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Abstract: A real application of simulation in the design of public transportation facilities is presented. The 
flow of passengers is modelled using discrete-event simulation, which facilitates the abstraction of the 
emptying and filling of the passengers into the buses, rather than the more usual continuous simulation for 
crowd movement. The decision variables include not only the physical layout of the queues but also some 
tactical variables that will help in future negotiations with labour unions and owners of the lines. A regression 
analysis has been performed using the simulation results to study the relationship between the maximum 
queue length and the input/output ratio in the gates. 
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1. INTRODUCTION 
 
Among the design activities for one of the future 
underground stations in a large city of Spain, it is 
necessary to study the capacity of the waiting area so 
that the formation of waiting queues does not 
interfere with the typical movement of the users of 
the facilities. While the design of the building and 
the individual platforms is being performed from a 
static, architectural point of view, there is also a 
need to validate the design from a dynamic point of 
view. 
 
Within the Technical Specifications Document, the 
development of mathematical models to perform the 
validation stage is required. Specifically these model 
should estimate the maximum length of the waiting 
queues at the gates. The input values come from 
historical data about demand, frequency, bus 
capacities and relevant decisions on the management 
of the line. 
 
The system that is the focus of this article is a bus 
station. The station belongs to the Administration 
but the bus lines are privately owned. There exists 
the need that both parties negotiate along with the 
drivers of the buses to reach an agreement on how 
the station is to be run. Buses interarrival time, 
vehicle sizes, gates opening times are key decision 
variables, which have an important impact on the 
size of the waiting queues, and therefore on the size 
of the station building. 
 
The article starts with a description of the real 
system as designed by the architects, including the 

objectives and the data that has been collected from 
the public administration. A theoretical study of the 
maximum queue length follows. The model is then 
described, which includes an interface developed in 
MsExcel. There is a separate section for the 
definition and analysis of the simulation experiment. 
The analysis of the negotiation process and the 
development of a quantitative negotiation tool is 
then detailed. Finally, an allocation of bus lines to 
gates is proposed. 
 
 
2. THE SYSTEM 
 
2.1 Description 
 
Let us start with a brief description of the facilities 
(figure 1) and the flow of its users. 
 

EXIT

ENTRANCE

 
 

Figure 1: Station layout 
 
The bus station consists of a platform including 16 
gates (depicted as a rectangle) with the possibility of 
parking 12-metre or 15-metre buses. The direction 
of movement of the vehicles is clockwise with the 
entrance and exit on the right hand side of the 
premises. 
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In front of each of the gates, queues of users form in 
a zigzag shape (figure 2). The layout of the queues 
has this shape for three main reasons. First, the 
movement along the platform is facilitated since the 
queue should never reach the centre of the platform, 
thus blocking the movement.  
 
Second, the psychological factor/perception is 
improved: the rate of movement of the queue 
appears quicker than the actual rate to the people in 
the queue because users are moving in opposite 
directions.  
 
Third, this disposition also helps the flow of 
passengers moving in and out of the buses, since 
room is specifically dedicated to the output flows. 
 

 
 

Figure 2: Queues at the gates 
 
To access the platform, the passengers have to use 
either a mechanical stair or a normal one, which are 
located in the centre of the platform to reduce the 
distance between the stairs and the gates. The same 
set of stairs is used to leave the premises. 
 
2.2 Output Variables and Thresholds 
 
The main objective is to measure the length of the 
queues. The aim is to prevent the queue from 
growing so long as to affect the flow in the centre of 
the platform. That is, once a passenger gets to the 
bottom of the stairways, it should have a free path 
towards his/her departing gate. 
 
The maximum number of waiting passengers is set 
to 56, which is the capacity of a zigzag queue with 
four rows of 14 passengers each. This number is also 
similar to the capacity of the small-size buses that 
are often used. This queue size also agrees with the 
area in square meters of the designed platform. 
 
The degree to which this objective is met is going to 
be monitored by measuring the length of the queue 
every thirty seconds and plotting the corresponding 
values in a timeseries. There will be a separate plot 
for each of the gates. 
 
