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Abstract: In this paper we study the performance of parallel job scheduling in a distributed system. A special 
type of scheduling called gang scheduling is considered. In gang scheduling jobs consist of a number of interact-
ing tasks, which are scheduled to run simultaneously on distinct processors. Two gang scheduling policies are 
used to schedule parallel jobs for two different types of job parallelism. Also, we present the average perform-
ance of all jobs as well as the relative performance of small and large gangs. We examine various workloads 
using simulation techniques. The results show that the policy, which gives priority to large gangs performs better 
than the one that does not take job characteristics into account while making the ordering decision.  
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1 INTRODUCTION 
 
Distributed systems have drawn considerable atten-
tion over many years. They consist of several, 
loosely interconnected processors, where jobs to be 
processed are in some way apportioned among the 
processors and various techniques are used to coor-
dinate processing. However, it is not clear to how 
efficiently schedule parallel jobs. To determine this, 
it is critical to properly assign the tasks to processors 
and then schedule execution on distributed proces-
sors. Good scheduling policies can maximize system 
and individual application performance and avoid 
unnecessary delays. 
 
In this study jobs consist of parallel tasks that are 
scheduled to execute concurrently on a set of proces-
sors. The parallel tasks need to start essentially at the 
same time, co-ordinate their executions and compute 
at the same pace. This type of resource management 
is called “gang scheduling” or “co-scheduling”. It 
allows tasks to interact efficiently by using busy 
waiting, without the risk of waiting for a task that is 
not currently running.  
 
Because gang scheduling demands that no task exe-
cute unless all other gang member tasks execute, 
some processors may remain idle even when there 
are tasks waiting to be run. With gang scheduling, at 
any time there is a one-to-one mapping between 
tasks and processors. Although the total number of 
tasks in the system may be larger than the number of 
processors, no gang contains more tasks than it does 
processors. We assume that all the tasks within the 
same gang execute for the same amount of time, i.e. 
the computational load is balanced between them. 
 

Gang scheduling in distributed systems and multi-
programmed parallel systems has been studied by 
many authors, such as [Aida, 2000], [Feitelson and 
Rudolph, 1996], [Feitelson and Jette, 1997], 
[Frachtenberg et al, 2005], [Karatza, 1999a], 
[Karatza, 1999b], [Karatza, 2001a], [Karatza, 
2001b], [Karatza, 2002], [Karatza, 2003], [Karatza 
and Hilzer, 2004], [Sobalvarro and Weihl, 1995], 
[Squillante et al, 1996], [Wang et al, 1997], [Wise-
man and Feitelson, 2003], [Zhang et al, 2003a] and 
[Zhang et al, 2003b].  
 
Only distributed systems are considered in this pa-
per. Simulation models are used to answer perform-
ance questions about the performance of scheduling 
policies in cases of different job parallelism. The 
design choices considered include different ways to 
schedule gangs. We compare the performance of two 
known gang-scheduling policies for different work-
load models each of which has certain characteristics 
related to the number of processors requested by a 
job and to the system load.  
 
Mechanisms how job size characteristics affect job 
scheduling performance also are investigated in 
[Aida, 2000 and Karatza 2001b]. However, in these 
papers a parallel system with a single waiting queue 
is studied, while in our study we consider a distrib-
uted system where each processor is equipped with 
its own queue. Furthermore, we address issues re-
lated to the performance of different job classes 
(small and large gangs) and we consider fairness of 
job classes. To our knowledge, the analysis of gang 
scheduling in queueing network models of distrib-
uted systems operated under our workload models 
does not appear elsewhere in the research literature. 
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The structure of this paper is as follows. Section 2.1 
introduces system and workload models, section 2.2 
describes the scheduling policies and section 2.3 
presents the metrics used to assess the performance 
of the scheduling policies. The model implementa-
tion and its input parameters are described in section 
3.1, while the simulation results are both presented 
and analysed in section 3.2. Finally, section 4 sum-
marizes the paper and provides recommendations for 
further research. 
 
 
2 MODEL AND METHODOLOGY 
2.1 System and Workload Models 
 
In our model we consider an open queuing network 
model consisting of P = 32 distributed homogeneous 
and independent processors each served by its own 
queue (Figure 1). They are interconnected by a high-
speed network with negligible communication de-
lays. Processors Px1, Px2, .. Pxy are allocated to a par-
allel job x, which has y parallel tasks. 
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Figure 1. The queuing network model, where λ is the 
mean job inter-arrival time. 

