
K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

4

Modified Reinforcement Learning-Hierarchical Neuro-Fuzzy

Politree Model for Control of Autonomous Agents

KARLA FIGUEIREDO�, MARCIO SANTOS
♣

, MARLEY VELLASCO
♣

 &

MARCO PACHECO
♣

�Electronics & Telecommunication Engineering, UERJ, Brazil

karlaf@uerj.br

♣♣♣♣Electrical Engineering, PUC-Rio – Brazil

bs.in@uol.com.br

marley@ele.puc-rio.br

marco@ele.puc-rio.br

Abstract: This work presents a new hybrid neuro-fuzzy model for automatic learning of actions taken by agents.

The main objective of this new model is to provide an agent with intelligence, making it capable, by interacting

with its environment, to acquire and retain knowledge for reasoning (infer an action). This new model, named

Reinforcement Learning Hierarchical Neuro-Fuzzy Politree (RL-HNFP), and its improved version (RL-HNFP
+
),

descends from the Reinforcement Learning Hierarchical Neuro-Fuzzy BSP (RL-HNFB) that applies binary

hierarchical partitioning methods, together with the Reinforcement Learning (RL) methodology. These two

characteristics permit the autonomous agent to automatically learn its structure and its necessary action in each

position in the environment. The RL-HNFP model and its extension (RL-HNFP
+
) are evaluated in a well known

benchmark application in the area of autonomous agents: the Mountain Car Problem. The results obtained

demonstrate the potential of these models, which operate without any prior information, such as number of rules,

rules specification, or number of partitions that the input space should have, providing good performance and

demonstrating the agent’s autonomy.

Keywords: Neuro-Fuzzy Systems; Learning; Reinforcement Learning, Automatic Learning

1. INTRODUCTION

This work presents the hybrid Reinforcement

Learning Hierarchical Neuro-Fuzzy Politree model

(RL-HNFP) [Figueiredo et al., 2004], [Figueiredo et

al., 2005] and its new improved version (RL-

HNFP
+
), which accomplishes the learning process

through Reinforcement Learning algorithm.

Hybrid Intelligent Systems conceived with the use of

techniques such as Fuzzy Logic (FL) [Klir and

Yuan, 1995], [Mendel, 1995] and Neural Networks

(NN) [Bishop, 1995], [Haykin, 1998] have been

applied in areas where traditional approaches were

unable to provide satisfactory solutions. Many

researchers have attempted to integrate these two

techniques by generating hybrid models that

associate their advantages and minimize their

limitations and deficiencies. With this objective in

mind, hybrid neuro-fuzzy systems, or simply, neuro-

fuzzy systems [Jang and Sun, 1997], [Lin and Lee,

1996] have been created. These systems combine the

learning capacity of neural networks with the

linguistic interpretability of fuzzy inference systems.

Traditional neuro-fuzzy models [Abraham, 2005],

such as ANFIS [Jang, 1993], NEFCLASS [Kruse

and Nauck, 1995] and FSOM [Vuorimaa, 1994],

have a limited capacity for creating their own

structure and rules [Souza et al., 2002a]. In addition,

most of these models employ grid partition of the

input space, which, due to the rule explosion

problem, makes them more adequate for applications

with a smaller number of inputs. When a greater

number of input variables are necessary, the

system’s performance deteriorates.

Finally, most of these traditional neuro-fuzzy

systems depend on supervised training, where a

desired output must be provided for each input

pattern. When the information about the desired

output is not available (usually the case in

autonomous agent applications), the learning

procedure must be carried out by means of a

Reinforcement Learning algorithm. Furthermore,

when the environment is large and/or continuous,

the application of traditional Reinforcement

Learning (RL) methods based on lookup tables (a

table that stores value functions for a small or

discrete state space) is no longer feasible because the

state space becomes too large. This problem is

known as the curse of dimensionality [Sutton, 1996],

[Boyan and Moore, 1995], [Jouffe, 1998]. In order

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

5

to bypass it, some form of generalization must be

incorporated into the representation of states.

In general, in addition to their limitation regarding

the number of input variables, the main RL- and

Fuzzy Logic-based models require predefinitions

such as: number and format of the fuzzy sets used in

the fuzzy rules’ antecedents and consequents;

number of rules; and even the specification of the

antecedents that compose the rules.

Thus, the main motivation of this work was to

devise neuro-fuzzy models that could overcome

these basic limitations, so that an autonomous agent

could learn the actions that must be carried out in

large and/or continuous environments, without prior

knowledge of the environment’s dynamics and with

the least possible prior definitions.

The models described in this paper were, therefore,

developed based on an analysis of the limitations in

the existing models and of the desirable

characteristics for RL-based learning systems,

particularly in applications involving continuous

and/or high dimensional environments [Sutton,

1996], [Boyan and Moore, 1995], [Jouffe, 1998],

[Moore, 1991]. Thus, a recursive space partitioning

methodology (which had already been explored with

excellent results in previous works [Jang and Sun,

1997], [Gonçalves et al., 2004], [Vellasco et al.,

2004] and [Souza et al., 2002b]) was chosen, which

significantly reduces the limitations of the existing

neuro-fuzzy systems. The use of recursive

partitioning, combined with Reinforcement

Learning, resulted in a new class of Neuro-Fuzzy

Systems called Reinforcement Learning-

Hierarchical Neuro-Fuzzy Politree System (RL-

HNFP) [Figueiredo et al., 2004] and [Figueiredo et

al., 2005].

