a cell with two inputs – x1 and x2 - 

(Quadtree partitioning), providing a simpler 

representation than the n-dimensional form proposed 

by Politree. In Figure 2, each partitioning is 

generated by the combination of the two 

membership functions ρ (low) and µ (high) of each 

input variable and is associated with a set of actions 

(a1, a2,..., at). The simplified representation of the 

basic cell is presented in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The consequents of the cell’s low and high poli-

partitions may be of the singleton type or the output 

of a stage of a previous level. Although the singleton 

consequent is simple, this consequent is not 

previously known because each singleton 

consequent is associated with an action that has not 

been defined a priori. Each poli-partition has a set of 

possible actions (a1, a2, ... at), as shown in Figure 2, 

and each action is associated with a Q-value 

function. The Q-value is defined as being the sum of 

the expected values of the rewards obtained by the 

execution of action a in state s, in accordance with a 

policy π. For further details, see [Sutton and Barto, 

1998].  

By means of the RL-based learning algorithm (see 

section 3.3), one action of each poli-partition (for 
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Figure 3. RL-NFP cell schematic. 
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Figure 2.  Internal representation of the RL-
Neuro-Fuzzy Politree cell with two inputs. 
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example, ai, aj, ap and aq) is selected (Figure 3) as the 

one that represents the desired behavior of the 

system whenever that system is in a given state. 

Thus, the consequents are the actions that the agent 

must learn along the process. 

The linguistic interpretation of the mapping 

implemented by the RL-NFP cell shown in Figure 3 

is given by the following set of rules:  

 

rule1:  If x1 ∈ ρ1 and x2  ∈ ρ2 then y = ai 

rule2:  If x1 ∈ ρ1 and x2 ∈ µ2 then y = aj 

rule3:  If x1 ∈ µ1 and x2 ∈ ρ2 then y = ap 

rule4:  If x1∈  µ1 and x2 ∈ µ2 then y = aq  

Each rule corresponds to one of the four poli-

partitions generated by the Politree partitioning. 

When the inputs fall in quadrant (low, low), rule 1 

has the greatest firing level. Each quadrant, in turn, 

can be subdivided in four parts, through another RL-

NFP cell.  

 

The most suitable defuzzification method in this 

case is the weighted average because it combines the 

consequents of the fuzzy rules with each of these 

rules’ firing level, thereby generating an output 

(crisp) ‘y’ according to the expression given in 

equation (2), where αi is the firing level of rule I 

(poli-partition i) and consequent ai corresponds to 

one of the two possible consequents below:  

a singleton (fuzzy singleton consequent, or zero-

order Sugeno): the case where ai  = constant; 

the output of a stage of a previous level: the case 

where ai  = ym , where ym represents the output of a 

generic cell ‘m’, whose value is also calculated by 

equation (2). 

 

 

 

 

 

   

 

 
 

Since the high (µ) and low (ρ) membership functions 

are complementary, the defuzzification process is 

simplified (eq. 3), with the denominator of equation 

(2) being equal to 1 for any values of inputs ‘x’. 

 
3.2. RL-HNFP Architecture 

Once the system’s basic cell has been described, RL-

HNFP models can be created based on the 

interconnection of these cells. The RL-NFP cells 

form a hierarchical structure that results in the rules 

that compose the agent’s reasoning. Figure 4 

exemplifies this architecture.  

 

In the architecture presented in Figure 4, the 

poli-partitions 1, 3, 4, … m-1 have not been 

subdivided, having as consequents of their rules the 

values a1, a3, a4, … am-1, respectively. On the other 

hand, poli-partitions 2 and m have been subdivided; 

so the consequents of their rules are the outputs (y2 

and ym) of subsystems 2 and m, respectively.  

 

On its turn, these subsystems have, as consequent, 

the values a21, a22, ..., a2m, and  am1, am2, ..., amm, 

respectively. Each 'ai' corresponds to a consequent 

of zero-order Sugeno (singleton), representing the 

action that will be identified (between the possible 

actions), through reinforcement learning, as being 

the most favorable for a certain state of the 

environment.  

