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Abstract: A-scans from ultrasonic testing of long shafts are complex signals. The discrimination of different 

types of echoes is of importance for non-destructive testing and equipment maintenance. Research has focused on 

selecting features of physical significance or exploring classifier like Artificial Neural Networks and Support 

Vector Machines. This paper confirms the observation that there seems to be uncorrelated errors among the vari-

ants explored in the past, and therefore an ensemble of classifiers is to achieve better discrimination accuracy. 

We explore the diverse possibilities of heterogeneous and homogeneous ensembles, combination techniques, 

feature extraction methods and classifiers types and determine guidelines for heterogeneous combinations that 

result in superior performance. 
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1.  INTRODUCTION 

 

Applications of machine learning demand explora-

tion of feature extraction methods and classifier 

types in order to obtain systems with reliable highest 

accuracy. The industrial application discussed here is 

the classification of ultrasonic echoes in an A-scan. 

The application is particularly challenging as A-

scans are taken from the end of a long large complex 

shaft. Although several pattern analysis and machine 

learning techniques have been used with success in 

analyzing A-scan data [Katragadda et al, 1997; Song 

et al, 1999], they are typically in the context of very 

short signals. Those cases are usually much simpler; 

in particular, the task reduces to detecting the exis-

tence of an echo (indicating a fault in the material). 

In long shafts there are many kind of echoes, and in 

fact there are echoes for where there is no fault. 

These mode-converted echoes are the result of re-

flection and other artifacts of the ultrasonic signal 

navigating and filling the shaft. They may cause mis-

judgment of the position of real faults (cracks) of 

shafts, thus to discriminate them from genuine ech-

oes is important. 

 

The relationship between ultrasonic signal character-

istics and flaw classes is not straightforward. We 

need to extract informative set of signal features that 

becomes the basis of decision-making for classifica-

tion. Two main issues are to identify the better set of 

features and to identify the more suitable learning 

algorithm, in order to enhance the classification per-

formance more accurately and reliably. For ultra-

sonic shaft signal classification the most competitive 

feature extraction approaches are Fast Fourier Trans-

form (FFT) and Discrete Wavelet Transform 

(DWT). Artificial Neural Networks (ANN) and Sup-

port Vector Machines (SVM) are the top two ap-

proaches to build classifiers in this field. 

 

Previously we focused on finding the best single 

classifier model (between ANN and SVM) and de-

termining the best-selected feature extraction scheme 

(between FFT and DWT). In this paper, we learn 

multiple models of the shaft test data and combine 

their outputs for making a final decision for classifi-

cation. Figure 1 graphically presents two different 

constructing methods for these two types of hybrid 

ultrasonic classification systems. The reason for the 

ensemble of classifiers (Type I in Figure 1) rather 

than choosing the best single classifier (Type II in 

Figure 1) is that FFT might reflect physical proper-

ties that are different from those DWT conveys. We 

suspected that including the FFT as another infor-

mant of the decision process, even if the accuracy 

using DWT has shown to be superior, should im-

prove accuracy. If we only rely on the system Type 

II, we totally dismisses the outcomes of a classifier 

trained by FFT feature set as the accuracy using 

DWT is shown to be superior. 

 

Constructing hybrid ensembles is not trivial. There 

have been various approaches for creating multiple 

classifiers (model generation) and for combining the 

outputs of multiple classifiers (model combination) 

[Dietterich, 1997; Valentini and Masulli, 2002]. 

There are two streams of model generation methods 

and Figure 2 presents the procedure of those various 

methods of model generation. Homogeneous genera-

tion creates multiple models trained by multiple data 

sets using a single learning algorithm. Those multiple 

data sets are generated either by different feature 
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extraction schemes [Opitz, 1999] or by partitioning a 

data set into multiple sets [Breiman, 1996; Briem et 

al, 2001]. The heterogeneous method creates multi-

ple classifiers built using different learning para-

digms [Bahler and Navarro, 2000]. Therefore, in 

order to construct an effective multi-classifier sys-

tem, we need to decide a scheme for model genera-

tion and also a combination method for decision-

making. Since we design an ensemble of models 

using two different feature sets, constructed by FFT 

and by DWT, we will not apply such schemes as 

boosting or bagging [Breiman, 1996; Efron and Tib-

shirani, 1993] where only one feature extraction 

scheme is used. 