The functionality of the model’s fuzzy component is

to aggregate states that have similar behaviours and

associate them with one and the same action. The

RL component makes the model able to learn the

most suitable action to be executed for a given state.

The hierarchical aspect is related to the fact that each

partition of the input space defines a subsystem

which, if necessary, may have a subsystem with the

same structure as its consequent (recursiveness).

This means that the hierarchical tree structure

increases according to the complexity of the

problem. This characteristic smoothens the value

function generalization process (with the

hierarchical fuzzy tree as the function approximator)

without affecting the results, which is a good

requirement for process convergence [Sutton, 1996].

In this manner, the RL-HNFP model presents the

following important characteristics: it automatically

learns the model’s structure; it performs self-

adjustment of the parameters associated with the

structure; it is capable of learning an action to be

taken when the agent is in a given state of the

environment; it is able to deal with a greater number

of inputs when compared with traditional neuro-

fuzzy systems; and it automatically generates

linguistic rules. These characteristics represent an

important differential in relation to the existing

intelligent agent learning systems.

However, the original RL-HNFP presents a

drawback related to the defuzzification method,

which caused longer training process. In the original

model, rules associated with low activated partitions

were considered in the defuzzification process,

which deteriorated the model’s output.

Therefore, this paper also presents an extended

version of RL-HNFP model, where the resultant

output value (y) depends only on the most activated

rules, which improves the model’s performance.

This paper has been organized in four additional

sections. Section 2 contains a brief description of the

Politree partitioning. Section 3 introduces the RL-

HNFP model, describing its basic cell, its

architecture and its learning method. Section 4

presents the results obtained with the mountain-car

problem [Sutton, 1996], a benchmark of the area.

The results obtained by the RL-HNFP model and its

extension are compared with models developed by

other researchers. Lastly, section 5 presents the

conclusions.

2. POLITREE PARTITIONING

The partitioning process of the input/output space

has great influence on the neuro-fuzzy system

performance in relation to its desirable features

(accuracy, generalization, automatic generation of

rules, etc). This work proposes the use of recursive

partitioning methods of the input/output space,

resulting in a new class of neuro-fuzzy system that

overcomes two of the main weaknesses of current

Neuro-Fuzzy Systems: their fixed structure and

limited number of inputs.

The Politree partitioning was inspired by the

quadtree structure proposed by Finkel and Bentley

[Finkel and Bentley, 1974], which has been widely

used in the area of images manipulation and

compression. In this partitioning, the n-dimensional

space is successively subdivided in quadrants that, in

turn, can be again subdivided in four regions

(quadrants) in a recursive operation. The limitation

of the Quadtree partitioning (fixed or adaptive) is in

the fact that it works only in two-dimensional

spaces. The Politree partitioning, used in the

Reinforcement Learning - Hierarchical Neuro-Fuzzy

Politree model (RL-HNFP), is a generalization of

this idea. In this partitioning the subdivision of the

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

6

n-dimensional space is accomplished in m=2
n

subdivisions.

The Politree partitioning can be represented by a tree

structure. Figure 1a shows the partitioning for the

particular case when n = 2 (two inputs) and Figure

1b presents the generic politree partitioning (with n

inputs).

Politree partitioning is flexible and minimizes the

exponential rule growth problem, since it creates

new rules locally according to the learning process.

This type of partitioning is considered recursive

because it makes use of a recursive process to

generate partitions. In this manner, the resulting

models have a hierarchy in their structure and

consequently, hierarchical rules.

Figure 1. (a) tree representation of a Politree
structure with two inputs; (b) generic tree
representation of the politree partitioning with n

inputs, where m = 2
n
.

3. REINFORCEMENT LEARNING –

HIERARCHICAL NEURO-FUZZY
POLITREE (RL_HNFP)

The RL-HNFP model is made up of one or several

standard cells called RL-Neuro-Fuzzy politree (RL-

NFP) cells. These cells are arranged in a hierarchical

structure in the form of a tree. The outputs of the

cells in the lower levels are the consequents of the

cells in the higher levels. The following sub-sections

describe the basic cell, the hierarchical structure and

the learning algorithm.

3.1. Original RL Neuro-Fuzzy Politree Cell

An RL-NFP cell is a mini-neuro-fuzzy system that

performs politree partitioning in a given space

according to the membership functions described in

equation (1), where ρ(x) and µ(x) represent the low

and high membership functions, respectively. The

RL-NFP cell generates a precise (crisp) output after

the defuzzification process. The values of the input

variables are read by the agent’s sensors and then

are inferred in the antecedents’ fuzzy sets (low and

high).