 

The output of the system depicted in Figure 4 

(defuzzification) is given by equation (4). Again, in 

this equation, αi corresponds to the firing level of 

partition i and ai is the singleton consequent of the 

rule associated with partition i. Equation (4) 

considers that the firing level of the inactive cells 

have already been distributed, as will be explained in 

Section 3.2.1. 
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The structure’s output y is the resultant action (crisp 

value) that the agent’s actuator must perform. 

Therefore, the RL-HNFP model creates and 

determines its structure by mapping states into 

actions.  

 

The hierarchical characteristic of the RL-HNFP 

model smoothens the value function generalization 

process (with the hierarchical fuzzy tree as the 

function approximator) without affecting the results, 
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Figure 4. Example of architecture of the 
RL-HNFP model 
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which is a good requirement for process 

convergence [Sutton, 1996].  

 

3.2.1. Modified RL Neuro-Fuzzy Politree Cell 

The original RL-HNFP defuzzification process, 

presented in section 3.1, considered all activated 

partitions, including those with low activation value, 

which jeopardized the learning process causing 

longer training cycles.  

 

To understand the problem with the original model, 

consider the HNFP architecture presented in Figure 

4. When the RL-NFP2 cell is not active (its inputs’ 

values are out of the domain associated to this cell, 

resulting in α21, α22, … α2m = 0), the output value of 

this cell  (y2) is equal to zero. Therefore, in spite of 

α02 (RL-NFP0) being non zero, the resultant product 

of α02 * y2 is zero. In the defuzzification process of 

cell RL-NFP0, however, α02 is still considered in the 

denominator of the defuzzification formula, which 

always sums 1, as shown in equation (5). 


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Therefore, the defuzzification process was altered, 

generating the improved RL-HNFP
+
 model. In this 

extended model the system’s output (y) depends just 

on the most activated rules. Figure 4 also illustrates 

this modification with the three cells architecture: 

RL-NFP0, RL-NFP2 and RL-NFPm, each with n 

inputs.  

 

As shown in Figure 4, RL-NFP2 and RL-NFPm cells 

descend from RL-NFP0 cell. When the RL-NFP2 cell 

is not active, the firing level α21, α22, α23 and α2m are 

all zero and, therefore, the firing level (α02) can be 

divided and distributed to the firing level of the 

others partitions (α01 , α03  … α0m). 

 

This division is in accordance with the contribution 

of each firing level of rule (
m0030101 .../ αααα +++∑ , 

m0030103 .../ αααα +++∑  

…
mm 003010 .../ αααα ++∑

). This way, the 

structure’s output y depends only on the active rules. 

That is equivalent to subtract α02 of the denominator 

of equation 2. 
 

3.3. RL_HNFP Learning Algorithm 

Neuro-fuzzy learning is generally divided into two 

parts: structure identification and parameter 

adjustment. The RL-HNFP model performs both of 

these learning tasks in a single algorithm.  

 

In the RL-HNFP model the reinforcement learning 

process is based on the SARSA [Sutton and Barto, 

1998] method. The state identification process, 

which is not previously known, is accomplished by 

the learning phase.  

 

The flowchart shown in Figure 5 describes the 

learning algorithm of the RL-HNFP model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The agent must run many cycles in order to 

ensure that the system/environment in which it has 

been inserted is learned. A cycle is defined as the 

number of steps the agent takes in the environment 

from the point at which that agent has been 

initialized to the point considered as being its goal. 

Each step comprises the complete execution of the 

algorithm, from the agent’s reading the environment 

to the execution of the action. 

 

The learning process starts out with the definition of 

the input variables that are relevant to the 

system/environment in which an agent is inserted 

and of the set of actions it may use in order to attain 

its objectives.  

Step 1 - Generating a father-cell (or root-cell) 
A root-cell is created with fuzzy sets whose domain 

is equal to the universe of discourse of the cell’s 

input variables xi. The values of the input variables 

are read by the agent’s sensors, are normalized, and 

each xi value is evaluated in the high and low fuzzy 

sets, resulting in two membership degrees, ρ(xi) and 

µ(xi), respectively. Each poli-partition chooses one 

of the actions (from its set of actions), based on the 

methods described in step 4 of this algorithm. The 

cell output is calculated by the defuzzification 

process given by equation (3) (considering the 

modification described in section 3.2.1) and 

represents the action that will be executed by the 

agents’ actuators.  

