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Abstract: recent developments in the field of human movements modelling supply new ways in which to view 
complete models for analysing and understanding complex movements. 
Based on a kinematic theory and an algebraic beta-elliptic model, a new way for understanding the inherent 
mechanisms that govern handwriting movement generation is presented here. This paper describes an approach 
for analysing simple as well as complex movements such as cursive handwriting. Cursive handwriting is 
described as the superimposition of basic strokes with elliptic form that results from the algebraic summation of 
beta velocity profiles. The overall approach is based upon the hypothesis that complex human movements can be 
segmented into basic and simple strokes. Each stroke is totally described by a set of ten parameters that 
characterizes the movement both in the kinematics and the static domains. 
The paper then treats the extraction of the model parameters using the beta profiles, and its application to the 
case of both simple rapid human movements and complex handwriting movements.  
The experiments showed that the beta-elliptic model could be applied for the case of latin handwriting scripts as 
well as arabic handwriting scripts. New ways are proposed for the application of the beta-elliptic model such as: 
signature verification, style classification, shape recognition, etc…  
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1. INTRODUCTION  
 
Handwriting stands among the most complex tasks 
presented by literate human beings. 
Handwriting is affected by sensory motor control 
mechanisms, which are in turn influenced by 
emotions and communications. As such, the study of 
the generation of handwriting movements constitutes 
a very broad field that permits researches with 
various backgrounds and interests to collaborate and 
interact at multiple levels with different but 
complementary objectives [8, 23, 45, 74].  
In the literature, the study of hand movements was 
based on proposed models. Several modelling 
techniques were used to derive motor driving signals 
and to simulate the handwriting process [1].  Two 
general methodologies of handwriting modelling 
become apparent from the review of the literature.  
The first methodology taken into account 
computational models which are aimed to replicate  
some features of Human handwriting movements 
such as velocity profiles and some relations between 
different aspects of the movements dynamics; such 
as curvature and curvilinear velocity. Such 
methodology includes oscillators models [55, 90],  
 

 
 
 
which combine various velocity sinusoids to yield 
different movement shapes. The oscillation model of  
Hollerback uses kinematic parameters such as 
velocities and amplitude of motion to represent the 
handwriting movement. 
Denier Van der Gon proposed a second order linear 
system to represent the handwriting process [26, 27]. 
Optimization models refer also to such methodology 
[31, 36, 58, 102].  Flash and Hogan [35, 36, 54] 
proposed that a global kinematic optimization 
approach- the minimum jerk model- defines a 
solution for the trajectory determination problem, in 
other words, which trajectory (hand path and 
velocity) should be used for handwriting movement. 
The solution predicts that the horizontal and vertical 
components of the trajectory x and y are quintic 
functions of time. In fact, the minimum-jerk model, 
takes into account only the desired hand movement, 
and completely ignores the dynamic properties of 
the arm [31, 36]. A second and more complicated 
approach, the minimum-torque change model [98], 
takes into account the dynamics of the arm, but 
emphasizes only the torques at the joints, and 
completely ignores the properties of the muscles 
[98]. Wada and Kawato use the torque minimization 
(minimum-torque-change model) as a trajectory 
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criterion as well as a system for choosing and 
optimising the number of via-points needed to 
regenerate a given shape [103]. 
 
