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Abstract: Unpredictable response time is a common problem in contemporary web servers. Long response delays substantially 
cut company revenues owing to the large number of aborted e-commerce transactions. This work presents an admission control 
model and a traffic scheduler scheme of the web server under a proportional differentiated service, embedding a time series 
predictor to estimate the traffic load of the client in the next measurement time period. The experimental results indicate that the 
proposed models can effectively realize proportional delay differentiation service in multiclass Web servers. 
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1. INTRODUCTION 
 

With the increasingly popularity of the Internet 
worldwide, the use of web servers to advertise and sell 
merchandise in business is significantly increasing.  
Traditional web servers provide service for client requests 
using first-come-first-serve (FCFS) service model.  FCFS 
introduces unpredictable response times for the clients 
when incoming traffic is bursty. Customers may become 
frustrated by a long response time and end the network 
connection with the web servers without finishing the 
transactions with the enterprises, leading to loss of revenue 
for the businesses and unsatisfactory quality of service 
(QoS).  Although QoS provision in network transmission, 
such as Integrated Services (IntServ) and Differentiated 
Services (DiffServ), is currently of interest among 
researchers, network layer QoS guarantees alone might not 
be able to offer clients perceptible services when the servers 
are overloaded by unexpectedly significant rises in the 
number of connections. 

Recent works have considered the issues of prioritized 
processing in web servers.  Eggert and Heidemann 
[Eggert and Heidemann, 1999] attempted to provide QoS 
service at the application level by splitting client requests 
into two classes as in the network layer, and restricting the 
process pool size and response transmission rate for various 
priority groups. Bhatti and Friedrich [Bhatti and Friedrich, 
1999] developed tiered service levels and overload 
management model, and implemented admission control 
mechanism by blocking low-priority tasks when the 
number of high priority jobs exceeded some predefined 
threshold.  Both admission control models follow 
conventional fixed bandwidth leased line scheme that 
satisfies the requirement of bursty workload.  Although 
the service quality of high priority tasks is guaranteed, some 
precious bandwidth is still unused under the average load.  
Vasiliou and Lutfiyya [Vasiliou and Lutfiyya, 2001] 
proposed a QoS architecture that permits the number of 
requests for different priority groups to be dynamically 
altered according to the performance of the high priority 
group during the runtime, the service quality of low priority 
tasks is still somewhat degraded.  Chen et al. [Chen and 

Mohapatra, 2002] proposed so-called service differentiating 
Internet servers to manage the QoS service provided by the 
network layer.  The servers also provide significantly 
better services to high priority tasks using prioritized 
scheduling and task assignment approaches.  However, 
the starvation effect of the low priority task group is still 
significant owing to the monopolization of the resource 
allocated to the high priority tasks.  To enhance the 
performance of the low priority tasks, Lee et al. [Lee et al, 
2004] presented an admission control algorithm that 
permits proportional delay differentiated service (PDDS) 
[Dovrolis et al, 2002] at application level.  Under PDDS, 
client requests are initially classified to different priority 
groups as in [Chen and Mohapatra, 2002], and the services 
achieved by classes are proportional to their ratios set in the 
service contracts.  Clients can then be charged according 
to their maximum average waiting time QoS requirement. 
Kanodia and Knightly [Kanodia and Knightly, 2003] 
developed the latency-targeted multiclass admission control 
algorithm, which employs measurements of requests and 
service latencies to manage each class’ QoS. Lee et al and 
Kanodia & Knightly [Lee et al, 2004; Kanodia and 
Knightly, 2003] might resolve the starvation issue for the 
low priority tasks as revealed by Chen & Mohapatra [Chen 
and Mohapatra, 2002].  However, compared with the 
approach using HTTP tags and HTML links in [Ritter et al, 
2000], the algorithm of Lee et al [Lee et al, 2004] requires 
clients to feed two explicit parameters, maximum arrival 
rate and maximum average waiting time, into the server to 
launch the admission control mechanism.  However, this 
scheme is impractical in reality.  Furthermore, Lee et al 
and Kanodia and Knightly [Lee et al, 2004; Kanodia and 
Knightly, 2003] modeled the aggregate request rate from all 
clients as a Poisson process, which is inconsistent with the 
evidence shown in [Arlitt and Jin, 2000] that the traffic from 
World Wide Web (WWW) transfers has self-similarity.  
Thus, the validity of the performance evaluation reports 
given in [Lee et al, 2004; Kanodia and Knightly, 2003] is 
disputed. 