Another objective is to monitor the time that the 
passengers spend in the queue. However, this 

variable depends on the buses interarrival times, 
which are not design variables but, rather, input data. 
As long as a passenger is able to catch the next 
arriving bus, there should be no complaints. 
 
2.3 Available Data 
 
2.3.1 Bus capacity 
 
The 12-meter buses have a capacity of 55 and the 
15-meter ones might hold up to 71 passengers, if 
they all are seated. Some 15-meter buses, the so-
called mixed buses, might contain 134 users (46 
seated and 88 standing). 
 
2.3.2 Demand 
 
The prediction for the next two decades is that 
thirteen bus lines will have a stop at this 
underground station, even if there is room for 17 
gates. 
 
Figure 3 shows the data included in the Technical 
Specifications Document. Each row or record 
corresponds to one of the thirteen bus lines. An 
explanation of the different columns follows: 
 

• PHI: PeakHourInterval. It is the time in 
minutes between consecutive departures 

• PeakHour: hour of the day at which the 
peak time occurs 

• Buses: number of departures at peak time 

• DailyDemand (arrivals + departures): total 
volume of users of the facilities 

• DailyDepartures 

• DailyArrivals 

• HourlyDemand: daily data obtained from 
on-site sampling: 

o Arrivals: peak rate 
o Departures: peak rate 
o Capacity: maximum cumulative 

number of arrivals and departures. 
 
From these hourly and daily rates, the variable 
PeakPercentage is calculated. This variable is the 
percentage of DailyDepartures at the PeakHour, and 
it is used to calculate the HourlyRates for those lines 
for which only daily rates are available.  
 
As this percentage varies between 6.72% for line IV 
and 11.4% for line IX, this limit is taken for safe 
calculations (it is also the maximum likelihood 
estimator).
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Peak Hour
Interval Peak Hour Buses Daily Demand Daily Departures Daily Arrivals Peak Percentage

PHI Departs DD DA Arrivals Departures Capacity

1 12 10 5 3068 2609 968
2 6 8 10 6186 2284 1827
3 20 7 3 1365 1248 1075 131 160 0.1050
4 20 14 3 1849 1324 77 89 113 0.0672
5 15 14 4 2843 1501 1269 149 162 212 0.1079
6 30 15 2 1035 727 102 71 115 0.0977
7 30 2 736 441.6
8 30 2 934 560.4
9 12 15 5 6295 2009 1638 245 229 275 0.1140
10 20 3 1888 260 497
11 12 14 5 7947 2199 1908 264 223 300 0.1014
12 30 2 3519 2111.4
13 15 4 3529 2117.4

Hourly Demand

 
 

Figure 3: Input data 
 
2.3.3 Operation times 
 
This section presents the additional data which is 
needed in the simulation model. The corresponding 
values have been provided by the management of 
the facilities: 
 

• GateOpening: amount of time prior to 
departure in which the gates open for the 
users to catch the bus. 

• BusSpeed = 0.004 minutes/meter (15 
km/hr) 

• PassengerVelocity = 0.020 minutes/meter 
(3 km/hr) 

• FillRate = 20 pax/min 
• EmptyRate = 50 pax/min 

 
 
3. THEORETICAL ANALYSIS OF QUEUES 
AT THE STATION 
 

3.1 Behaviour of Queues 
 
The theoretical evolution of the length of the queues 
at the bus station is shown in a timeseries diagram 
(figure 4). Whenever the door is opened, the length 
of the queue diminishes. When the bus departs, the 
length of the queue rises again. The problem with 
busy bus lines is that at some point, when the bus 
departs, there are still people waiting in the queue 
for the next scheduled bus to arrive. 
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Figure 4: Maximum queue length over time 
 

For this same reason, the difference in the length of 
the waiting queues when the capacities of the buses 
are changed is not significant, but it really is crucial 
when there are passengers who cannot catch the next 
departing bus. Even the large buses cannot hold then 
the total amount of waiting users. 
 