)(1)(
1

1
)(

))((
xxand

e
x

bxa
µρµ −=

+
=

−−

(1)

Each cell receives all the inputs that are being

considered in the problem. For illustration purpose,

Figure 2 depicts a cell with two inputs – x1 and x2 -

(Quadtree partitioning), providing a simpler

representation than the n-dimensional form proposed

by Politree. In Figure 2, each partitioning is

generated by the combination of the two

membership functions ρ (low) and µ (high) of each

input variable and is associated with a set of actions

(a1, a2,..., at). The simplified representation of the

basic cell is presented in Figure 3.

The consequents of the cell’s low and high poli-

partitions may be of the singleton type or the output

of a stage of a previous level. Although the singleton

consequent is simple, this consequent is not

previously known because each singleton

consequent is associated with an action that has not

been defined a priori. Each poli-partition has a set of

possible actions (a1, a2, ... at), as shown in Figure 2,

and each action is associated with a Q-value

function. The Q-value is defined as being the sum of

the expected values of the rewards obtained by the

execution of action a in state s, in accordance with a

policy π. For further details, see [Sutton and Barto,

1998].

By means of the RL-based learning algorithm (see

section 3.3), one action of each poli-partition (for

ai

aj

ap

aq

Q

 y

output

(crisp)

x1 x2
(inputs) a1,a2 ,a3 ... at

 a1,a2 ,a3 ... at

 a1,a2 ,a3 ... at

 a1,a2 ,a3 ... at

Figure 3. RL-NFP cell schematic.

consequents

 a1 a2 a3

 α1 α2 α3 α4

 a1 a2 a3 ...

am

 α1 α2 α3 ... αm

 (a) (b)

a1 a2 ... at

Q1 Q2 ... Qt

a1 a2 ... at

Q1 Q2 ... Qt

a1 a2 ... at

Q1 Q2 ... Qt

a1 a2 ... at

Q1 Q2 ... Qt

x1

x2

low,

high

low

low

high,

high

high,

low

Figure 2. Internal representation of the RL-
Neuro-Fuzzy Politree cell with two inputs.

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

7

example, ai, aj, ap and aq) is selected (Figure 3) as the

one that represents the desired behavior of the

system whenever that system is in a given state.

Thus, the consequents are the actions that the agent

must learn along the process.

The linguistic interpretation of the mapping

implemented by the RL-NFP cell shown in Figure 3

is given by the following set of rules:

rule1: If x1 ∈ ρ1 and x2 ∈ ρ2 then y = ai

rule2: If x1 ∈ ρ1 and x2 ∈ µ2 then y = aj

rule3: If x1 ∈ µ1 and x2 ∈ ρ2 then y = ap

rule4: If x1∈ µ1 and x2 ∈ µ2 then y = aq

Each rule corresponds to one of the four poli-

partitions generated by the Politree partitioning.

When the inputs fall in quadrant (low, low), rule 1

has the greatest firing level. Each quadrant, in turn,

can be subdivided in four parts, through another RL-

NFP cell.

The most suitable defuzzification method in this

case is the weighted average because it combines the

consequents of the fuzzy rules with each of these

rules’ firing level, thereby generating an output

(crisp) ‘y’ according to the expression given in

equation (2), where αi is the firing level of rule I

(poli-partition i) and consequent ai corresponds to

one of the two possible consequents below:

a singleton (fuzzy singleton consequent, or zero-

order Sugeno): the case where ai = constant;

the output of a stage of a previous level: the case

where ai = ym , where ym represents the output of a

generic cell ‘m’, whose value is also calculated by

equation (2).

Since the high (µ) and low (ρ) membership functions

are complementary, the defuzzification process is

simplified (eq. 3), with the denominator of equation

(2) being equal to 1 for any values of inputs ‘x’.

3.2. RL-HNFP Architecture

Once the system’s basic cell has been described, RL-

HNFP models can be created based on the

interconnection of these cells. The RL-NFP cells

form a hierarchical structure that results in the rules

that compose the agent’s reasoning. Figure 4

exemplifies this architecture.

In the architecture presented in Figure 4, the

poli-partitions 1, 3, 4, … m-1 have not been

subdivided, having as consequents of their rules the

values a1, a3, a4, … am-1, respectively. On the other

hand, poli-partitions 2 and m have been subdivided;

so the consequents of their rules are the outputs (y2

and ym) of subsystems 2 and m, respectively.

On its turn, these subsystems have, as consequent,

the values a21, a22, ..., a2m, and am1, am2, ..., amm,

respectively. Each 'ai' corresponds to a consequent

of zero-order Sugeno (singleton), representing the

action that will be identified (between the possible

actions), through reinforcement learning, as being

the most favorable for a certain state of the

environment.

The output of the system depicted in Figure 4

(defuzzification) is given by equation (4). Again, in

this equation, αi corresponds to the firing level of

partition i and ai is the singleton consequent of the

rule associated with partition i. Equation (4)

considers that the firing level of the inactive cells

have already been distributed, as will be explained in

Section 3.2.1.

mi

n

i
mim

i

n

i
i

a

aaaay

.

....

2

1

44332

2

1
2211

∑++

+++∑+=

=

=

αα

ααααα

K

(4)

The structure’s output y is the resultant action (crisp

value) that the agent’s actuator must perform.

Therefore, the RL-HNFP model creates and

determines its structure by mapping states into

actions.