 
Jobs are gangs i.e. they consist of tasks, which exe-
cute concurrently on processor partitions, where 
each task starts at the same time and computes at the 
same pace. At any time, there is a one-to-one map-
ping between tasks and processors. We assume that 
all tasks within the same gang execute for the same 
amount of time. Each job begins execution only 
when a sufficient number of idle processors are 
available to meet its needs. 
 
We consider that every job x consists of t(x) tasks 
where 1 ≤ t(x) ≤ P/j. Two cases for j are considered, 
j = 1, 2. Therefore, in one case we bound the number 
of tasks per job by 32, while in the other case the 
number of tasks per job is bounded by 16.  
 
The number of tasks in a job is the job’s degree of 
parallelism. If p(x) represents the number of proces-
sors required by job x, then the following relation-
ship holds: 

 

 1 ≤ t(x) = p(x) ≤ P/j 
 
The number of tasks in job (gang) x is called the 
“size” of job x. We call a job “small” (“large”) if it 
requires a small (large) number of processors. In our 
model, jobs that consist of y tasks where 1 ≤ y ≤ 4 
are characterized as small, while they are character-
ized as large when 5 ≤ y ≤ P/j, for j = 1, 2.   
 
Routing policy of gang tasks. Processor queues are 
sorted into decreasing queue length order and then a 
variation of the “join the shortest queue” policy is 
applied. That is, the t(x) tasks that belong to a gang x 
are assigned to the shortest t(x) of the P queues, 
every task to a different processor queue.  
 
Tasks in processor queues are examined in the order 
according to the scheduling policy. A job x starts to 
execute only if all p(x) processors assigned to it are 
available. Otherwise, all job x tasks wait in their as-
signed queues. When a job finishes execution, all 
processors assigned to it are released. The number of 
jobs that can be processed in parallel depends on the 
following: (i) Job size and (ii) Scheduling policy that 
is employed.  
 
The technique used to evaluate the performance of 
the scheduling disciplines is experimentation using a 
synthetic workload simulation. 
 
The workload considered here is characterized by 
three parameters: (i) The distribution of job inter-
arrival time, (ii) The distribution of gang sizes and 
(iii) The distribution of task service demand. 
 
We assume that there is no correlation between the 
different parameters. For example, a gang with a 
small number of tasks may have a long execution 
time. 
 
2.1.1 Distribution of job inter-arrival times 
 
We consider that job inter-arrival times are exponen-
tial random variables with a mean of 1/λ.   
 
2.1.2 Distribution of gang size 
 
We assume that the number of tasks of jobs is uni-
formly distributed in the range of [1..P/j], where j = 
1, 2. Therefore, the mean number of tasks per job is 
equal to the η = (1+P/j)/2. 
 
2.1.3  Service time distribution 
 
Service demands of gang tasks are exponentially 
distributed with a mean of 1/µ.   
 
2.2  Scheduling Strategies 
 



H.KARATZA: SCHEDULING  GANGS  IN  A  DISTRIBUTED  SYSTEM 

 17

We assume that the scheduler has perfect informa-
tion when making decisions, i.e. it knows the exact 
number of processors required by each job. We now 
describe the scheduling strategies employed. We 
assume that the scheduling overhead is negligible.  
 
Adapted First-Come-First-Served (AFCFS). This 
method attempts to schedule a job whenever proces-
sors assigned to its tasks are available. When there 
are not enough processors available for a large job 
whose tasks are waiting in the front of the queues, 
AFCFS policy schedules smaller jobs whose tasks 
are behind the tasks of the large job. One major prob-
lem with this scheduling policy is that it tends to 
favor those jobs requesting a smaller number of 
processors at the expense of larger jobs. Thus the 
response time of large gangs increases. 
 
Largest-Gang-First-Served (LGFS). With this pol-
icy tasks are placed in increasing job size order in 
processor queues (tasks that belong to larger gangs 
are placed at the head of queues). All tasks in the 
queues are searched in relative order and the first 
jobs whose assigned processors are available only 
then begin execution. This method tends to improve 
the performance of large, highly parallel gangs at the 
expense of smaller gangs, but in many computing 
environments this discrimination is acceptable, if not 
desirable. For example, supercomputer centers often 
run large, highly parallel jobs that cannot run else-
where. 
 