3.2 Definition of IO_Ratio 
 
The previously defined behaviour of queues might 
be theoretically analyzed via models, which quantify 
the performance of a service station. They are 
analytical models that, for specific combinations of 
input flow, service times, number of servers and 
queue disciplines, estimate the queue lengths and 
times in the system [Taha, 1987]. The requisite, 
however, is that the capacity installed must be 
enough to handle all the incoming flow, that is, the 
input flow must be smaller than the output capacity. 
 
The Input/Output Ratio, IO_Ratio, might be 
accordingly defined as the ratio between the 
incoming flow of passengers joining the queuing 
system (DEMAND) and their rate of service 
(THROUGHPUT), in total numbers per unit time: 
 
 IO_Ratiop = DEMANDp / THROUGHPUT 
 
The demand for the peak period might be defined as: 
 
 DEMANDp = TD*PDp  (1) 
 
where TD stands for the total demand for the time 
horizon and PDp for the percentage of TD that 
arrives within the p period. 
 
Let us define throughput as the number of customers 
that a single station can serve per unit time, which 
might be calculated as follows: 
 
THROUGHPUT = min(CAP,SR*min(CT,PT))*Nbuses       (2) 
 
where CAP stands for the capacity of the station in 
number of passengers, SR is defined as the service 
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rate, CT is the length of the period and Nbuses for 
the number of buses per period. 
 
In other words, during each active period, the 
number of units that are served is the minimum of 
the total capacity of the service station and the 
maximum number of units individually served. 
 
Therefore, using equations (1) and (2), the ratio may 
be calculated as: 
 

NAP *IAT))min(LAP,*Rmin(CAP,
PD*TD

IO_Ratio p
p =  (3) 

 
If the IO_Ratio is smaller than 1, all the customers 
can be served within the period, whereas a value of 
this index greater than 1 indicates that the queues are 
going to grow long. 
 
 
4. THE SIMULATION MODEL 
 

The use of analytical models does not help in all the 
cases. Specifically, the robustness of the analysis is 
not appropriate whenever the probability distribution 
of the different input variables or data does not 
follow one of the standard ones. Also, its usefulness 
decreases as the complexity of the relationships 
between the input and the output variables increases.  
 
Another modelling technique is necessary to 
correctly account for both uncertainty and logic 
relationships. Simulation appears to be in the last 
decades like a very appropriate technique due to its 
good compromise between efficacy and efficiency. 
 
Design of facilities is one of the complex areas in 
which simulation fits perfectly as the mathematical 
model to use, not only due to its very good 
representation capabilities but also due to its 
exceptional experimentation possibilities in a design 
phase [Lin, 2000]. In this particular case, although 
the model should have been used more in the earlier 
stages of the design [Kiran, 2000], it is mainly used 
to validate the model from a dynamic point of view. 
 
Even if continuous modelling looks to be the 
appropriate choice to model a dynamic system 
involving the movement of crowds [Chalmet et al 
1982; Shen, 2005], it is sometimes possible to use a 
discrete-event approach [Otamendi, 2005].  
 
If the logic gets too complex, the continuous models 
have to include events to model the discontinuities. 
If the modeller feels more comfortable with the 
discrete-event approach, this technique should also 
be tried, especially with problems of small size. 
 

4.1 Description of the Model 
 
The buses are generated according to the peak hour 
intervals, directing them towards a preassigned gate, 
where the processes of passenger alighting and 
boarding take place. 
 
The alighting process starts as soon as the bus gets 
to the gate and the doors open. The number of 
passengers in the arriving bus is calculated as 
follows: 
 

Buses
tagePeakPercen

*alsDailyArriv=xArrivingPa  

 
When all the passengers have gotten out of the bus, 
the doors are closed. Several minutes later, at a 
predefined time prior to departure, GateOpening, the 
doors opened again and the passengers start to board 
the bus. The rate of passengers is assumed constant 
and it is calculated as follows: 
 

xArrivingPa=axDepartingP  

axDepartingP
60

=ateDepartingR  

 
The bus then departs at its corresponding time with 
no delays. 
 
4.2 Hypothesis 
 
To facilitate this modelling step, the following 
restrictions are imposed: 
 

• The peak hour coincide for any bus line. 
• The simulation period is 5 hours (300 

minutes), with the peak hour being the 
middle hour, the two contiguous hours with 
a rate of 50% of the peak rate and the other 
two with a rate of 25% of the peak (figure 
5). 