The hierarchical characteristic of the RL-HNFP

model smoothens the value function generalization

process (with the hierarchical fuzzy tree as the

function approximator) without affecting the results,



















∑

∑ ×

=

=

=

n

i
i

n

i
ii a

y
2

1

2

1

α

α

(2)

i

n

i
i ay .

2

1

∑=
=

α

(3)

Figure 4. Example of architecture of the
RL-HNFP model

 a1

 a3

 a4

Inputs

 x1 ,x2, ... xn

...

.

.

.

RL-NFP2

a21

a22

a2m

 x1 ,x2, ... xn

...

RL-NFPm

 x1 ,x2, ... xn

...

y2

ym

RL-NFP0
Output

am1

am2

amm

α01

α02

α03

α0m

α21

α22

α2m

αm1

αm2

αmm

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

8

which is a good requirement for process

convergence [Sutton, 1996].

3.2.1. Modified RL Neuro-Fuzzy Politree Cell

The original RL-HNFP defuzzification process,

presented in section 3.1, considered all activated

partitions, including those with low activation value,

which jeopardized the learning process causing

longer training cycles.

To understand the problem with the original model,

consider the HNFP architecture presented in Figure

4. When the RL-NFP2 cell is not active (its inputs’

values are out of the domain associated to this cell,

resulting in α21, α22, … α2m = 0), the output value of

this cell (y2) is equal to zero. Therefore, in spite of

α02 (RL-NFP0) being non zero, the resultant product

of α02 * y2 is zero. In the defuzzification process of

cell RL-NFP0, however, α02 is still considered in the

denominator of the defuzzification formula, which

always sums 1, as shown in equation (5).










+++

×++×+×
=

m

mm yya
y

00201

0202101

...

...

ααα

ααα (5)

Therefore, the defuzzification process was altered,

generating the improved RL-HNFP
+
 model. In this

extended model the system’s output (y) depends just

on the most activated rules. Figure 4 also illustrates

this modification with the three cells architecture:

RL-NFP0, RL-NFP2 and RL-NFPm, each with n

inputs.

As shown in Figure 4, RL-NFP2 and RL-NFPm cells

descend from RL-NFP0 cell. When the RL-NFP2 cell

is not active, the firing level α21, α22, α23 and α2m are

all zero and, therefore, the firing level (α02) can be

divided and distributed to the firing level of the

others partitions (α01 , α03 … α0m).

This division is in accordance with the contribution

of each firing level of rule (
m0030101 .../ αααα +++∑ ,

m0030103 .../ αααα +++∑

…
mm 003010 .../ αααα ++∑

). This way, the

structure’s output y depends only on the active rules.

That is equivalent to subtract α02 of the denominator

of equation 2.

3.3. RL_HNFP Learning Algorithm

Neuro-fuzzy learning is generally divided into two

parts: structure identification and parameter

adjustment. The RL-HNFP model performs both of

these learning tasks in a single algorithm.

In the RL-HNFP model the reinforcement learning

process is based on the SARSA [Sutton and Barto,

1998] method. The state identification process,

which is not previously known, is accomplished by

the learning phase.

The flowchart shown in Figure 5 describes the

learning algorithm of the RL-HNFP model.

The agent must run many cycles in order to

ensure that the system/environment in which it has

been inserted is learned. A cycle is defined as the

number of steps the agent takes in the environment

from the point at which that agent has been

initialized to the point considered as being its goal.

Each step comprises the complete execution of the

algorithm, from the agent’s reading the environment

to the execution of the action.

The learning process starts out with the definition of

the input variables that are relevant to the

system/environment in which an agent is inserted

and of the set of actions it may use in order to attain

its objectives.

Step 1 - Generating a father-cell (or root-cell)
A root-cell is created with fuzzy sets whose domain

is equal to the universe of discourse of the cell’s

input variables xi. The values of the input variables

are read by the agent’s sensors, are normalized, and

each xi value is evaluated in the high and low fuzzy

sets, resulting in two membership degrees, ρ(xi) and

µ(xi), respectively. Each poli-partition chooses one

of the actions (from its set of actions), based on the

methods described in step 4 of this algorithm. The

cell output is calculated by the defuzzification

process given by equation (3) (considering the

modification described in section 3.2.1) and

represents the action that will be executed by the

agents’ actuators.

Step 2 - Global Reward:
After the action is carried out, the environment is

read once again. This reading enables the calculation

Figure 5. Learning Algorithm of RL-HNFP model

Partition ?

calculate global

reinforcement

generate root cell

Select actions

6

2

 Partitioning

n

1

3

4

5

y

 Update Q(st-1,at-1)

Backpropagate

the reinforcement

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

9

of the environment global reward value that will be

used to evaluate the action taken by the agent. This

value must be calculated by means of an evaluation

function defined according to the agent’s objectives.

Hence, this evaluation function defines not only the

nature of the reinforcement, by rewarding or

punishing (+1/-1), but also its intensity, thereby

making for a more efficient process of guiding this

agent during the learning.

Step 3 - Backpropagation of the Reinforcement:
At each step, the reinforcement (reward) is

calculated for each partition of all active cells by

means of its participation in the resulting action.