 

We report results of our investigation into which 

method for model generation offers more improve-

ment on the accuracy achieved by a single classifier. 

Figure 2. Methods of generating multi-classifiers for ensembles. 

 

 

Figure 1. Constructing methods of two different AUSC systems using two feature extraction schemes (FFT and 

DWT) and two learning algorithms (SVM and ANN): The system Type I is constructed by combining deci-

sions from multi-classifiers and the system Type II is by choosing the best classifiers among multi-classifiers. 
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We generate heterogeneous and homogeneous mod-

els and combine the outputs of those multi-classifiers 

by three widely known combining techniques; 

Bayesian Combination (BC), Distribution Summa-

tion (DS) and Likelihood Combination (LC). We 

also explore the effect of combining multiple models 

not only on the overall classification performance 

but also on classifying each class. The analysis on 

the investigational results obtained becomes the basis 

for the construction of an integrated multi-classifier 

model using both feature extraction schemes (FFT 

and DWT) effectively. 

 

Our presentation continues in Section 2 with a sum-

mary of our previous studies for improving classifi-

cation system for shaft test data. It also provides a 

motivation of observations for attempting ensembles 

of classifiers. Section 3 describes our empirical 

evaluation, including the description of how we gen-

erated and combined multiple models and how we 

evaluated the classification performance of each en-

semble. Section 4 analyzes the experimental result 

from various combination schemes and compares 

and discusses their performance, followed by conclu-

sions in Section 5. 

 

2.  BACKGROUND AND CHALLENGES 

 

2.1  Background Summary 

 

The problem is to discriminate efficiently the differ-

ent types of reflectors among the large volumes of 

ultrasonic shaft-test data and classify them into three 

classes; a) those that correspond to design features of 

the shaft (DF), b) those that correspond to flaws, 

cracks and other defects (CR) and c) the multiple 

reflections and mode-converted echoes (MC) of the 

two previous cases. Among these three causes of 

echoes, type DF is considered easy to distinguish 

compared to the other types. Also, in the field, 

fainted echoes caused by MC can confuse the signal 

echoes caused by CR and vice versa. Consequences 

of misclassification are catastrophic with enormous 

cost in downtime, consequential damage to associate 

equipment and potential injury to personnel [Cotter-

ill and Perceval, 2001]. 

 

Modern signal processing techniques and artificial 

intelligence tools eliminate inconsistent results pre-

sent even in classification by the same human expert. 

These approaches are integrated as automatic ultra-

sonic signal classification (AUSC) systems. An 

AUSC system preprocesses ultrasonic flaw signals 

acquired in a form of digitized data and extracts in-

formative features using digital signal-processing 

techniques. The main interest for the AUSC research 

community has been the extraction of effective sets 

of features from which classification might be per-

formed more efficiently and accurately. While it is 

hard to determine which set of features is best, it is 

important to at least identify those that make the 

process reliable and effective in the field. It is also 

important to relate some features to some under-

standing of the phenomena (in terms of its physics). 

However, the problem is that the physics are com-

plex, and the relationship between signal characteris-

tics and flaw classes is not straightforward. 