Step 2 - Global Reward:  
After the action is carried out, the environment is 

read once again. This reading enables the calculation 

Figure 5. Learning Algorithm of RL-HNFP model 
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of the environment global reward value that will be 

used to evaluate the action taken by the agent. This 

value must be calculated by means of an evaluation 

function defined according to the agent’s objectives. 

Hence, this evaluation function defines not only the 

nature of the reinforcement, by rewarding or 

punishing (+1/-1), but also its intensity, thereby 

making for a more efficient process of guiding this 

agent during the learning.  

Step 3 - Backpropagation of the Reinforcement:  
At each step, the reinforcement (reward) is 

calculated for each partition of all active cells by 

means of its participation in the resulting action. 

Thus, the environment reinforcement calculated by 

the evaluation function is backpropagated from the 

root-cell to the leaf-cells, according to Figure 6 and 

to the calculations shown in equations (6) to (9).  

 

 
 

 

 

The values αi are calculated using the T-norm AND 

operator. Equations (6) and (7) show the calculations 

of the αi for the root cell (RL-NFP0) and its 

descendant (RL-NFP1), respectively. The 

calculations of the reinforcements for cells RL-NFP0 

and RL-NFP1 are defined by eqs. (8) and (9), 

respectively (Rglobal is the calculated global 

reinforcement).  
 

Step 4 - Selection of the actions:  

The actions are associated to Q-value functions and 

compose a set of actions that are selected and 

experimented during the RL learning. Exploring the 

space of states is a key issue to discover actions that 

correspond to the best agent’s response (with regards 

to achieving an objective) when the agent is in a 

given state of the environment. So, the ∈∈∈∈-greedy 

[Sutton and Barto, 1998] method was used, which 

selects an action associated to the highest expected 

Q-value with (1 - ∈) probability and with ∈ 

probability it randomly selects any action. The 

maximum value of ∈ is 0.1 (10%) [Sutton and 

Barto, 1998]. 

Step 5 - Update Q(st-1, at-1):  
After the calculation of the reinforcement values for 

each cell in the structure, the Q-values associated to 

actions that have contributed to the resulting action 

must be updated.  

 

This update is based on the evaluation between the 

current and previous global returns. The Q-values 

update takes place in two distinct forms: when the 

current global reinforcement value is higher than the 

previous global reinforcement (Rt+1 > Rt) the 

objective is to reward by increasing the Q value, 

following a similar formula to SARSA method 

[Sutton and Barto, 1998]. In this case (Rt+1 > Rt), 

there is a reduction in the ∈∈∈∈-greedy 

exploration/exploitation rates that are associated 

with each bi-partition (set of actions) of each active 

cell. On the other hand, when the current global 

reinforcement is lower than or equal to the previous 

global reinforcement (Rt ≥ Rt+1), the objective is to 

punish by reducing the Q value, so as to reduce the 

probability of this action being chosen when the cell 

is active again [Figueiredo et al., 2004],[Figueiredo 

et al., 2005]. The rates of the ∈-greedy parameters of 

the partitions involved are then increased, which 

allows different actions to have more chances of 

being chosen when this bi-partition is active again.  

 

Step 6 - Partitioning:  
In order for a cell to be partitioned, each poli-

partition must satisfy two criteria. The first criterion 

prevents the structure from growing as a result of a 

bad performance caused by a still immature choice 

of actions; the second encourages partitioning when 

there are significant variations in the actions’ value 

functions. When a poli-partition has all the 

α01 = ρ0(x1) . ρ0 (x2) 

α02 = ρ0 (x1) . µ0 (x2) 

α03 = µ0 (x1) . ρ0 (x2) 

α04 = µ0 (x1) . µ0 (x2) 

 

(6) 

α11 = ρ1(x1) . ρ1 (x2) 

α12 = ρ1 (x1) . µ1 (x2) 

α13 = µ1 (x1) . ρ1 (x2) 

α14 = µ1 (x1) . µ1 (x2) 

(7) 

R0ll =  α01 . Rglobal 

R0lh = α02 . Rglobal 

R0hl = α03  . Rglobal 

R0hh  =  α04 . Rglobal 

(8) 

R1ll =  α11 . R0ll 

R1lh = α12 . R0ll 

R1hl = α13  . R0ll 

R1hh  =  α14 . R0ll 

(9) 

Figure 6. Backpropagation of the global 
reinforcement of the environment, where the cell 
root (RL-NFP0) has one descendant in the partition 
low/low (RL-NFP1). In this figure ll, lh, hl and hh 
indicate low-low, low-high, high-low and high-high 
partitions, respectively. 