Thus, the environment reinforcement calculated by

the evaluation function is backpropagated from the

root-cell to the leaf-cells, according to Figure 6 and

to the calculations shown in equations (6) to (9).

The values αi are calculated using the T-norm AND

operator. Equations (6) and (7) show the calculations

of the αi for the root cell (RL-NFP0) and its

descendant (RL-NFP1), respectively. The

calculations of the reinforcements for cells RL-NFP0

and RL-NFP1 are defined by eqs. (8) and (9),

respectively (Rglobal is the calculated global

reinforcement).

Step 4 - Selection of the actions:

The actions are associated to Q-value functions and

compose a set of actions that are selected and

experimented during the RL learning. Exploring the

space of states is a key issue to discover actions that

correspond to the best agent’s response (with regards

to achieving an objective) when the agent is in a

given state of the environment. So, the ∈∈∈∈-greedy

[Sutton and Barto, 1998] method was used, which

selects an action associated to the highest expected

Q-value with (1 - ∈) probability and with ∈

probability it randomly selects any action. The

maximum value of ∈ is 0.1 (10%) [Sutton and

Barto, 1998].

Step 5 - Update Q(st-1, at-1):
After the calculation of the reinforcement values for

each cell in the structure, the Q-values associated to

actions that have contributed to the resulting action

must be updated.

This update is based on the evaluation between the

current and previous global returns. The Q-values

update takes place in two distinct forms: when the

current global reinforcement value is higher than the

previous global reinforcement (Rt+1 > Rt) the

objective is to reward by increasing the Q value,

following a similar formula to SARSA method

[Sutton and Barto, 1998]. In this case (Rt+1 > Rt),

there is a reduction in the ∈∈∈∈-greedy

exploration/exploitation rates that are associated

with each bi-partition (set of actions) of each active

cell. On the other hand, when the current global

reinforcement is lower than or equal to the previous

global reinforcement (Rt ≥ Rt+1), the objective is to

punish by reducing the Q value, so as to reduce the

probability of this action being chosen when the cell

is active again [Figueiredo et al., 2004],[Figueiredo

et al., 2005]. The rates of the ∈-greedy parameters of

the partitions involved are then increased, which

allows different actions to have more chances of

being chosen when this bi-partition is active again.

Step 6 - Partitioning:
In order for a cell to be partitioned, each poli-

partition must satisfy two criteria. The first criterion

prevents the structure from growing as a result of a

bad performance caused by a still immature choice

of actions; the second encourages partitioning when

there are significant variations in the actions’ value

functions. When a poli-partition has all the

α01 = ρ0(x1) . ρ0 (x2)

α02 = ρ0 (x1) . µ0 (x2)

α03 = µ0 (x1) . ρ0 (x2)

α04 = µ0 (x1) . µ0 (x2)

(6)

α11 = ρ1(x1) . ρ1 (x2)

α12 = ρ1 (x1) . µ1 (x2)

α13 = µ1 (x1) . ρ1 (x2)

α14 = µ1 (x1) . µ1 (x2)

(7)

R0ll = α01 . Rglobal

R0lh = α02 . Rglobal

R0hl = α03 . Rglobal

R0hh = α04 . Rglobal

(8)

R1ll = α11 . R0ll

R1lh = α12 . R0ll

R1hl = α13 . R0ll

R1hh = α14 . R0ll

(9)

Figure 6. Backpropagation of the global
reinforcement of the environment, where the cell
root (RL-NFP0) has one descendant in the partition
low/low (RL-NFP1). In this figure ll, lh, hl and hh
indicate low-low, low-high, high-low and high-high
partitions, respectively.

 (a) (b)

α01 α02 α03 α04

hh

ll la hl hh

RL-NFP0

ll lh hl hh

RL-NFP1

α11 α12 α13 α14

R

R1ll R1lh R1hh

R0ll R0lh R0hl

 ll lh hl RL-NFP0

 ll lh hl hh RL-NFP1

 R0hh

Inputs: x1 and x2

R1hl

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

10

necessary requirements for partitioning, a leaf cell is

created and connected to that poli-partition. Its

domain will be the sub-domain that corresponds to

the poli-partition ancestor. Leaf cells also inherit the

set of actions with its respective Q-values from their

ancestor.

The original RL_HNFP and its extended version

RL-HNFP
+
 models have been evaluated in a

common benchmark application. The case study is

presented in the next section.

4. STUDIES

4.1. Mountain Car Problem

The mountain car (see Figure 7) is a highly relevant

benchmark that has been used by different

researchers [Sutton, 1996], [Boyan and Moore,

1995], [Jouffe, 1998] with the purpose of testing

their function approach methods.

 -1.2 -0.5 0.5

Figure 7 - mountain car problem environment.

The problem may be described as follows: a car

must be able to get to the top of a mountain;

however, the car is not powerful enough to

overcome the force of gravity. Thus, in order to

achieve its objective, the car must begin by moving

in the opposite direction of the target so that it may

add the acceleration of gravity to its own

acceleration (see Figure 7).

The problem has two continuous state variables,

the position of the car xt ∈ [-1.2, 0.5] and its

velocity vt ∈ [-0.07, 0.07], and three discrete

actions: an impulse to the left (Ft = -1); no impulse

(Ft = 0); and an impulse to the right (Ft = 1). The

system’s dynamics is described by equation 10.