2.3 Performance Metrics 
 
Response time of a random job (gang) is the interval 
of time from the dispatching of this job tasks to 
processor queues to service completion of this job 
(time spent in processor queues plus time spent in 
service). Parameters used in later simulation compu-
tations are presented in Table 1.  

 
Table 1.  Notations 

 
P number of distributed processors 

λ mean job arrival rate 

µ mean processor service rate 

U mean processor utilization 

RT mean response time of all gangs 

RTs mean response time of small gangs 

RTl mean response time of large gangs 

MRTs  maximum RTs   

MRTl maximum RTl  
 
Overall job performance is determined by RT. Small 
and large gang performance is determined by RTs 
and RTl respectively. Maximum RTs and maximum 

RTl are used as an indication of fairness in small and 
large gangs service respectively. Internal efficiency 
is primarily represented by mean processor utiliza-
tion because it indicates the level of contention for 
the most critical system resources.  
 
 
3 SIMULATION RESULTS AND 
DISCUSSION 
3.1 Model Implementation and Input Parameters 
 
The queuing network model is simulated with dis-
crete event simulation modeling [Law and Kelton, 
1991] using the independent replication method. For 
each set of workload parameters we run 30 replica-
tions of the simulation with different seeds of ran-
dom numbers and for 32,000 served jobs in each 
replication. For every mean value, a 95% confidence 
interval is evaluated. All confidence intervals are 
less than 5% of the mean values.  
 
In the simulation experiments we defined mean 
processor service time: 1/µ = 1.  
 
With regard to mean inter-arrival time of jobs we 
considered the following two cases: 
 
(a) Gang size varies in the range of 1..32. We chose:   
 

1/λ = 0.73, 0.74, 0.75, 0.76. 
 
The value 1/λ = 0.73 is chosen as starting point for 
the experiments because the processors average 16.5 
tasks per job. When all processors are busy, an aver-
age of 1.94 jobs can be served in each unit of time. 
This implies that the arrival rate has to be less than 
1.94. So, we had to choose a λ such that it hold the 
conditions 1/λ > 1 / 1.94 = 0.516, i.e. the processors 
queues will not be saturated. However, due to gang 
scheduling there are often idle processors although 
there are tasks in the respective queues. Therefore 
the queues get very easily saturated when mean in-
ter-arrival time is close to 0.516. After experimental 
runs with various values of 1/λ we chose 0.73 as a 
the smallest mean inter-arrival time for the experi-
ments. 
 
(b) Gang size varies in the range of 1..16. In this 
case processors average 8.5 tasks per job. We chose:  
 

1/λ = 0.376, 0.381, 0.386, 0.392. 
 
The reason for choosing these values for mean-inter-
arrival time in the case b) is because in a system 
where arriving jobs consist of parallel tasks with 
mean number of tasks per job η, the expected mean 
processor utilization is:  
 

µ

ηλ

⋅

⋅
=

P
U . 
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Now, based on this formula, in order to compare the 
performance of the two scheduling policies under 
similar system load in the two different cases of 
gang size distribution, we must consider:  
 

λa * 16.5 = λb * 8.5, 
 
where λa and λb are mean arrival rates in cases a) and 
b) respectively. However in this paper parallel jobs 
are gangs. Due to different fitting of gangs to avail-
able processors in the 1..32 and 1..16 gang size cases 
we expect that the mean processor utilization will 
not be exactly the same in the corresponding λa and 
λb cases. However, it can still be considered as com-
parable. 
 
It should be noted that in this study gangs consisting 
of 1-4 tasks are characterized small. Therefore, small 
gangs are a smaller part of the total number of jobs z 
in the 1..32 case (z/8) than in the case of 1..16 (z/4). 
  
3.2 Performance Analysis 
 
Tables 2 and 3 show mean processor utilization in 
the 1..32 and 1..16 gang size distribution cases re-
spectively.  
 
 

Table 2.  U  versus 1/λ  
(1..32 gang size distribution case) 

 
1/λ AFCFS LGFS 

0.76 0.675 0.677
0.75 0.683 0.685
0.74 0.690 0.695
0.73 0.696 0.704

 
Table 3.  U  versus 1/λ  

(1..16 gang size  distribution case) 
 

1/λ AFCFS LGFS 
0.392 0.662 0.670
0.386 0.668 0.679
0.381 0.673 0.687
0.376 0.681 0.694

 
The relative difference in performance of AFCFS 
and LGFS policies is depicted in Figures 2 and 7 
(with regard to overall gangs performance) and also 
in Figures 3-6 and 8-11 (with regard to relative per-
formance of small and large gangs). 
 