This work presents two admission control models to 
enable PDDS at application level.  Each proposed model 
predicts the total maximum arrival rate and maximum 
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average waiting time of each priority task group for the next 
measurement period according to the arrival rate of each 
class during the current and the last three measurement 
periods.  The admission control models can then apply the 
predicted values to determine the next client for service 
from one of the queues maintained for each priority task 
group.  Significantly, the system automatically derives the 
two above-mentioned parameters, thus resolving the 
impractical problem of specifying the parameters by the 
clients as seen in [Lee et al, 2004].  Moreover, Arlitt and 
Jin [Arlitt and Jin, 2000] reveal that the WWW traffic 
possesses the characteristic of self-similarity, and 
self-similar time series are predictable.  Meanwhile, the 
works of [Abraham, 2003; Dhyani et al, 2003; Bonino et al, 
2003; Antoniol et al, 2001] also exhibit the effectiveness of 
predicting the number of web server access.  Therefore, 
this work attempts to utilize the support vector regression 
(SVR) technique to realize the prediction mechanism, and 
compares this scheme with another well-known machine 
learning technique, fuzzy logic system, which is renowned 
by its mathematical framework to deal with real world 
imprecision, and permits decision-making by estimated 
values under incomplete or uncertain information. The 
SVR is specified to implement the proposed models 
because of its superior performance in many applications, 
such as time series prediction [Van Gestel et al, 2001], 
Internet traffic prediction, call classification for AT&T’s 
natural dialog system, multi-user detection and signal 
recovery for a code division multiple access (CDMA) 
system [Chen et al, 2001; Gong and Kuh, 1999; Haffner et 
al, 2003; Kuh, 2001; Hasegawa et at, 2001]. VLSI chips 
also provide many solutions that enable the SVR to be 
hardware-computed. High-speed low cost SVR chips have 
been introduced recently, making implementation of SVR 
using hardware feasible [Anguita et al, 1999]. 

The rest of this paper is organized as follows.  Section 2 
introduces the proposed admission control models. Section 
3 then describes the prediction algorithms adopted in the 
admission control models, namely the fuzzy logic system 
and support vector regression techniques.  Section 4 
introduces the simulation results, which compare the 
proposed algorithms with FCFS service model and with 
two representative time series predictors in the literature.  
Conclusions are finally drawn in Section 5.   
 
2. ADAPTIVE ADMISSION CONTROL 

MODELS 
 

WWW traffic has been observed to have self-similarity 
[Arlitt and Jin, 2000]. Liang [Liang, 2002] found that 
WWW traffic is predictable through self-similar time-series.  
Therefore, this work incorporate a prediction algorithm into 
the proposed admission control model to estimate the ratio 
of the expected average waiting time between different 
classes, and to investigate whether the service contract of 
each class is violated.  Self-similarity is briefly defined and 
characterized below. 

 
2.1 Self-Similarity 
 

Let ( )L,2 ,1 ,0 , == tXX t  be a stationary stochastic 
process.  If the average of the series X is computed over 
non-overlapping blocks of size m, an m-aggregated 
stationary time series ( ) ( )( )L,2 ,1 ,0 , == kXX m

k
m  
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when the variances and the autocorrelations of ( )mX  and 
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where H denotes the Hurst parameter.  It is said that X is 
exactly self-similar.  In addition, X is asymptotically 
self-similar if the following relation is satisfied: 
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( ) ( ) ( ) ∞→→ mirir XX m   , .                  (5) 
The autocorrelations given in Eqs. (3) and (5) tell that the 
degree of variability or burstiness is identical at different 
time scales for self-similar stochastic process, and the 
autocorrelation does not drop to zero as ∞→m .  This 
is in contrast to the characteristic of the stochastic processes 
used in typical data models: 

( ) ( ) ∞→→ mir mX
  ,0 .                    (6) 

As for the variances given in Eqs. (2) and (4), they decrease 
more slowly than m

1  when ∞→m . 

As the study in [Arlitt and Jin, 2000] showed that the 
self-similar traffic pattern generated by Web browsers fits 
very well to a Pareto-type distribution, our simulation 
model will thus assume the packet interracial times for each 
priority task group to be independent and identically 
distributed according to the infinite-variance Pareto 
distribution with shape parameter α and cut-off parameter 
k: 
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2.2 Proportional Delay Differentiated Service 
 

The fundamental principle of proportional delay 
differentiated service (PDDS) developed by Dovrolis et al. 
[Dovrolis et al, 2002] states that higher-class requests will 
receive better performance than the lower class requests.  
Specifically, N > 1 service classes are assumed, where the 
priority of each class is set in a decreasing order, and the 
average waiting time is then set in inverse proportion to the 
priority for each class: 

Nji
P
P

D
D

i

j

j

i ≤≤= ,1  , ,       (9) 

where Di and Pi denote the average waiting time and 
priority for class i, respectively.  That is, the average 
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waiting time is shorter for the priority task groups that pay 
higher usage costs. 