The learning process starts at -0.5 and -1.2 position

with zero velocity alternating at each cycle of the

experiment and tests were carried out with variations

in the initial conditions (position and velocity). The

purpose of these tests was to evaluate the

performance of the models in several different

situations.

Table 1 compares the results from the learning and

testing phases of the RL-HNFP models with

different RL-based models described in [Jouffe,

1998].

Table 1. Performance comparison of the RL-
HNFP and extended RL-HNFP models with other
models [Jouffe, 1998] for the mountain-car problem.

Model No. of
parameters

Learning
Phase

Testing
Phase

Neural-Q-
learning

4 1724 2189

CMAC Q-
learning

343 262 85

FQL 25 112 61

RL-HNFP 0 91 69

RL-HNFP+ 0 88 72

The first column in Table 1 indicates the model

being evaluated and the second indicates the number

of parameters, that is, the number of neurons in the

hidden layer for the Neural Q-Learning case, the

number of grids for the CMAC (Cerebellar Model

Articulation Controller) case, and the number of

rules for the FQL (Fuzzy Q_Learning). The third

and fourth columns display the performance

obtained for each model in terms of number of steps.

The fourth columns indicate the average

performance obtained for each model in terms of

number of steps with the car starting out from any x

∈ [-1.2,0.5] and v ∈ [-0.07,0.07].

The Neural Q-Learning model presents the worst

result because, in addition to learning the Q-values,

it also needs to learn to identify the states; the

modifications that the backpropagation algorithm

makes in the weights affect the entire network and

are detrimental to the learning process.

In the case of the CMAC model, the active state set

is perceived discretely (many neighboring states

activate the same grid sets); on the other hand, in the

case of the FQL and RL-HNFP models, the state set

is perceived continuously. This explains why the

results of the FQL and RL-HNFP models are better

[Jouffe, 1998].

Despite the FQL results being slightly better than the

result obtained with the RL-HNFP and RL-HNFP
+

models, the former (as well as the CMAC) starts

from a priori information (fuzzy rules and sets)

relative to the learning process. Additionally,

although RL-HNFP and RL-HNFP
+
 models use a

more elaborated return function than FQL model,

this function is related with the agent’s objective, not

with the learning process.

)))3cos(0025.0001.0,07.0max(,07.0min(1 tttt xFvv −+−=+

)),2.1max(,5.0min(11 ++ +−= ttt vxx (10)

target

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

11

Figures 8 and 9 depict the results obtained with the

RL-HNFP model and Figures 10 and 11 with the

extended model RL-HNFP
+
.

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 4 7 10 13 16 19 22 25 28 31 34 37

steps

position

velocity

initial position =-1.2 initial velocity = 0

Steps = 38

Figure 8 - Test result for the mountain car problem
starting from x = -1.2 with the RL-HNFP model

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 12 23 34 45 56 67 78 89 10 111 12 13 14 155 16

steps

position
velocity

initial position =- 0.5 initial velocity = 0

Steps = 166

Figure 9 - Test result for the mountain car problem
starting from x = - 0.5 with the RL-HNFP model

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

steps

position

velocity

initial position =-1.2 initial velocity = 0

Steps = 46

 Figure 10 - Test result for the mountain car problem
with the extended RL-HNFP model

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129

steps

position

velocity

initial position =-0.5 initial velocity = 0

Steps = 130

Figure 11 - Test result for the mountain car problem
with the extended RL-HNFP model

The most favorable initial condition for the car is

when it is in the position -1.2 (Figures 8 and 10).

Figures 8 and 10 show that the car needs more steps

to reach its objective using RL-HNFP
+
 model than

with the original model. One of the reasons is related

to the resultant RL-HNFP
+

smaller structure (see

table 2).

The most unfavorable initial condition for the car is

when it is in the position -0.5 with velocity 0

(Figures 9 and 11). Figures 9 and 11 show that the

car needs more steps to reach its objective using RL-

HNFP
+
 model than with the original model.

However, illustrations 9 and 11 show that the model

RL-HNFP
+
 didn't need to go to the end opposite of

the environment (position -1.2) to reach the

objective, concluding the task with smaller number

of steps.

It may be observed from the graphs that when the

car starts out from the valley (position -0.5), it needs

to oscillate from one side to the other so as to gain

enough momentum to overcome the force of gravity

and reach the “mountaintop”. On the other hand,

when the car starts out from the farthest position

(position -1.2), it already has enough potential

energy to reach the objective without needing to

oscillate.

Table 2 presents the average number of cycles and

number of cells for the RL-HNFP extended RL-

HNFP.

Tables 1 and 2 demonstrates that the RL-HNFP
+

model needs less cycles to accomplish the learning

process and uses a smaller structure than the

structure of the original model, reducing the

computational time (due to the size of the structure

and to the number of cycles).

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

12

Table 2. Performance comparison of the RL-
HNFP model and extended RL-HNP (RL-HNFP

+
) for

the mountain-car problem.