Figures 2-6 correspond to the 1..32 case and Figures 
7-11 correspond to the 1..16 case. Figures 2 and 7 
show the ratio of RT versus 1/λ when LGFS is com-
pared to AFCFS. Figures 3 and 8 show the ratio RTl 
/ RTs in the AFCFS and LGFS cases. Figures 4 and 9 
present the ratio MRTl / MRTs in the AFCFS and 
LGFS cases. Figures 5 and 10 depict the ratio of RTs 

and the ratio of RTl versus 1/λ when LGFS is com-
pared to AFCFS. Figures 6 and 11 present the ratio 
of MRTs and the ratio of MRTl versus 1/λ when 
LGFS is compared to AFCFS.   
 
The results demonstrate that in both 1..32 and 1..16 
cases, utilization is slightly larger when using LGFS 
(Tables 2-3) because LGFS schedules jobs on the 
available processors more efficiently than AFCFS 
method does.   
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Figure 2. RT Ratio versus 1/λ 
(1..32 gang size distribution case) 
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Figure 3. RTl / RTs  Ratios versus 1/λ 
(1..32 gang size distribution case) 
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Figure 4. MRTl / MRTs  Ratios versus 1/λ 
(1..32 gang size distribution case) 
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Figure 5. RTs and RTl  Ratios versus 1/λ 
(1..32 gang size distribution case) 
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Figure 6. MRTs and MRTl  Ratios versus 1/λ 
(1..32 gang size distribution case) 
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Figure 7. RT Ratio versus 1/λ 
(1..16 gang size  distribution case) 
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Figure 8. RTl / RTs  Ratios versus 1/λ 
(1..16 gang size  distribution case) 
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Figure 9. MRTl / MRTs  Ratios versus 1/λ 
(1..16 gang size  distribution case) 
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Figure 10. RTs and RTl  Ratios versus 1/λ 
(1..16 gang size  distribution case) 
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Figure 11. MRTs and MRTl  Ratios versus 1/λ 
(1..16 gang size  distribution case) 

 
Regarding the mean response time of all jobs, in all 
cases the LGFS method performs better than 
AFCFS. This is shown in Figures 2 and 7, where RT 
is lower with the LGFS scheduling strategy than 
with the AFCFS. Therefore, from the two methods 
that we examine, LGFS is the best method as far as 
it concerns overall performance. This is in accor-
dance to previous research conclusions [Karatza, 
1999a]) where the method that gives priority to lar-
ger gangs performs better than the AFCFS method. 
However, in [Karatza, 1999a] a closed queueing 
network model is studied with a fixed number of 
jobs, whereas in this paper the queuing network 
model is open. 
 
In Figure 2 we observe that in the 1..32 case the RT 
ratio slightly decreases with increasing load. There-
fore the superiority of the LGFS over AFCFS in-
creases with increasing load. This is because it is 
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more probable at high loads than at low loads large 
gangs to be blocked when the AFCS policy is em-
ployed. Therefore the advantages of the LGFS 
method in the 1..32 case are better exploited at high 
loads.  
 
In Figure 7 it is evident that in the 1..16 case the 
response times in the two gang scheduling policies 
cases differ to smaller degree than in the 1-32 case. 
This is because the variability in gangs size is 
smaller in this case than in the case of 1..32. The 
large gangs in the 1..16 case have a maximum size 
of 16 tasks. Therefore, when the AFCFS method is 
used, large gangs in this gang size distribution case 
can be scheduled on idle processors easier than the 
large gangs of the 1..32 case. This is the reason that 
the superiority of the LGFS method over AFCFS is 
less significant in the 1..16 case than in the case of 
1..32.  
 
In Figure 7 it is also evident that in the 1..16 case RT 
ratio slightly increases with increasing load. There-
fore the two scheduling methods tend to perform 
slightly closer with increasing load. Further to the 
comments of the previous paragraph, this is because, 
larger the load, larger is the possibility for the 
AFCFS method to find a larger number of suitable 
jobs to fit on the available processors. 
 