The proposed admission control model forecasts the 
average waiting time of each class for next measurement 
period, and utilizes Eq. (9) to choose the class client with the 
largest gap in the ratio of the average waiting time to receive 
the next service from the server.  Significantly, a new 
client requesting for service is placed in the client’s class 
queue if the average waiting time for that class does not 
exceed a predefined threshold.  Each class has its own 
average waiting time threshold value, and it is adjustable 
during operation according to the number of the clients who 
leave the class queue without service owing to long waiting 
time. 

 
2.3 Parameters Required for Admission 

Control Model 

The client is asked to supply some essential information 
before being admitted into the service.  Each client has 
two options, its class and the maximum average waiting 
time that it can endure. The specification for the client’s 
class is simple and consistent with the approach taken in the 
differentiated service enabled at the network layer, while the 
provision of the maximum average waiting time directly 
reflects the customer’s requirement. The corresponding 
admission control models are developed based on the two 

parameter specifications. 
 

2.3.1 Using client class as the parameter 
 

As depicted in Fig. 1, each class client waiting for the 
service is placed in the corresponding class queue, which is 
managed using the FCFS service model. 

According to conservation law [Bolch et al, 1998], if the 
average arrival rate is iλ  for a client of class i during the 
next measurement period, then the average waiting time for 
class i, given by Di, should be: 

∑∑
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where D  represents the average waiting time for the 
aggregate traffic serviced by a work-conserving FCFS 
server. 

The average waiting time for class i during the next 
measurement period can be derived from Eqs. (9) and (10) 
as follows: 
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Figure 1: Admission control model with a parameter of each client’s class specification. 
Since the average arrival rate is difficult to obtain for each 

class during the next measurement period in Eq. (11), a time 
series predictor is incorporated into the proposed admission 
control model to foresee the average arrival rate and 
therefore resolve the issue of the unreasonable request for 
the arrival rate specified by each client as presented by Lee 
et al [Lee et al, 2004]. 

Class 1 clients are assumed to have the lowest priority, 
and the maximum waiting time for each class 1 client is 
assumed as MAXD1 .  According to Eq. (9), the maximum 
waiting time acceptable to a class i client is given by 

i

MAX

P
PD 11 ⋅ .  Correspondingly, incoming class i client is 

permitted to use the server if the following relationship is 
fulfilled: 
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where jλ̂  represents the average arrival rate for class i 
aggregate traffic foreseen by the time series predictor. 
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When the server is ready to service the next client, the 
scheduler as shown on the right of Fig. 1 applies the 
following equation to decide which class client should be 
chosen for service: 

arg=k  
i

i

Ni PW
PW
⋅
⋅

≤≤
1

1

1
max ,         (13) 

where Wi denotes the waiting time for the client at the front 
of the class i queue, and Pi represents the priority of class i. 

As the clients of some classes can tolerate longer waiting 
time, such as best-effort traffic, the proposed algorithm can 
pop up an interactive dialog box to ask clients if they wish 
to wait longer when the server is overloaded.  The usage 
cost and the priority for the clients is reduced if they are 
willing to wait longer.  This approach can lower the 
number of customers in the higher-class queues under a 
bursty workload, and thus maintain the stringent QoS 
requirement for higher class clients. 

The algorithm for the admission control model is now 
summarized with each client’s class as the parameter as 
follows. 
1. When a class i client arrives, utilize the time series 

predictor to predict the average arrival rate of class i 
aggregate traffic during next measurement period. 

2. Apply Eq. (11) to compute the average waiting time of 
class i during the next measurement window. 

3. Employ Eq. (12) to determine whether the incoming 
client is admitted to use the server. 

4. If admitted, place the client at the end of the class i 
queue. 

If Eq. (12) is not satisfied, but the client is willing to wait 
longer, then search for the first lower class that satisfies the 
requirement of Eq. (12).  
If found, place the client into the corresponding class queue. 
 
2.3.2 Using maximum waiting time as the parameter 
 

The proposed admission control model also permits the 
client to specify the maximum waiting time as revealed in 
Fig. 2.  Notably, the proposed model requires a classifier to 
derive the incoming client’s class, as displayed in Fig. 2. 

Let MAXD1  represent the maximum waiting time for 
class 1 clients with the lowest priority, and the maximum 
waiting time requested by the incoming client is set to ω . 
Equation (9) indicates that the longest waiting time that 

class i clients can bear is given by 
i

MAX

P
PD 11 ⋅ ; the 

classifier can then apply the following equation to 
determine the incoming client’s class: 

=l arg 
Ni≤≤1
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Notably, the above equation is applied to locate the 
highest priority task group with a maximum waiting time 
requirement longer than that is acceptable to the client. 