Model Cycles Cells

RL-HNFP 5000 96

RL-HNFP
+
 3000 15

5. CONCLUSIONS

This paper presented a new class of neuro-fuzzy

models, called Reinforcement Learning Hierarchical

Neuro-Fuzzy Systems, which improve the weak

points of conventional neuro-fuzzy systems.

The RL-HNFP models are able to: create and

expand the structure of rules without any prior

knowledge (fuzzy rules or sets); extract knowledge

from the agent’s direct interaction with large and/or

continuous environments (through reinforcement

learning); and produce interpretable fuzzy rules,

which compose the agent’s intelligence to achieve

its goal(s).

As demonstrated bye the case study, the agent was

able to generalize its actions, showing adequate

behavior when it was in states whose actions had not

been specifically learned. This capacity increases the

agent’s autonomy.

This experiment demonstrates that these models

are suitable for control problems, presenting good

generalization and generating their own hierarchical

structure of rules with linguistic interpretation.

Moreover, the automatic environment learning

endows the agent with intelligence (knowledge base,

reasoning and learning). These are characteristics

that increase the autonomous capacity of this agent.

The proposed modifications, relative to the learning

algorithm, allowed a faster learning (with a smaller

number of learning cycles), a more compact

structure and a lower computational cost.

In spite of the good results obtained by the proposed

model, a few points still need improvement. The

authors are developing a new model, called

Multiagents Reinforcement Learning – Neuro-Fuzzy

Politree (MARL-HNFP), for other types of

applications that demand the use of multiple agents.

REFERENCES

Abraham A. 2005, “Adaptation of Fuzzy Inference

System Using Neural Learning”, Fuzzy System

Engineering: Theory and Practice, Nadia Nedjah et

al. (Eds.), Studies in Fuzziness and Soft Computing,

Springer Verlag Germany, ISBN 3-540-25322-X,

Chapter 3, pp. 53-83.

Bishop C.M. 1995, “Neural Networks for Pattern

Recognition”, Clarendon Press -Oxford, 1995.

Boyan J.A. and Moore A.W. 1995, “Generalization

in reinforcement learning: Safely approximating the

value function”, in: G. Tesauro, D. S. Touretzky,

and T. K. Leen, (Eds.), Advances in Neural

Information Processing Systems 7, Cambridge, MA,

The MIT Press.

Figueiredo K., Vellasco M.M.B.R., Pacheco M.A.C.

and Souza F.J. 2004, “Reinforcement Learning-

Hierarchical Neuro-Fuzzy Politree Model for

Control of Autonomous Agents”, Fourth

International Conference on Hybrid Intelligent

Systems (HIS’04), (ISBN 0-7695-2291-2), IEEE

Computer Society, Kitakyushu, Japan, December,

pp.130-135.

Figueiredo K., Vellasco M.M.B.R. and Pacheco

M.A. 2005, “Hierarchical Neuro-Fuzzy Models

based on Reinforcement Learning for Intelligent

Agents”, Lecture Notes in Computer Science -

Computational Intelligence and Bioinspired

Systems, Volume 3512, Editors: Joan Cabestany,

Alberto Prieto, Francisco Sandoval, (ISBN: 3-540-

26208-3), Proc. of The 8th International Work-

Conference on Artificial Neural Networks

(IWANN'2005), Barcelona, Spain, June 8-10, pp.

424-431.

Finkel R. and Bentley J. 1974, ”Quad trees, a data

structure for retrieval on composite keys”, Acta

Informatica 4, pp. 1-9.

Gonçalves L.B., Vellasco M.M.B.R., Pacheco

M.A.C. and Souza F.J. 2004, “Inverted hierarchical

neuro-fuzzy BSP system: A novel neuro-fuzzy

model for pattern classification and rule extraction in

databases”, accepted for publication in, IEEE Trans.

on Systems, Man and Cybernetics, Part C).

Haykin S. 1998, “Neural Networks – A

Comprehensive Foundation”, Macmillan College

Publishing Company, Inc.

[Jang, 1993] Jang J.S.R. 1993. “ANFIS: Adaptive-

network-based fuzzy inference system”, IEEE

Transactions on SMC, 23, No. 3, pp. 665-685.

Jang J.-S. R., Sun C.-T., E. 1997, “Mizutani, Neuro-

Fuzzy and Soft Computing: A Computational

Approach to Learning and Machine Intelligence”,

Prentice-Hall.

Jouffe L. 1998, “Fuzzy inference system learning by

reinforcement methods”, IEEE Trans. on Systems,

Man and Cybernetics, part c, 28, No. 3, pp. 338-355.

Klir G.J. and Yuan B. 1995, “Fuzzy Sets and Fuzzy

K. FIGUEIREDO et al.: HIERARCHICAL NEURO-FUZZY POLITREE MODEL

I. J. of SIMULATION Vol. 6 No 10 and 11 ISSN 1473-804x online, 1473-8031 print

13

Logic – Theory and Applications”, Prentice Hall

PTR.

Kruse R. and Nauck D. 1995, “NEFCLASS-A

neuro-fuzzy approach for the classification of data”,

Proc. of the 1995 ACM Symposium on Applied

Computing, Nashville, 26-28.