The second methodology of handwriting modelling 
focuses on psychologically descriptive models [38]. 
Such methodology includes models that usually 
summarize many of the requirements of a 
handwriting system by addressing as much data as 
possible. Consequently they do address such issues 
as learning, movement memory, which are often 
omitted from the first methodology [20, 21, 25, 33, 
34, 39, 40, 50].  
The Feedback Error Learning (FEL) Neural 
Network [59] of Kawato et al., which when trained, 
learns the inverse dynamics of a controlled plant. 
The total control effort U applied to the plant (hand-
muscle system) is the sum of the feedback control 
output and the network control output. The ideal 
configuration of the neural network would 
correspond to the universal mathematical model of 
the plant. The network is given the information of 
the desired position and its derivatives and it will 
calculate the control effort necessary to make the 
output of the system to follow the desired trajectory 
[59]. 
The VITE model of Bullock and Grossbergh, is a 
neural network model, which has been used to 
explain many kinematic properties of synchronous 
multi-joint movement, such as bell-shaped velocity 
profiles, peak acceleration as a function of 
movement amplitude [22, 41, 43].  
Uno, Kawato and Suzuki (1989) extended the purely 
kinematic minimum-jerk model and proposed a 
dynamic optimization model (minimum-torque-
change model) to account for wider range of human 
behaviours [98]. Recently, Wada and Kawato (1995) 
developed the FIRM (the Forward-Inverse 
Relaxation Model) for optimal trajectory generation 
and control. FIRM can generate an arm trajectory 
within a few iterations. It contains both the forward 
dynamics model and the inverse dynamics model of 
the controlled object [58, 103].  
All these models, although succeeded in 
synthesizing the control pulses that drive the 
muscles, are rather simplified representations of the 
real physical model of the hand-muscle system. 
They are used under some assumptions and certain 
conditions, verifying some principles such as the 2/3 
power law. In fact when human draw planar curves 
the instantaneous tangential velocity of the hand 
decreases as the curvature increases [100]. This 
relationship is more described as the power law, 
where tangential velocity is proportional to the 1/3 
power of the radius of curvature. This power law 
was originally reported to hold mainly for elliptical 
movements [61]. Viviani and Schneider (1991) have 
reported that drawing movements are more variable 
for portions of an ellipse with a large radius of 

curvature than for portions with a small radius of 
curvature [99]. 
 
In this paper, we are interested in understanding 
handwriting generation movement at the global 
neuromuscular level, focusing mainly on the 
development of a stroke generation model which is 
sufficient to explain the origin of some basic 
psychophysical laws of simple human movements 
and to show how human subjects can take advantage 
of this representation to control the sensory motor 
interaction involved in the generation of more 
complex trajectories. The overall approach is based 
upon the hypothesis that complex human 
movements can be segmented into basic and simple 
components. In fact, due to the intrinsic properties of 
the neuromuscular systems involved in a rapid 
writing task, there is a class of simple movements, 
called strokes. The general case of complex 
movements is thus considered as an algebraic 
overlapping of simple strokes. Each stroke is totally 
described by a set of parameters that characterises 
the movement both in the kinematics and the static 
domains. 
The notion of fundamental component of human 
movements generation is not new. It found its root in 
the Lashley experiments [62], and has been adapted 
to the analysis of handwriting movements in the 
sixties [68, 69]. Analogously, the idea of 
overlapping strokes to study handwriting movements 
has been put forward by Morasso and Mussa Ivaldi 
(1982), in the early eighties [71]. These latter 
concepts have been considered as the base upon 
which the handwriting generation models have been 
built. 
A few years ago, Plamondon and Guerfali (1998) 
presented a handwriting model, which refers to the 
first methodology as mentioned previously [85]. 
Their model uses the “delta-lognormal synergies”. 
This name refers to the authors’definition of the 
velocity of a muscle synergy as a gaussian function 
of the movement parameters that varies 
logarithmically with time. They have been interested 
to the kinematic properties of handwriting 
generation process and omitted the relationship 
between kinematics and the involved handwriting 
trajectory. Plamondon and Guerfali (1993) suggest 
that stroke timing is considered as the solely crucial 
factor in determining the trajectory shape [83]. 
Using real handwriting data, it is obvious that some 
models perform better than others. So the decision of 
manipulating a proper model depends on the goal of 
the research. Our objective in this paper is to use the 
kinematics approach of rapid human movements to 
explain and understand the handwriting generation 
process. In fact, kinematic properties involved in this 
paper perform to joint angle trajectory, which obeys 
an elliptic form. The parameters characterizing an 
elliptic trajectory are performed according to the 
Beta curvilinear velocity profile [2, 5]. 
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This article deals with two themes. Firstly, in section 
2, we describe the handwriting-generated scripts in 
the context of kinematic and static points of view 
that obey both the Beta law and the elliptic form. 
Simple stroke movements, as well as complex 
handwriting movements are considered [16].  
In Section 3, we are interested in the trajectory 
generation, where a trajectory is planned according 
to the arm position (x, y) in an intrinsic kinematic 
space, which depends on the musculoskeletal 
dynamics. In addition an elementary movement 
called stroke is represented by an elliptic arc having 
a null curvilinear velocity at the start and the end of 
the movement. The curvilinear velocity 
corresponding to this elementary movement is in 
turn approximated by a Beta profile in the kinematic 
space. 
Finally, in Sections 4 and 5, we discuss the adequacy 
of the Beta elliptic model for the case of complex 
handwriting movements and examine some 
computer simulations. With different handwriting 
scripts, we show their fitting with the Beta elliptic 
theory, both in dynamic and statistic domains. Some 
applications of the Beta elliptic model are proposed 
in addition, such as: signature verification and shape 
recognition. 