 

The FFT is a useful scheme for extracting frequency-

domain signal features [Cotterill and Perceval, 2001; 

Margrave et al, 1999]. This seems natural when deal-

ing with ultrasonic signals since the traditional repre-

sentation of these types of signals is by mathematical 

Fourier series that identify physically meaningful 

features, like frequency and phase. But recent studies 

on the ultrasonic flaw classification employ the Dis-

crete Wavelet Transform (DWT) as part of their fea-

ture extraction scheme, mainly because DWT pro-

vides effective signal compression and time-

frequency presentation [Obaidat et al, 2001; Simone 

et al, 2001]. Many researchers have compared these 

two feature extraction schemes (FFT and DWT), and 

most comparisons showed a superiority of DWT to 

FFT in discriminating the type of flaw (or its non-

existence) [Polikar et al, 1998; Redouane et al, 2000; 

Spanner et al, 2000]. The first study analyzing fea-

ture extraction in more complex ultrasonic signals 

from shafts [Lee and Estivill-Castro, 2003] also es-

tablished experimentally that DWT was a potentially 

stronger feature extraction scheme for feeding 

ANNs. However, considering the many difficulties 

inherent in the ANN learning paradigm (such as gen-

eralization control, overfitting and parameter tuning) 

we remained more conservative about DWT's pre-

dominance. Recently, a new comparative experiment 

involving SVM instead of ANN models [Lee and 

Estivill-Castro, 2004] confirmed the DWT as indeed 

the superior feature extraction scheme in the classifi-

cation of echoes from ultrasonic signals in long 

shafts, because the statistical properties of SVM in-

dicate robustness in its construction, especially when 

a limited number of training examples are available. 

 

2.2 Open Issues 

 

We observed differences for specific classes of ech-

oes when reflecting upon the classification result of 

both schemes (FFT and DWT) analyzed in [Lee and 

Estivill-Castro, 2004]. A classifier constructed using 

one scheme of feature extraction showed more accu-

racy in classifying a certain type of echo than in the 

case of using another scheme, but the roles are re-

versed for other echoes. Thus, FFT, in spite of lower 

accuracy for overall classification, could comple-

ment the decisions based on DWT features. 

 

Combining classifiers improves the accuracy 

achieved by a single classifier when different classi-
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fiers implicitly represent different useful aspects of 

the input data. Techniques for combining multiple 

classifiers must solve two issues: 1) how to generate 

multiple models and 2) how to combine the predic-

tion of the multiple models to produce an overall 

classification. Applying a single algorithm repeatedly 

to different versions of the training data (homogene-

ous approach), or applying different learning algo-

rithms to the same data (heterogeneous approach) 

creates a set of learned models. These two different 

approaches are summarized in Figure 2. There are 

two ways of manipulating different versions of the 

training data; either different subset of the training 

data or different set of input features. The various 

techniques for combining the predictions obtained 

from the multiple classifiers are largely categorized 

into voting (uniform or weighted), stacking methods 

and cascading methods. 

 

The diversity of techniques for generating and com-

bining models raises the issue of which generation-

combination method to choose for constructing the 

most effective and reliable multi-model systems for 

our application domain. The theory suggests generat-

ing a set of models that are diverse in the sense that 

they make errors in different ways. We wish to in-

vestigate the classification performance by multi-

models. Is better performance obtained when partici-

pant are trained by FFT features or DWT features? 

We also generate multiple models using different 

learning algorithms (SVM and ANN), and compare 

which combination paradigm is more suitable. We 

analyze the type of errors on each combination mod-

els in order to gain insight into appropriate combin-

ing strategies. 

 

3.  EXPERIMENTS 

 

Figure 3. Overall procedure of our experiment. 
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The whole experimental setting consists of two steps 

as following:  

 

1. We first map shaft inspection data into feature 

domains using two feature extraction schemes 

(FFT and DWT) and, using 5-folds cross-

validation learning. We train them through SVM 

models and ANN models and record their per-

formance as single models. 

2. We combine single models across two dimen-

sions: 1) combining the decisions of FFT model 

and DWT model trained by a single learning 

paradigm and 2) combining the decisions of 

SVM model and ANN model with same feature 

scheme. We apply 3 combining methods for 

each combination. We compared the classifica-

tion accuracy results from the three combined 

models with the result using a single model  

 

Figure 3 graphically summarizes the overall proce-

dure of our experiment and the details are presented 

in following subsections. 