The algorithm for the admission control model as shown 
in Fig. 2 can be summarized as follows: 
1. Employ the classifier to classify the incoming client 

according to Eq. (14). 
2. Apply the time series predictor to predict the average 

arrival rate of the incoming client’s class, i, during the 
following measurement period. 

3. Use Eq. (11) to calculate the average waiting time of 
class i during the following measurement window. 

4. Employ Eq. (12) to determine whether the incoming 
client is admitted to use the server. 

5. If admitted, place the client at the end of the class i 
queue. 

If Eq. (12) is not satisfied, but the client is willing to wait 
longer, then search for the first lower class that satisfies the 
requirement of Eq. (12). 
If found, then place the client into the corresponding class 
queue. 

3. TIME SERIES PREDICTOR 
 

The fuzzy logic technique has been used to solve several 
connection admission control in ATM and wireless 
networks and time series prediction problems efficiently in 
the literature [Liang, 2002].  We thus try to apply fuzzy 
logic controller concept to predict maximum arrival rate 
and maximum waiting time as shown in the scheme 
presented in the previous section. 

 
3.1 Fuzzy Logic Predictor 
 

As in [Ren and Ramamurthy, 2000], we use the average 
arrival rate for each class during the current and the last four 
measurement periods ( )3−tλ , ( )2-tλ , ( )1-tλ , and 

( )tλ  to predict the average arrival rate during next 
measurement period ( )1+ˆ tλ .  Fig. 3 shows the 
corresponding fuzzy logic time series predictor.  The basic 
functions of the components employed in the predictor are 
described as follows. 

 Fuzzifier: The fuzzifier performs the fuzzification 
function that converts crisp input data into suitable 
linguistic values that are needed in the inference 
engine. 

 Fuzzy rule base: The fuzzy rule base is 
composed of a set of linguistic control rules and 
the attendant control goals. 

 Inference Engine: The inference engine 
simulates human decision-making based on the 
fuzzy control rules and the related input linguistic 
parameters.  The max-min inference method is 
used to associate the outputs of the inferential 
rules [Buckley and Eslami, 2002], as described 
later in this subsection. 

 Defuzzifier: The defuzzifier acquires the 
aggregated linguistic values from the inferred 
fuzzy control action and generates a non-fuzzy 
control output, the foreseen average arrival rate of 
each class during next measurement period.  The 
Mamdani defuzzification method is employed in 
this paper to compute the centroid of membership 
function for the aggregated output, where the area 
under the graph of membership function for the 
aggregated output is divided into two equal 
subareas [Buckley and Eslami, 2002]. 
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Figure 2: Admission control model with the parameter of the maximum waiting time. 
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Figure 3: The fuzzy logic based time series predictor. 
 
Fig. 4 shows the mapping of four inputs of the fuzzifier 

and the output parameter of the inference engine into some 
appropriate linguistic or membership values, which are 
expressed by the values within the range of 0 and 1.  
Three membership functions for each of four inputs and the 
output are given in Fig. 4, where the linguistic variables 
“low”, “medium” and “high” give the measure of the 
average arrival rate for each class.  Note that the following 
Gaussian membership function is chosen for the 
antecedents and the consequent: 
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2
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i

i
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λλµ ,(15) 

where mi denotes the mean, iσ  represents the variance. 

 
Figure 4: Membership function for the 

antecedents and the consequent. 
 

The input and output fuzzy sets are correlated to 
establish the inferential rules of the fuzzy logic time series 
predictor.  Note that three fuzzy sets are used for each 
antecedent, so the number of fuzzy rules is 34=81.  By 
way of illustration, each fuzzy rule can be interpreted as: 

Fuzzy rule Rj: IF ( )3−tλ  is jA  and  

( )2-tλ  is jB and ( )1−tλ is jC  and  

( )tλ  is jD , THEN ( )1ˆ +tjλ  is Ej.  (16) 
The inference engine then jumps to the following 
conclusion for fuzzy rule Rj: 
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( ) ( )jjjjjjjjjj EDCBADCBAE →××××××= o''''' , (17) 

where '
jA , '

jB , '
jC  and '

jD  stand for the 
membership grades of four inputs obtained from fuzzy rule 
Rj, respectively, and the expression inside the second 
parenthesis denote the simplified representation for Eq. 
(16). 