           (a)                          (b) 
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ll     lh      hl     hh 

RL-NFP1 

α11              α12          α13              α14 

 

R 

R1ll R1lh R1hh
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necessary requirements for partitioning, a leaf cell is 

created and connected to that poli-partition. Its 

domain will be the sub-domain that corresponds to 

the poli-partition ancestor. Leaf cells also inherit the 

set of actions with its respective Q-values from their 

ancestor.  

 

The original RL_HNFP and its extended version 

RL-HNFP
+
 models have been evaluated in a 

common benchmark application. The case study is 

presented in the next section. 

 
4. STUDIES 

4.1. Mountain Car Problem 

The mountain car (see Figure 7) is a highly relevant 

benchmark that has been used by different 

researchers [Sutton, 1996], [Boyan and Moore, 

1995], [Jouffe, 1998] with the purpose of testing 

their function approach methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                   -1.2     -0.5                     0.5 

Figure 7 - mountain car problem environment. 

 

The problem may be described as follows: a car 

must be able to get to the top of a mountain; 

however, the car is not powerful enough to 

overcome the force of gravity. Thus, in order to 

achieve its objective, the car must begin by moving 

in the opposite direction of the target so that it may 

add the acceleration of gravity to its own 

acceleration (see Figure 7). 

The  problem  has  two  continuous state variables, 

the position of the car  xt  ∈  [-1.2, 0.5]  and  its  

velocity  vt  ∈ [-0.07, 0.07], and three discrete 

actions: an impulse to the left (Ft = -1); no impulse 

(Ft = 0); and an impulse to the right (Ft = 1). The 

system’s dynamics is described by equation 10.  

 

The learning process starts at -0.5 and -1.2 position 

with zero velocity alternating at each cycle of the 

experiment and tests were carried out with variations 

in the initial conditions (position and velocity). The 

purpose of these tests was to evaluate the 

performance of the models in several different 

situations. 

 

Table 1 compares the results from the learning and 

testing phases of the RL-HNFP models with 

different RL-based models described in [Jouffe, 

1998].  
 

Table 1. Performance comparison of the RL-
HNFP and extended RL-HNFP models with other 
models [Jouffe, 1998] for the mountain-car problem. 

Model No. of 
parameters 

Learning 
Phase 

Testing 
Phase 

Neural-Q-
learning 

4 1724 2189 

CMAC Q-
learning 

343 262 85 

FQL 25 112 61 

RL-HNFP 0 91 69 

RL-HNFP+ 0 88 72 

 

The first column in Table 1 indicates the model 

being evaluated and the second indicates the number 

of parameters, that is, the number of neurons in the 

hidden layer for the Neural Q-Learning case, the 

number of grids for the CMAC (Cerebellar Model 

Articulation Controller) case, and the number of 

rules for the FQL (Fuzzy Q_Learning). The third 

and fourth columns display the performance 

obtained for each model in terms of number of steps. 

The fourth columns indicate the average 

performance obtained for each model in terms of 

number of steps with the car starting out from any x 

∈ [-1.2,0.5] and v ∈ [-0.07,0.07]. 

The Neural Q-Learning model presents the worst 

result because, in addition to learning the Q-values, 

it also needs to learn to identify the states; the 

modifications that the backpropagation algorithm 

makes in the weights affect the entire network and 

are detrimental to the learning process.  

In the case of the CMAC model, the active state set 

is perceived discretely (many neighboring states 

activate the same grid sets); on the other hand, in the 

case of the FQL and RL-HNFP models, the state set 

is perceived continuously. This explains why the 

results of the FQL and RL-HNFP models are better 

[Jouffe, 1998].  

 

Despite the FQL results being slightly better than the 

result obtained with the RL-HNFP and RL-HNFP
+
 

models, the former (as well as the CMAC) starts 

from a priori information (fuzzy rules and sets) 

relative to the learning process. Additionally, 

although RL-HNFP and RL-HNFP
+
 models use a 

more elaborated return function than FQL model, 

this function is related with the agent’s objective, not 

with the learning process. 