 

3.1  Generation of multiple classifiers 

 

We acquired A-scan signals from eight various 

shafts, ranging between 100mm to 1300mm in length 

using with the probe's frequency set to 2 MHz. Five 

of these shafts contained cracks and the rest were 

clean shafts. Mode-converted echoes were captured 

from these shafts, except for one 100mm calibration 

block that did not produce mode-converted echoes 

because of its geometry
1
. We extracted more than 

1000 signal segments of interest from the whole ul-

trasonic A-scan signals. We also recorded whether 

the echoes were caused by Crack (CR), Mode-

Conversion (MC) or Design Features (DF). As men-

tioned in Section 2.1, one of the issues of concern in 

ultrasonic shaft inspection is that the signal echoes 

caused by CR can be confused by fainted echoes 

caused by MC and vice versa. For our experiment, 

we chose each 60 signals randomly from CR data 

and MC data among the sample pool. Thus, in total a 

data set with 120 time-domain signals became the 

basis for further processing. We used SHAFTEST 
2
 as a tool to capture these A-scans and build up an 

initial database of required echoes. 

 

In order to apply a consistent way of signal segmen-

tation, which is necessary for suppressing time-

                                                           
1

 For this size shaft (75mm diameter × 100mm 

length), there is no geometric possibility for the 

shear waves to reflect and convert back to compres-

sion waves before they are simply absorbed, because 

the shear waves are generated at 33°. 

 
2
 It is a trade mark of CCI Pope.  

variance problems with DWT, we used a systemati-

cal echo capturing method with zero padding (SZ) 

[Lee and Estivill-Castro, 2003]. Using this gating 

method, we capture the 768 values of long time-

domain vectors, and downsampled them into 128 

values for input into the FFT. We concatenate the 

sequences of magnitude components and phase com-

ponents (FFT coefficients) into a 128 dimensional 

pattern vector for classification. In parallel, we com-

pressed the 768 values representing the DWT coeffi-

cients into 128 samples by discarding the last 128 

coefficients (they are supposed not to contain much 

information but mainly noise). We store the 128 long 

vectors of DWT coefficients as the DWT feature set. 

For our experiment, we applied Daubechies wavelets 

[Daubechies, 1988] for filtering. 

 

Also, we consider 4 other different schemes for the 

selection of the signal's region of interest; namely, 

Central Peak positioning (CP), Main Energy captur-

ing (ME) Random Positioning (RA) and Systemati-

cal echo capturing method with the preservation of 

Original neighboring grass (SO). The classifiers 

trained by DWT data using these four methods 

showed weaker performance compared to the DWT-

based classifier using SZ [Lee and Estivill-Castro, 

2003]. Despite their comparative weakness, we in-

cluded these weak classifiers as members of multi-

classifiers. 

 

We used fully connected feed-forward neural net-

works with 128 input nodes, two hidden layers with 

64 nodes and 16 nodes and an output layer with 2 

nodes for classifying the shaft signals into cracks 

(CR) or mode-converted echoes (MO). The selection 

of these network parameters are based on the ex-

perimental result of previous study [Cotterill and 

Perceval, 2001]
3

. We trained using the back-

propagation algorithm in batch mode and the topo-

logical order as the update mode of the networks. 

The learning rate was 0.2 and the Mean Square Error 

limit was 0.01 for stopping the training process. The 

epoch limit was 200,000 for those occasional cases 

where training failed to converge. The input samples 

were randomly divided up into 5 sets. In turn, we use 

4 of these to train the network, and the remaining set 

to validate the network. This was repeated with all 

                                                           
3
 The selection of parameters of ANNs or the selec-

tion of kernel of SVM used in this experiment is 

based on several previous studies [Lee and Estivill-

Castro, 2004; Lee and Estivill-Castro, 2005]. These 

parameters or kernel were employed for comparing a 

SVM-based classifier with an ANN-based classifier 

in order to identify which single classifier system is 

better for ultrasonic signal classification for shaft 

tests. These previous experiments provide a motiva-

tion to this paper. 
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five possible combinations and furthermore, the 

process was repeated 5 times to get the diversity of 

the networks training ability by assigning 5 different 

initial weights to the network. As the result of this 

process, we produce 150 ANN models trained by six 

different feature sets; one FFT feature set and five 

DWT feature sets which were preprocessed using 

five different schemes (RA, CP, SO, SZ and ME). 