Fig. 5 illustrates the reasoning procedure for a two-rule 
Mamdani fuzzy inference system.  Note that the 
composition of minimum and maximum operations, 
which corresponds the o  operator in Eq. (17), is 
employed in the evaluation of the fuzzy rules.  The 

non-fuzzy output of the defuzzifier can then be expressed 
by the following algebraic expression: 

( )
( )( )
( )∫

∫ ⋅
=+

AAA

AAAA

d

d
t

λλµ

λλλµ
λ ˆˆ

ˆˆˆ
1ˆ
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where ( )AA λµ ˆ  denotes the membership function 
of the aggregated output Aλ̂ . 
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Figure 5: The reasoning procedure for Mamdani defuzzification method 

3.2 Support Vector Regression Approach 
 

Support vector regression (SVR) has recently gained 
popularity owing to its many attractive features and eminent 
empirical performance [Vapnik, 1995].  The major 
difference between the SVR and traditional regression 
techniques is that the SVR employs the structural risk 
minimization (SRM) approach, rather than the empirical 
risk minimization (ERM) approach typically adopted in 
statistical learning.  The SRM attempts to minimize an 
upper threshold on the generalization rather than minimize 
the training error, and is expected to perform better than the 
traditional ERM approach.  Furthermore, the SVR is a 
convex optimization, which guarantees that the local 
minimization is the unique minimization. 

To solve a nonlinear regression or functional 
approximation problem, the SVR nonlinearly maps the 
input space into a high-dimensional feature space using an 
appropriate kernel representation, such as polynomials and 
radial basis functions with Gaussian kernels.  This 
approach is utilized to build a linear regression hyperplane 
in the feature space, which is nonlinear in the original input 
space.  The parameters can then be derived by solving a 
quadratic programming problem with linear equality and 
inequality constraints [Vapnik, 1995]. 

A training data set 
( ){ }liyD n

ii ,...,1,, =ℜ×ℜ∈= x  comprising l pair 

training data ( ) liyii ,...1 ,, =x , is given.  The input xi 
terms are n-dimensional vectors, and the system response 
yi terms are continuous values. The SVR attempts to 
approximate the following function using data set D: 

( ) ( ) bwf
N

i
ii +⋅=∑

=1
, xwx ϕ ,        (19) 

where b denotes the bias term, and the wi terms represent 
the subjects of learning.  Furthermore, a mapping 

( )xΦz =  is selected in advance to map input vectors x 
into a higher-dimensional feature space F, which is 
spanned by a set of fixed functions ( )xiϕ . 

By defining a linear loss function with the following 
ε-insensitivity zone as illustrated in Fig. 6: 
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⎨
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otherwise,

, if0
,

ε
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The wi terms in Eq. (19) can be estimated by minimizing 
the risk: 
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⎞
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2 ,
2
1
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where C denotes a user-chosen penalty parameter that 
determines the trade-off between the training error and VC 
dimension of the SVR model.  Significantly, the VC 
dimension is a scalar value that measures the capacity of a 
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set of functions [Vapnik, 1995]. 
Equation (21) can be further derived as the following 

constrained optimization problem: 
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subject to constraints: 
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where * and ii ξξ  denote the respective measurements 
above and below the zone with the radius ε in Vapnik’s loss 
function as given in Eq. (20). 

y−f(x,w)

ε ε

e

Figure 6: ε-insensitivity loss function. 
 
Schölkopf et al. developed a modification of original 
Vapnik’s SVR algorithm, called ν-SVR, and claimed that it 
can automatically minimize the radius ε [Schölkopf et al, 
2000].  Lagrange multiplier methods can be employed to 
demonstrate that the constrained optimization problem in 
Eqs.(22) and (23) maximizes the solution of the following 
equation: 
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where ),( *
ii αα  denotes one of l Lagrange multiplier 

pairs; C represents a regularization constant specified a 
priori; ν  is a constant greater than or equal to zero, and 
k(xi．xj) denotes normally a Gaussian kernel or polynomial 
kernel. 

The best nonlinear regression hyperfunction is then 
represented as: 

( ) ( ) ( ) bkf
l

i
iii +⋅−=∑

=1

* ,xxx αα ,     (26) 

where b denotes the optimal bias. 

4. PERFORMANCE EVALUATION 
 

A series of simulations was performed to measure the 
performance and behavioral specifics of the proposed 
admission control models.  Only the admission control 
model utilizing the maximum waiting time as the 
parameter is implemented in this study, since it is very 
similar to the algorithm that utilizes each client’s class 
specification as the parameter except in the presentation of 
the parameters.  The performance metrics of most interest 
include the throughput of the admitted clients from the 
premium class, the percentage of infringement of QoS 
requirement for admitted clients from each priority task 
group and the achieved waiting time ratio for different 
classes of requests. 