 

100%

50%
25%

0 60 120 180 240 300  
 

Figure 5: Demand pattern 
 

• The hourly demand is randomly assigned. 
The total volume of passengers is created 
and each passenger is assigned a random 
number between 0 and 1. When multiplied 
by 60 minutes, the moment of entry in the 
system is determined. 
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• The arriving passengers leave the premises, 
that is, they do not take another bus. 

• The departing passengers access directly to 
the queue, without waiting in the lounges. 

• There are no delays with respect to the 
arriving or departing schedule. 

 
The manager of the facilities has accepted these 
hypotheses since the behaviour of the system is still 
well represented. The model is therefore validated 
and ready for experimentation. 
 
4.3 Interface 
 
To make use of the model easier, a user-friendly 
interface has been developed in an MsExcel 
spreadsheet (figure 6). 
 
The worksheet includes the possibility of defining 
the length of each simulation run (300 minutes as the 
initial value) and the number of repetitions of the 
model to run (the first number is the total number 
and the second is the run being performed, both 
being equal at the end of the execution). 

The input values to include per bus line are: 
• The daily demand 
• Peak percentage 
• Interarrival time 
• Bus capacity 
• Gate opening times 
• Service rate 

 
With the above variables, the following ones are 
readily calculated: 

• Input 
• Number of buses 
• Output 
• IO_Ratio 

 
Once the Reset button is pressed, the worksheet is 
cleaned up, and the modelling tool is ready for 
experimentation. Pressing the Execute Simulation 
button starts the simulation run. 
 
The maximum queue length per run is also presented 
in the application. 

 

 
 

Figure 6: Simulator’s interface 
 
5. SIMULATION EXPERIMENT 
 
With the model validated and the experimenter 
ready, it is time to set up an experiment to study the 
relationships among the variables that affect the 
negotiation process and the maximum length of the 
waiting queues. In other words, the model should be 
executed in order to obtain the data to facilitate the 
development of a negotiation tool. 
 
5.1 Decision Variables 
 
The parameters that a priori might affect the length 
of the queues are: 
 

• PeakPercentage (2 levels): with an initial 
estimated value of 11.5%. Foreseeing 
increments in certain days of the year, the 
system is analyzed for a peak rate of 15% 
of the total daily demand. 

• BusType (3 levels): the three possibilities 
have already been mentioned: 12-meters, 
15-meters (all seated) or mixed (15-meters 
with some standing passengers). 

• PeakInterval (1 level): with the initial 
values set by contract and included in the 
specifications. 

• GateOpening (2 levels): with values being 
5 or 10 minutes prior to the schedule 
departure of the bus. 
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Variable LINE N Mean StDev Q1 Median Q3 Maximum
MAX LQ 1 60 53.52 39.66 20.75 43.50 70.00 142.00

2 60 5.133 3.223 2.000 5.500 8.000 11.000
3 60 39.30 10.95 29.75 38.00 45.75 70.00
4 60 43.52 13.46 33.00 40.50 50.00 79.00
5 60 28.92 10.40 19.25 29.50 38.50 48.00
6 60 39.067 6.812 34.000 39.000 43.000 51.000
7 60 24.550 4.382 22.000 23.500 28.000 34.000
8 60 29.967 4.438 27.000 29.000 33.750 39.000
9 60 27.27 14.42 13.00 30.00 36.00 60.00
10 60 8.867 2.390 7.000 9.000 10.000 14.000
11 60 33.48 21.97 12.00 35.00 44.75 85.00
12 60 197.2 80.2 133.3 188.0 256.8 344.0
13 60 57.18 31.22 32.25 47.00 66.00 138.00

 
 

Figure 7: Results for raw data 
 
5.2 Planned Experiment 
 
Five runs of the simulation model are executed for 
each of the feasible combinations (2*3*1*2=12), 
accounting for 60 runs in total, each with 13 
simulated queue lengths, one per bus line. 
 