 

For SVM classifiers, we employed RBF
3
 kernels 

because they provide nonlinear mapping, require 

comparatively small numbers of hyper parameters 

and offer less numerical difficulties.
 
RBF requires a 

penalty parameter C and kernel parameter γ. We 

used a grid-searching algorithm [Hsu et al., 2003] 

where pairs of C and γ are tried and the one with the 

best 10-fold-cross-validation accuracy is picked. The 

result of the grid searching was the values 4, 16, 1, 2, 

1 and 8 for C corresponding to the six feature sets 

FFT, DWT-CP, DWT-ME, DWT-RA, DWT-SO and 

DWT-SZ. The respective γ values are 1/32, 1/32, 

1/32, 1/8, 1/8 and 1/32. Again, we used 5-fold cross-

validation test on six SVM models, which are trained 

by six feature sets. Thus, we manipulated 30 individ-

ual SVM classifiers. 

 

3.2  Combination of multiple classifiers 

 

The purpose of our experiment is to empirically in-

vestigate what combination is most fruitful. Thus, we 

investigate the impact on classification performance 

from combinations of multiple classifiers trained by 

different feature schemes or different learning para-

digms. We explore three combining methods namely, 

Bayesian Combination (BC) [Suen and Lam, 2000; 

Xu et al, 1992], Distribution summation (DS) [Clark 

and Boswell, 1991] and Likelihood Combination 

(LC) [Ali and Pazzani, 1996]. 

 

In a Bayesian combination method, weights are es-

 

 
Table 1. Comparison of the combined models performance. C(A, B) indicates a combined classifier of two individ-

ual classifiers model A and model B. e(A) indicates the classification error rate of a classifier model A:  

(1) e(C(A,B)) - e(A) for overall (2) e(C(A,B)) - e(A) for classifying CR  (3) e(C(A,B)) - e(A) for classifying MO 

(4) e(C(A,B)) - e(B) for overall (5) e(C(A,B)) - e(B) for classifying CR (6) e(C(A,B)) - e(B) for classifying MO 
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tablished proportional to each individual classifier's 

past performance that are computed by its posterior 

probability using Bayes' theorem. In the Distribution 

summation method, distributions with each individ-

ual model are presented as a vector that records how 

many training data are correctly classified for each 

class. These vectors of multiple models are com-

bined using vectorial addition for making the com-

bined decision. The Likelihood combination method 

is a weighted combination in which the Naive Bayes 

Algorithm is applied to learn weights for classifiers. 

 

We combine the outputs of two individual models 

under two streams; the first stream is to combine 

FFT models and DWT models trained by one same 

learning algorithm (ANN or SVM). We produced 

one FFT (data-set) type classifier and five different 

DWT (data sets) type classifiers. Thus, there are five 

FFT-DWT combinations. Learning with SVM or 

with ANN from the feature-combination results in 10 

ensembles. These are the first two rows in Table 1 

and Figure 4. The second stream is to combine one 

SVM model with one ANN model trained by one 

same feature set (FFT or DWT). Thus, we get 6 en-

sembles corresponding to the third row in Table 1 

and Figure 4. All the combinations are carried out by 

three different combining methods (the 3 columns 

within each major column in Table 1 and Figure 4 ). 

The classification accuracy for each class is also 

recorded separately from the overall accuracy. 