 

4.1 Simulation Scenario 
 

An event-driven simulator is developed to examine the 
admission control models proposed in this work.  
Although previous works report that the WWW traffic 
pattern is self-similar characteristic, the precise generation 
of representative self-similar WWW traffic for performance 
evaluation remains an open problem.  Various offered 
loads on the Web server were therefore simulated, 
maintaining fixed targeted waiting time ratios by utilizing 
the real trace based on the Web server logs for the 1998 
World Cup Soccer web site.  The trace includes requests 
for 5200 unique files, and the average request size is 7KB.  
The access logs provide the request timestamp, client ID, 
object URL, service status and reply size of each request.  
Table 1 shows the simulation parameters. To simplify the 
study during the experiments, This work only considered 
two priority levels, premium and basic clients, because the 
major concern of the simulations is to examine the 
effectiveness of the proposed admission control models.  
The waiting time differentiation of the two class clients is 2.  
The maximum waiting times of all clients are drawn 
uniformly between 2 and 11 seconds for the algorithm 
using the maximum waiting time as the parameter.  The 
service times of all requests are exponentially distributed 
with a mean equal to 18ms.  The priority of each 
incoming request is assigned randomly, and the number of 
high priority tasks and low priority tasks is almost the same. 

4.2 Simulation Results 
 

A series of simulations was conducted for the proposed 
admission control models embedded with the two time 
series predictors, i.e. support vector regression (SVRAC) 
and fuzzy logic system (FLAC). The simulation results 
were compared with those of the first-come-first-served 
service model (FCFS). 
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Parameter Value 
Priority Level 2 
Measurement period 1000 seconds 
Disk seeking overhead 0.1 ms. 
Disk bandwidth 100 Mbps 
Network bandwidth 100 Mbps 
Maximum server process 
number 

1000 

Maximum queue length 1000 
Waiting time 
differentiations 

2 

Table 1: Simulation parameters 
 

Figures 7–9 display the throughputs of admitted clients 
from the premium and basic classes for three admission 
control models. Table 2 lists the throughput ratios of the 
three algorithms. Table 2 reveals that the average 
throughput of the admitted clients from premium class in 
SVRAC is significantly better than that in FLAC, while 

FCFS does not distinguish between the two priority task 
groups as expected.  Meanwhile, although all three 
algorithms attain about the same performance under low 
workloads, Figs. 7–9 indicate that the machine learning 
techniques, such as support vector regression and fuzzy 
logic system, effectively predict self-similar time series for 
admission control models under high traffic load. 

 

Average throughput Throughput ratio (%) Scheme 
 

Premium 
class 

Basic 
class 

Premium 
class 

Basic 
class 

SVRAC 520.119 377.995 95.29881 69.36363 
FLAC 507.335 393.83 92.95272 72.26941 
FCFS 450.102 450.616 82.60571 82.67364 

Table 2: Comparison of throughputs for two priority 
task groups 
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Figure 7. Throughput of the admitted clients from two classes in the SVRAC scheme. 
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Figure 8. Throughput of the admitted clients from two classes in the FLAC scheme. 
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Figure 9. Throughput of the admitted clients from two classes in the FCFS scheme.

 

Table 3 lists the percentage of the clients that infringe 
their QoS requirement (maximum waiting time), while Figs. 
10–12 show the number of declined clients’ requests owing 
to the violation of maximum waiting time requirement.  
The analytical results reveal that the SVRAC model 
provides the best service for the admitted premium class 
clients.  Although the other two algorithms might accept 
more basic-class clients for service than the SVRAC 
algorithm, the higher percentage of violations of QoS 
requirements for the admitted clients of premium class as 
listed in Table 3 is highly undesirable for the realization of 
Internet servers providing proportional differentiated 
services. 

 

Reject ratio (%) Scheme 
 

Premium 
class 

Basic class 

SVRAC 4.7012 30.6364 
FLAC 7.0473 27.7306 
FCFS 17.3943 17.3264 

 

Table 3: Percentage of infringement QoS requirement 
for two priority task groups 
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Figure 10. Rejected clients’ requests from two classes in the SVRAC scheme. 
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Figure 11. Rejected clients’ requests from two classes in the FLAC scheme. 
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Figure 12. Rejected clients’ requests from two classes in the FCFS scheme.