Lin C.T. and Lee C.S.G. 1996, “Neural Fuzzy

Systems: A Neuro-Fuzzy Synergism to Intelligent

Systems”, Prentice-Hall.

Mendel J.M. 1995, “Fuzzy logic systems for

engineering: A tutorial”, Proceedings of the IEEE,

83, No. 3, pp. 345-377.

Moore A.W. 1991, “Variable resolution dynamic

programming: Efficiently learning action maps in

multivariate real-valued state-spaces”, Proceedings

of the Eighth International Conference on Machine

Learning, in: Birnbaum and G.C.Collins, (Eds.),

Morgan Kaufmann, pp. 333-337.

Souza F.J., Vellasco M.M.B.R. and Pacheco

M.A.C., 2002a, “Hierarchical neuro-fuzzy quadtree

models”, Fuzzy Sets and Sys, 130/2, pp. 189-205.

Souza F.J., Vellasco M.M.B.R., Pacheco M.A.C.

2002b, "Load Forecasting with The Hierarchical

Neuro-Fuzzy Binary Space Partitioning Model",

International Journal of Computers Systems and

Signals, (ISSN 1608-5655), International

Association for the Advancement of Methods for

System Analysis and Design (IAAMSAD), South

Africa Vol. 3, No. 2, pp. 118-132.

Sutton R. S. 1996, “Generalization in Reinforcement

learning: Successful examples using sparse coarse

coding”, Advances in Neural Information Process

Systems 8, pp. 1038-1044, MIT Press.

Sutton R.S. and Barto A.G. 1998, “Reinforcement

Learning: An Introduction”, MIT Press.

Vellasco M.M.B.R., Pacheco M.A.C., Ribeiro Neto

L.S., Souza F.J. 2004, “Electric Load Forecasting:

Evaluating the Novel Hierarchical Neuro-Fuzzy BSP

Model”, International Journal of Electrical Power &

Energy Systems, (ISSN 0142-0615), Vol. 26, No. 2,

pp. 131-142, Elsevier Science Ltd, February.

Vuorimaa P. 1994, “Fuzzy self-organizing map”,

Fuzzy Sets and Systems 66, pp. 223-231.

BIOGRAPHY

Karla Figueiredo received the B.Sc. degrees in

electrical engineering from Federal University of

Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, in

1989., and M.Sc. and D.Sc. degrees in electrical

engineering from the Pontifical Catholic University

of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil,

in 1994 and 2003, respectively. In 2004, she became

a visiting professor at the Electronics and

Telecommunications Engineering Department of

Rio de Janeiro State University. Her main research

interests include Neuro-Fuzzy Systems,

Reinforcement Learning and Multiagents Systems.

Marcio Luiz Ramos dos Santos received the B.Sc.

degree in electronical engineering in 1994 from

Federal University of Rio de Janeiro (UFRJ), Rio de

Janeiro, and the M.Sc. degree in production

engineering in 2000 from Pontifical Catholic

University of Rio de Janeiro (PUC-Rio), Rio de

Janeiro. In 2002, he started doctoral studies in

electrical engineering at Pontifical Catholic

University of Rio de Janeiro. He is currently a

project manager at DBA System Engineer (supplier

of IT solutions). His research interests include

Neuro-Fuzzy Systems, Reinforcement Learning and

Multiagents Systems.

Marley Maria Bernardes Rebuzzi Vellasco
(M’89) received the B.Sc. and M.Sc. degrees in

electrical engineering from the Pontifical Catholic

University of Rio de Janeiro (PUC-Rio), Rio de

Janeiro, Brazil, in 1984 and 1987, respectively, and

the Ph.D. degree in computer science from the

University College London (UCL), London, U.K., in

1992. She is currently an Assistant Professor at the

Electrical Engineering Department of PUC-Rio and

jointly heads the Applied Computational Intelligence

Laboratory (ICA) of PUC-Rio with Dr. M. Pacheco.

She is also an Assistant Professor at the Computing

and Systems Engineering Department, State

University of Rio de Janiero (UERJ). She is the

author of over 100 papers in books, professional

journals, and conference proceedings in the area of

soft computing. Her research interests include neural

networks, fuzzy logic, neuro-fuzzy systems and

evolutionary computation for decision support

systems, pattern classification, time-series

forecasting, control, optimization, knowledge

discovery databases, and data mining.

Marco Aurélio Cavalcanti Pacheco received the

B.Sc. and M.Sc. degrees in electrical engineering

from the Pontifical Catholic University of Rio de

Janeiro (PUC-Rio), Rio de Janeiro, Brazil, in 1976

and 1980, respectively, and the Ph.D. degree in

computer science from the University College

London (UCL), London, U.K., in 1991. He is

currently an Assistant Professor at the Electrical

Engineering Department of PUC-Rio and jointly

heads the Applied Computational Intelligence

Laboratory (ICA) of PUC-Rio with Dr. M. Vellasco.

He is the author of over 100 papers in books,

professional journals, and conference proceedings in

the area of soft computing. His research interests

include evolutionary computation, evolvable

hardware, nanotechnology, neural networks, fuzzy

systems, applied computational intelligence,

knowledge discovery databases, and data mining.