)))3cos(0025.0001.0,07.0max(,07.0min(1 tttt xFvv −+−=+
 

)),2.1max(,5.0min( 11 ++ +−= ttt vxx  (10) 

target 
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Figures 8 and 9 depict the results obtained with the 

RL-HNFP model and Figures 10 and 11 with the 

extended model RL-HNFP
+
. 
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1 4 7 10 13 16 19 22 25 28 31 34 37
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velocity

 
initial position =-1.2 initial velocity = 0 

Steps = 38 

Figure 8 - Test result for the mountain car problem 
starting from x = -1.2  with the RL-HNFP model 
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Figure 9 - Test result for the mountain car problem 
starting from x = - 0.5  with the RL-HNFP model 
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 Figure 10 - Test result for the mountain car problem 
with the extended RL-HNFP model 
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Figure 11 - Test result for the mountain car problem 
with the extended RL-HNFP model 

 
The most favorable initial condition for the car is 

when it is in the position -1.2 (Figures 8 and 10). 

Figures 8 and 10 show that the car needs more steps 

to reach its objective using RL-HNFP
+
 model than 

with the original model. One of the reasons is related 

to the resultant RL-HNFP
+ 

smaller structure (see 

table 2). 

 

The most unfavorable initial condition for the car is 

when it is in the position -0.5 with velocity 0 

(Figures 9 and 11). Figures 9 and 11 show that the 

car needs more steps to reach its objective using RL-

HNFP
+
 model than with the original model. 

 

However, illustrations 9 and 11 show that the model 

RL-HNFP
+
 didn't need to go to the end opposite of 

the environment (position -1.2) to reach the 

objective, concluding the task with smaller number 

of steps. 

 

It may be observed from the graphs that when the 

car starts out from the valley (position -0.5), it needs 

to oscillate from one side to the other so as to gain 

enough momentum to overcome the force of gravity 

and reach the “mountaintop”. On the other hand, 

when the car starts out from the farthest position 

(position -1.2), it already has enough potential 

energy to reach the objective without needing to 

oscillate. 

 
Table 2 presents the average number of cycles and 

number of cells for the RL-HNFP extended RL-

HNFP.  

 

Tables 1 and 2 demonstrates that the RL-HNFP
+
 

model needs less cycles to accomplish the learning 

process and uses a smaller structure than the 

structure of the original model, reducing the 

computational time (due to the size of the structure 

and to the number of cycles). 
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Table 2. Performance comparison of the RL-
HNFP model and extended RL-HNP (RL-HNFP

+
) for 

the mountain-car problem. 

Model Cycles Cells 

RL-HNFP 5000 96 

RL-HNFP
+
 3000 15 

 

5. CONCLUSIONS 

This paper presented a new class of neuro-fuzzy 

models, called Reinforcement Learning Hierarchical 

Neuro-Fuzzy Systems, which improve the weak 

points of conventional neuro-fuzzy systems.  

 

The RL-HNFP models are able to: create and 

expand the structure of rules without any prior 

knowledge (fuzzy rules or sets); extract knowledge 

from the agent’s direct interaction with large and/or 

continuous environments (through reinforcement 

learning); and produce interpretable fuzzy rules, 

which compose the agent’s intelligence to achieve 

its goal(s).  

 

As demonstrated bye the case study, the agent was 

able to generalize its actions, showing adequate 

behavior when it was in states whose actions had not 

been specifically learned. This capacity increases the 

agent’s autonomy.  

 

This experiment demonstrates that these models 

are suitable for control problems, presenting good 

generalization and generating their own hierarchical 

structure of rules with linguistic interpretation. 

Moreover, the automatic environment learning 

endows the agent with intelligence (knowledge base, 

reasoning and learning). These are characteristics 

that increase the autonomous capacity of this agent.  

 

The proposed modifications, relative to the learning 

algorithm, allowed a faster learning (with a smaller 

number of learning cycles), a more compact 

structure and a lower computational cost. 

 

In spite of the good results obtained by the proposed 

model, a few points still need improvement. The 

authors are developing a new model, called 

Multiagents Reinforcement Learning – Neuro-Fuzzy 

Politree (MARL-HNFP), for other types of 

applications that demand the use of multiple agents. 
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