 

4.  RESULTS AND ANALYSIS 

 

In order to investigate if the combined model per-

forms more accurately in classifying input data than 

a single model does, we compared the decision error 

rate of the combined model with the decision error 

rate of each individual participant model. Table 1 

shows the comparison of the decision error rate be-

tween combined models and single classifier models 

Figure 4. Bar-charts for the comparison of the combined models performance. C(A, B) indicates a combined 

classifier of two individual classifiers model A and model B. e(A) indicates the classification error rate of a 

classifier model A. 
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by calculating the difference of both error rates. All 

figures presented in Table 1 is average of result val-

ues from 5-fold cross-validation tests. Figure 4 

graphically presents this comparison result, thus dis-

plays the amount of improvement in the classifica-

tion performance in a form of bar charts. Bar charts 

where the combination is an improvement point 

downwards while if a single classifier remains better, 

the bar chart points upwards. We also computed a 

value φ e that indicates the "fraction of correlated 

errors" [Ali and Pazzani, 1996] and is also listed in 

Table 1 and Figure 4. The value of φ e is generally 

used to measure the degree to which the errors made 

by models of the ensemble are correlated. 

 

The following points are noteworthy. 

 

• Combined models show better performance 

than single model in terms of the classification 

accuracy for the whole test data set across 

schemes for generating or combining multi-

classifiers (refer that most bars in Figure 4 point 

downwards). 

• Combining two classifiers trained by different 

feature sets become more advantageous when 

we use SVM as a learning algorithm than using 

ANN (refer to top 2 rows of bar-charts in Figure 

4). 

• Though the overall accuracy of combined mod-

els is higher than the accuracy of single models 

across most types of combination, their per-

formance in classifying each class data (MO 

and CR) is diverse. Especially, most FFT and 

DWT ensembles trained by ANN perform 

worse than single model in classifying CR data; 

whilst corresponding combined models trained 

by SVM perform reliably on both class except 

for one combination (the FFT and DWT-CP en-

semble). 

• Amongst the five types of DWT data combined 

with FFT data, DWT-SZ shows most reliability 

in classifying both classes regardless of learning 

paradigm. This implies that different echo gat-

ing preprocessing for extracting DWT features 

plays a role in making the DWT feature-sets. 

We suspect there are some implicit differences 

in DWT. 

• The performance of the heterogeneously com-

bined classifiers is different depending on 

which feature sets were used to train them. 

• The value of φ e is related with the amount of 

error reduction made by combining multi-

classifiers. As shown in Table 1 or Figure 4, the 

value of φ e seems to be much relevant to the 

overall error reduction rate. It seems not to have 

much relevance with the error reduction for 

each class data. 

• The most suitable combination structure may 

depend on the interest of some particular class. 

For example, if accuracy for the CR class is the 

issue, then the SVM with DWT (single classi-

fier) is not surpassed by the combination, al-

though the combination does better overall the 

classes. 

 

5.  CONCLUSION 

 

We have explored the combining of classifiers along 

the dimension of feature extraction mechanism, 

along the dimension of combination methods and 

along the dimension of types of classifiers. 

 

This experimental result suggests guidelines for de-

signing an integrated multi-classifier system for shaft 

test data by the way of selectively employing the 

combining structure used in this experiment. 

Namely, combination in general improves the accu-

racy, and combining features has the potential for 

improvement. However, the most productive combi-

nation that offers the most improvement is usually a 

combination of ANN and SVM from DWT as the 

building feature. 

 

The work presented in this paper can be continued in 

the following directions in the future. 

 

• For the experimental comparison in this paper, 

we applied three generally known combining 

methods. We need to apply other methods such 

as stacking for combining multi-classifiers in 

order to extend our work. 

• As mentioned before, we compared the classifi-

cation performance of multi-classifiers based on 

two learning algorithms ANN and SVM, as the 

work on this paper is derived and motivated by 

previous studies [Lee and Estivill-Castro, 2003; 

Lee and Estivill-Castro, 2004; Lee and Estivill-

Castro, 2005] in a single-classifier scenario with 

same industrial application. However, as a fu-

ture work, we plan to apply various learning al-

gorithms for generating multi-classifiers. 

• We also plan to integrate other ultrasonic signal 

features not limited on FFT or DWT features 

for developing a more advanced hybrid ultra-

sonic signal classification system.  
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