In Figures 3 and 8 it is shown that in all cases large 
gangs have larger mean response time than small 
gangs. This is because small gangs can easier find 
enough available processors to serve them than large 
gangs can. Comparing the RTl / RTs ratio in the two 
scheduling policies cases we observe that the small-
est difference in performance between large and 
small gangs is in the LGFS case. This is because 
with the LGFS method large gangs are given priority 
over small gangs. Therefore the difference in the 
mean response time of large and small gangs is 
smaller in the LGFS case than in the case of AFCFS.  
 
Also, in Figures 3 and 8 it is shown that in all cases 
the difference in performance between the two job 
classes increases with increasing load. This is due to 
the fact that there are fewer small gangs to overcome 
large gangs at light loads than at heavy loads. There-
fore, the LGFS scheduling policy provides an advan-
tage for fairer service to large gangs as compared to 
the situations where AFCFS is used. Thus, LGFS 
can be exploited better for high loads than for low 
ones. The RTl / RTs ratios are smaller in the 1..32 
case than in the case of 1..16.  
 
The results shown in Figures 4 and 9 demonstrate   
that observations similar to those that hold for the 
RTl / RTs ratios also hold for the ratios MRTl / MRTs. 
That is, the maximum response time of large gangs 
is larger than the maximum response time of small 
gangs. Furthermore, the difference in the two gang 

classes maximum response times is smaller in the 
LGFS case. The RTl / RTs ratios increase with in-
creasing load and they are larger in the 1..16 case 
than in the case of 1..32.     
 
As it was expected, the results in Figures 5 and 10 
show that the mean response time of large gangs in 
the LGFS case is lower than in the AFCFS case. 
Furthermore, in the 1..16 case the small gangs per-
form worst in the LGFS case than in the AFCFS 
case. However, in the 1..32 case the short gangs per-
form better in the LGFS case than in the case of 
AFCFS. 
  
There is the following explanation why small gangs 
although they are given lower priority than large 
gangs with the LGFS method, in the 1..32 case they 
have shorter mean response time with this method 
than with the AFCFS: The variability in gang size is 
larger in the 1..32 case than in the case of 1..16. In 
the former case, when a very large gang fits in the 
available processors, then the remaining processors 
can fit easier to small gangs than to medium sized 
gangs. However, in the 1..16 case, the large gangs 
have a maximum length of 16. Therefore, when the 
LGFS method is used, it is possible for medium 
sized gangs to fit in the available processors and 
consequently small gangs have to delay in their 
queues.   
 
It should be noted though that in both cases of gang 
size distribution the extent of large gang perform-
ance improvement with the LGFS policy is much 
more significant than the performance improvement 
(1..32 case) or the performance deterioration (1..16 
case) of small gangs. For this reason there is an 
overall performance improvement with the LGFS 
policy. 
  
In Figures 6 and 11 it is shown that small gangs have 
higher MRT in the LGFS case than in the case of 
AFCFS. In the 1..16 case MRT of large gangs is 
smaller in the LGFS case than in the case of AFCFS. 
However, in the 1..32 case the MRT of large gangs 
does not differ significantly in the two scheduling 
policies cases. This is due to the fact that in this 
gang size distribution case, large gangs have a 
maximum size of 32, which is equal to the number 
of processors. Therefore, when a gang of a very 
large size arrives to the system when the processors 
are serving at least two other gangs, it is possible for 
this gang to experience long delay in the queues with 
either scheduling method. 
 

 
4 CONCLUSIONS AND FURTHER 
RESEARCH 
 
This paper examines the performance of two gang 
scheduling policies in a distributed system. The av-
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erage performance of all gangs as well as the relative 
performance of small and large gangs are studied. 
Two different cases of job parallelism are examined. 
Various workload conditions are considered using 
simulation techniques.  
 
The objective in this paper is to identify conditions 
that produce good overall performance in terms of 
mean response time of all jobs while preserving 
fairness of small and large gangs service. 
 
The simulation results reveal that from the two 
scheduling methods that we examine the LGFS 
method provides the best overall performance. Fur-
thermore, LGFS provides fairer service to individual 
job classes. This is achieved by preventing small 
gangs to arbitrarily overtake large gangs. Thus, the 
difference in performance of the two gang classes is 
smaller in the LGFS case than in the case of AFCFS. 
Also the results show that the overall performance 
and the relative performance of the two gang classes 
depend on the workload. 
 
As a future research we plan to examine cases where 
along with gangs there are also parallel jobs, which 
consist of independent tasks, which can execute on 
any processor and in any order. Also, we plan to 
examine gang task service demands with large vari-
ability.   
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