5.3 Results with Raw Data 
 
Figure 7 includes a table of descriptive statistics: 

• Size of the sample 
• Mean and Standard deviation of the sample 
• The quartiles (Q1, Median or Q2, and Q3) 

 
The results indicate that the only clearly problematic 
bus line is Line XII, with a maximum of more than 
300 passengers. The boxplot shown in figure 8 
shows these findings in graphical format. 
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Figure 8: Boxplots for raw data 
 
5.4. Raw Data Without Line XII 
 
If trying to develop any type of analytical tool with 
this set of data, this unusual group, line XII, might 
bias it. So the decision is to discriminate this group 
out of the analysis. In fact, the management of the 
facilities already knew about its behaviour and, as it 
will be later explained, there is a reserved area in the 
premises to cater for the length of line XII. 
 
The first attempt is then made to estimate the 
relationship between IO_Ratio and Max_LQ using 

all of the data but that for Line XII. Figure 9 shows 
the estimation with the corresponding 95% 
prediction bands using linear regression. 
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Figure 9: Linear estimation without bus XII 
 
The fit is not yet good, as it explains only half of the 
variance in the data (R-Sq). However, it helps more 
clearly understand the objective of the study. There 
is an indication that the IO_Ratio should be kept 
below 0.5 if the length is to be always maintained 
below the maximum queue size of 56. If the 
IO_Ratio goes beyond 1.2, the length starts to be 
outside the prediction area. That behaviour of high 
input values might be better represented with a 
quadratic equation, as shown in figure 10. 
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Figure 10: Quadratic estimation without bus XII 



OTAMENDI and PASTOR: ESTIMATION OF MAXIMUM QUEUE LENGTHS 

I.J. of SIMULATION Vol. 7 No. 9                                 83                  ISSN 1473-804x online, 1473-8031 print 

5.5. Excluding IO_Ratio < 1.2 
 
Even if the high values of IO_Ratio are well fitted 
by the quadratic equation, in order to produce good 
estimation in the proper domain, it is reasonable to 
discriminate values with an IO_Ratio greater than 
1.2 (figure 11). 
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Figure 11: Boxplot excluding IO_Ratio < 1.2 
 

Once set in the proper domain, both the linear model 
(figure 12) and the quadratic model (figure 13) can 
be estimated again. 
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Figure 12: Linear estimation without bus XII and 
IO_Ratio < 1.2 
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Figure 13: Quadratic estimation without bus XII and 

IO_Ratio < 1.2 
 

This last graph also includes one horizontal line per 
number of queues of 14 passengers. 
 
Figure 14 includes the equation resulting from the 
last adjustment in analytical form. The regression 
model is significant at almost any degree of 
confidence (p-value = 0). 
 

The regression equation is

MAX LQ = 5.791 + 38.44 IO_RATIO

S = 12.8832 R-Sq = 42.0% R-Sq(adj) = 41.9%

Analysis of Variance

Source DF SS MS F P

Regression 1 82547 82547.1 497.34 0.000

Error 688 114191 166.0

Total 689 196738  
 

Figure 14: Final model in analytic form 
 

 
6. NEGOTIATION STRATEGIES 
 
With the proper data already identified, the 
negotiation tool might be now developed. A 
thorough study calls for the identification of the 
variables, and their study, both separately and 
jointly. 
 
6.1 Components in the Negotiation Process 
 
None of the variables are directly controlled at this 
validation stage by the management of the station. 
The PeakPercentage has been estimated from 
current data and is clearly influenced by 
uncontrolled factors, such as weather, holidays... 
Maximum quantities, like peak values, are usually 
underestimated. 
 
The owner of the line, which rents the facilities, 
controls the BusType. In that sense, the management 
wants to know if they should force the owners to use 
different types of buses. The PeakInterval has been 
negotiated with the owners of the lines. A new 
negotiation might be initiated. 
 
The drivers control the opening of the gate, with the 
time being agreed with the labour unions. The 
management wants to know however how they can 
negotiate with the drivers in order to improve the 
behaviour of the system. 
 
The two possible components that could be subject 
to negotiation are the bus type and the gate opening 
time, since the demand is clearly beyond the 
management’s capabilities. 
 