Figures 13–15 show the average waiting times of 
admitted clients of premium and basic classes for the three 
admission control models. Table 4 lists the waiting time 
ratios for the three algorithms. Table 4 reveals that the ratio 
of SVRAC is slightly closer to the preset ratio of 2, than that 
of FLAC, while FCFS does not discriminate between the 
two priority task groups. The throughput of the admitted 
premium class clients is significantly higher than those of 
the basic class as revealed in Figs. 7 to 12, but the 
differences between the support vector regression and fuzzy 
logic system in the average waiting time ratio for the clients 

of two classes were found to be insignificant. 

Scheme Ratio 

SVRAC 2.315317 

FLAC 2.344134 

FCFS 0.999585 

Table 4: The waiting time ratio for the three schemes 
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Figure 13. Average waiting time of two classes in the SVRAC scheme. 
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Figure 14. Average waiting time of two classes in the FLAC scheme. 
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Figure 15. Average waiting time of two classes in the FCFS scheme.
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5. CONCLUSION 
This work presents two adaptive admission control 

models to provide a proportional delay differentiated 
services from an Internet server.  Two different time series 
predictors, namely support vector regression and fuzzy 
logic, are embedded in the admission control models to 
estimate the traffic load of the client in the next 
measurement period.  The prediction is needed to 
determine whether the client can be accepted in the 
admission control, and the forecast is promising because a 
self-similar time series is predictable.  Simulation results 
demonstrate that the implementation of time series 
prediction algorithm with support vector regression (SVR) 
is significantly better then fuzzy logic system and 
first-come-first-serve service model when the performance 
metrics of the throughput and the ratio of rejected clients 
from premium class are compared.  Meanwhile, the 
average waiting time ratio of the clients from the two 
classes for both the SVR algorithm and the fuzzy logic 
system is also maintained within a reasonable range of the 
predetermined ratio.  In the subsequent research, we will 
not only incorporate other intelligent tools, including 
neuro-fuzzy and genetic algorithms, into the proposed 
admission control model, but also explore some ensemble 
learning method to combine the results of individual 
machine learning techniques so that the accuracy of 
prediction for the arrival rate of the aggregate traffic can be 
further enhanced. 

REFERENCES 
Abraham A. 2003, “Business intelligence from web usage 
mining,” Journal of Information & Knowledge 
Management, vol. 2, no. 4, pp. 375-390. 

Anguita, D., Boni, A. and Ridella, S. 1999, “Learning 
algorithm for nonlinear support vector machines suited for 
digital VLSI,” Electronics Letters, vol. 35, no. 16, pp. 
1349 – 1350. 

Antoniol, G., Casazza, G., Di Lucca, G., Di Penta, M. and 
Merlo, E. 2001, “Predicting Web site access: an application 
of time series,” The 3rd International Workshop on Web 
Site Evolution, vol. 1, pp. 57-61. 

Arlitt, M. F. and Jin, T. 2000, “A workload characterization 
study of the 1998 world cup web site,” IEEE network, pp. 
30-37. 

Barford, P. and Crovella, M. E. 1998, “Generating 
representative Web workloads for network and server 
performance evaluation,” ACM SIGMETRICS 
Performance Evaluation Review, vol. 26, no. 1, pp. 
151-160.  

Bhatti, N. and Friedrich, R. 1999, “Web server support for 
tiered services,” IEEE Network, vol. 13, no. 5, pp. 64-71. 

Bolch, G., Greiner, S., de Meer, H. and Trivedi, K. S. 1998, 
Queueing networks and Markov chains: modeling and 
performance evaluation with computer science applications. 
New York: John Wiley & Sons, Inc. 

Bonino, D., Corno, F. and Squillero, G.. 2003, “Dynamic 
prediction of Web requests” The 2003 Congress on 
Evolutionary Computation, vol. 3, pp. 2034-2041. 

Buckley, J. and Eslami, E. 2002, An introduction to fuzzy 
logic and fuzzy sets (advances in soft computing). Physica 
Verlag. 

Chen, S.; Samingan, A.K. and Hanzo, L. 2001, “Support 
vector machine multiuser receiver for DS-CDMA signals 
in multipath channels,” IEEE Transactions on Neural 
Networks, vol. 12, no. 3, pp. 604 – 611. 

Chen, X. and Mohapatra, P. 2002, “Performance evaluation 
of service differentiating Internet servers,” IEEE Trans. 
Computers, vol. 51, no. 11, pp. 1368-1375. 

Dhyani, D., Bhowmick, S. and Ng, W.-K. 2003, 
“Modelling and predicting a Web page accesses using 
Markov processes,” 14th International Workshop on 
Database and Expert Systems Applications, pp. 332 – 336.  

Dovrolis, C., Stiliadis, D. and Ramanathan, P. 2002, 
“Proportional differentiated services: delay differentiation 
and packet scheduling,” IEEE/ACM Trans. Networking, 
vol. 10, no. 1, pp. 12-26. 