  

2. HANDWRITING GENERATION THEORY: 
THE BETA-ELLIPTIC MODEL  
 
The main goal of the experiments reported in this 
work is to further the investigation of the constraints 
between trajectory and kinematics, which provide a 
clue to both the degrees of freedom problem and the 
computational complexity problem. 
The handwriting generation theory is aimed 
essentially at understanding the generation of simple 
and complex handwriting movements. Several 
approaches have been shown in the past few years 
such as the delta-lognormal theory proposed by 
Plamondon [85]. 

 
2. 1   Simple Rapid Human Movements 

 
The proposed model is based upon some 
assumptions: Firstly, it considered that handwriting 
movement, like any other highly skilled motor 
process, is partially programmed in advance. 
Secondly, it supposes that movements are 
represented and planned in the velocity domain, 
since the most widely accepted invariant in 
movement generation is the Beta shape of the 
velocity profiles.  
As in the Delta Lognormal theory of Plamondon and 
Guerfali [81, 82, 84, 85], we have suggested that a 
neuromuscular synergy is composed of two parallel 
and global systems that represent, respectively, the 
set of neural and muscular networks involved in the 

generation of the agonist and antagonist activities 
resulting in a specific movement.  
 Supposing that each of these two systems is 
composed internally of n neuromuscular subsystems 
characterized by an impulse response that is real 
normalized and non-negative. If n is sufficiently 
large, applying the central limit theorem, the global 
impulse response can be described by a Beta 
function β(t, t0, t1, tc, p, q) where t0 is the starting 
time, t1 is the ending time, p and q are intermediate 
parameters, as shown in equation (1), [2, 3, 6, 7]. 
with: 
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and                             
    (2)      
 
tc is the instant where the curvilinear velocity 
reaches its maximum. 
Exhaustive comparisons with other models using 
large database have been done previously, 
demonstrating the advantages of the Beta model for 
an accurate description of a velocity profile [2, 3]. 
Comparing to the Delta-lognormal model, it appears 
that the more general hypothesis of the Beta model 
leads to a velocity profile description that is more 
flexible, and therefore that can fit better the diversity 
of the experimental data. The Delta-lognormal 
function puts some constraints on the shape of the 
profile because it’s an unbounded function [6, 46, 
48]. However, the Beta function allows some 
variation of its symmetry, which depends on the 
values of the two parameters p and q. 
As shown in figure 1, different Beta shapes are 
depicted for different values of the two parameters p 
and q. 
A Beta shape is intrinsically asymmetric as 
compared, for example, with the symmetrical 
velocity profiles of the minimum jerk models or 
minimum snap [31, 36], sinusoidal functions [32, 
55], or the models that use cubic splines [72]. 
Cubic splines functions have also been used by 
Sherkat N. et al. [8, 51, 52], for the approximation of 
the zone lines separating the writing zones. In fact, 
zone information has been used to classify singular 
points, which can be applied to a variety of 
handwriting recognition problems, i.e. classification 
of strokes and words and the verification of letter 
candidates. In this context, the spline-based method 
has been demonstrated to perform well: the superior 
performance is mainly caused by extending the 
zoning scope to lines of text instead of individual 
words. On the other hand, the use of cubic splines 
functions is constrained by normalization of word 
size and position and consequently recognition can 
be simplified by providing an image of constant size 
to the recognizer [13, 53, 93]. 