OTAMENDI and PASTOR: ESTIMATION OF MAXIMUM QUEUE LENGTHS 

I.J. of SIMULATION Vol. 7 No. 9                                 84                  ISSN 1473-804x online, 1473-8031 print 

6.2 One-At-a-Time Analysis 
 
Figure 15 shows that the increase in Gate Opening is 
statistically more important that the increase in 
capacity of the buses. However, a one-at-a-time 
study of the queue lengths for each of the two 
variables might be undertaken.  
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Figure 15. Comparison of Means 
 
 

Figure 16 shows the distribution of all the values 
using a boxplot at both levels of GateOpening. 
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Figure 16. Boxplot for the levels of GateOpening 
 
 
The probability of the maximum queue length being 
above 56 is almost non-existent if the gates are 
opened 10 minutes before the departure of the bus. 
 
Figure 17 shows that the difference between the two 
levels is significant (p-value = 0) with an estimated 
difference between 12.13 and 16.70 at 95% 
confidence. 

 

Two-sample T for MAX LQ

GO N Mean StDev SE Mean

5 345 36.7 17.2 0.93

10 345 22.3 13.1 0.71

Difference = mu ( 5) - mu (10)

Estimate for difference: 14.4174

95% CI for difference: (12.1311, 16.7037)

T-Test of difference = 0 (vs not =):

T-Value = 12.38 P-Value = 0.000 DF = 642  
 

Figure 17. Test of Hypothesis for Levels of 
GateOpening 
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Figure 18. Boxplot for the levels of BusCapacity 
 
 

One-way ANOVA: MAX LQ versus CAP 

Source DF SS MS F P
CAP 2 845 423 1.48 0.228
Error 687 195893 285
Total 689 196738

S = 16.89 R-Sq = 0.43% R-Sq(adj) = 0.14%

Individual 95% CIs For Mean Based on
Level N Mean StDev -+---------+---------+---------+--------
55 210 30.65 17.66 (----------*-----------)
71 240 29.95 17.67 (----------*---------)

134 240 28.03 15.32 (----------*----------)
-+---------+---------+---------+--------
26.0 28.0 30.0 32.0

Pooled StDev = 16.89

 
 

Figure 19: Test of hypothesis for levels of 
BusCapacity 

 
Figure 20 shows that there is also no significant 
interaction between the two variables (parallel lines). 
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Figure 20: Interaction 
 
 
6.3  Negotiation Tool 
 
The objective of this research is to develop an 
analytical tool that graphically shows the 
relationship between IO_Ratio and Maximum 
Length of Queue (MAX_LQ). The resulting graph 
(figure 21) is the result of the cleaning process of 
figure 13. It has two possible uses. The first one is to 
determine the maximum IO_Ratio that should be 
permitted if a maximum queue length is set. For 
example, for a maximum of 56, an IO_Ratio should 
be kept below 0.6. 
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Figure 21: Final negotiation tool 
 

The second use is to provide an estimation for a 
maximum queue length if an IO_Ratio is provided. 
For example, an IO_Ratio of 0.9 yields a queue of 
almost 70 passengers. 
 
 
7. ALLOCATION OF LINES TO GATES 
 
The last objective of this research is to develop a 
proper assignment of line buses to gates. Figure 22 
includes the final assignment. 
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Line XII is located in the wider area of the platform. 
The rest are located in three areas, one for each of 
the three different line owners. 
 
 
8. CONCLUSIONS AND FUTURE WORK 
 
The static design has been dynamically validated 
with the use of a simulation model that has been 
executed to calculate the space required in front of 
the gates. 
 
Experimentation with the model has allowed for 
understanding not only the actual system but future 
situations with higher peaks in demand. 
 
Since the maximum number of waiting passengers is 
set to 54 (four waiting lines of 14), currently, only 
line XII (queue of de 156 users) presents problems if 
15-meter buses are used for these lines. With mixed 
buses, the maximum queue length will be 33 
passengers, except for line XII with 94. 
 
For the future, it has been possible to identify 
several variables that affect the behaviour of the 
system. However, their values might only be 
modified after hard negotiations with the labour 
unions and  with the owners of the bus lines. 
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