Eggert, L. and Heidemann, J. 1999, “Application-level 
differentiated services for web servers,” World Wide Web 
Journal, vol. 3, no. 3, pp. 133-142. 

Gong, X. and Kuh, A. 1999, “Support vector machine for 
multiuser detection in CDMA communications,” The 
Thirty-Third Asilomar Conference on Signals, Systems, and 
Computers, vol. 1, pp. 680 – 684. 

Haffner, P., Tur, G., and Wright, J. H. 2003, “Optimizing 
SVMs for complex call classification,” 2003 IEEE 
International Conference on Acoustics, Speech, and Signal 
Processing, vol. 1, pp. I-632  I-635. 

Hasegawa, M., Wu, G. and Mizuno, M. 2001, 
“Applications of nonlinear prediction methods to the 
Internet traffic,” The 2001 IEEE International Symposium 
on Circuits and Systems, vol. 2, pp. III-169III-172. 

Kanodia, V. and Knightly, E. W. 2003, “Ensuring latency 
targets in multiclass Web servers,” IEEE Trans. Parallel 
and Distributed Systems, vol. 14, no. 1, pp. 84-93. 

Kuh A. 2001, “Adaptive kernel methods for CDMA 
systems,” 2001 IEEE International Joint Conference on 
Neural Networks, vol. 4, pp. 2404 – 2409. 

Lee, S. C., Lui, J. C. and Yau, D. K. 2004, “A 
proportional-delay DiffServ-enabled Web server: admission 
control and dynamic adaptation,” IEEE Trans. Parallel and 
Distributed Systems, vol. 15, no. 5, pp. 384-400. 

Liang, Q. 2002, “Ad hoc wireless network 
traffic-self-similarity and forecasting,” IEEE 
Communication Letters, vol. 6, no. 7, pp. 297-299. 

Paxson, V. and Floyd, S. 1997, “Why we don't know how 
to simulate the Internet,” 1997 Winter Simulation 
Conference, pp. 1037-1044. 

Ren, Q. and Ramamurthy, G. 2000, “A real-time dynamic 



C.J.HUANG et al: CONTROL SCHEME USING SUPPORT VECTOR REGRESSION 
 

I. J. of SIMULATION Vol. 6 No 10 and 11                      ISSN 1473-804x online, 1473-8031 print 26

connection admission controller based on traffic modeling, 
measurement, and fuzzy logic control,” IEEE J. Selected 
Areas in Comm., vol. 18, no. 2, pp. 184-196. 

Ritter, H., Pastoors, T. and Wehrle, K. 2000, “DiffServ in 
the web: different approaches for enabling better services in 
the World Wide Web,” Joint Conf. of Broadband 
Communications, High Performance Networking and 
Performance of Communication Networks, pp. 555-566. 

Schölkopf, B., Smola, A., Williamson, R. and Bartlett, P. L. 
2000, “New support vector algorithms,” Neural 
Computation, vol. 12, pp. 1207-1245. 

Van Gestel, T., Suykens, J.A.K. and Baestaens, D.-E., 
Lambrechts, A., Lanckriet, G.., Vandaele, B., De Moor, B. 
and Vandewalle, J. 2001, ”Financial time series prediction 
using least squares support vector machines within the 
evidence framework,” IEEE Transactions on Neural 
Networks, vol. 12, no. 4, pp. 809 – 821, 2001.  

Vapnik, V. 1995, The nature of statistical learning theory. 
New York: Springer-Verlag. 

Vasiliou, N. and Lutfiyya, H. 2001, “Managing a 
differentiated quality of service in a World Wide Web 
server,” IEEE Inter. Symp. Integrated Network 
Management, vol. VII, pp. 309-312. 

AUTHOR BIOGRAPHIES 
Chenn-Jung Huang was born in Hualien, Taiwan, in 1961.  
He received a B. Sc. degree in Electrical Engineering from 
National Taiwan University, Taiwan and an M. S. degree in 
Computer Science from University of Southern California, 
Los Angeles, in 1984 and 1987.  He received a Ph. D 
degree in Electrical Engineering from National Sun Yat-Sen 
University, Taiwan, in 2000.  He is currently an Associate 
Professor at the Institute of Learning Technology, National 
Hualien University of Education, Taiwan.  His research 
interests include computer communication networks, data 
mining and machine learning applications. 

 

Yi-Ta Chuang and Chih-Lun Cheng are pursuing a 
Master’s degree at the Institute of Learning Technology, 
National Hualien University of Education, Taiwan.  Their 
research interests include computer communication 
networks, data mining and applications of machine learning 
techniques. 