qp
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Using normalization of word size and position to the 
fitting of curvilinear velocity signals may decrease 
the dynamic information, which is contained in the 
curvilinear velocity signal while the potential of 
dynamic handwriting compared to the static 
handwriting is concentrated on the fruitful 
information that can be exploited. Dynamic data 
contains the information on how the shapes were 
written, static data conveys the result of the writing 
process i.e. what has been written.   
Motor control research focuses on the process that 
produces handwriting and tries to establish the 
hidden parameters, e.g. [7, 9, 16, 23, 29, 42, 44, 55, 
56, 59, 60, 71, 73, 75, 80, 101, 104]. Many 
researchers use ‘significant’ or ‘critical’ points to 
split the pen-path into smaller entities. Commonly 
used significant points are local extrema in 
horizontal or vertical direction [56], local extrema in 
velocity [16], local extrema in curvature [9, 13, 19, 
24, 35, 68, 71], and points of inflexion [56]. For our 
case we have used both local extrema and points of 
inflexion in velocity profiles.  
 

Figure 1: Different Beta profiles for distinct values 
of p and q parameters. 

 
  
In this context, a stroke executed from an arbitrary 
starting position is characterized by five parameters. 
A part from these five parameters of the Beta 
function, each elementary component called 
“stroke” is also characterized in the space domain by 
five statistic parameters which globally reflect the 
geometric properties of the set of muscles and joints 
used in a particular handwriting movement: a and b 

are respectively the dimensions of the large and the 
small axes of the elliptic shape, x0 and y0 are the 
Cartesian coordinates of the elliptic center relative to 
the orthogonal reference (o, x, y). The angle θ 
defines the deviation of the elliptic portion according 
to the orthogonal reference (o, x, y).  
Consequently, a single movement, also called stroke 
is represented in the space and velocity domains by a 
curvilinear velocity starting at time t0 at an initial 
point in the domain space, and moving along an 
elliptic path. This elliptic path obeys a variable 
curvature C not a constant one as it was proposed by 
few models in this direction by the literature [46, 76, 
77, 78, 84]. Since characters are drawn by using 
conic arcs and straight segments, it has been shown 
that the arc of circle has enough descriptive power to 
substitute curves of different shapes but with the 
same semantic value. 
Freeman direction codes approximate the pen-path 
by small linear segments. As the segments directions 
are quantized, e.g. into 8, 16, or 32 distinct 
directions, the precision of direction codes decreases 
with increasing length of the polygon [37, 96]. 
Plamondon and Guerfali (1998) presented a 
handwriting model using Delta-Lognormal synergies 
[85, 86]. The model uses superposition of strokes 
toward “virtual” via-points to generate continuous 
curves, where a stroke is represented by a velocity 
vector moving along a circular path characterized by 
an initial orientation θ0 and a constant curvature C0. 
Circular arc representation is widely used, grouping 
segments of common curvature [10, 49, 75, 79, 88]. 
Piecewise linear modulation models are used in [24, 
26], wavelets in [64]. 
Analysing the curvature function, we remark that: 
firstly, the curvilinear velocity varies with 
handwriting cycle: curvilinear velocity decreases for 
the parts of small curvature of handwriting and 
increases for the parts of large curvature, secondly, 
if the trajectory of the hand is a circle or a 
combination of circles, then the horizontal and 
vertical components of the movement are 
necessarily harmonic functions of equal frequency 
and amplitude, which is not usually verified 
experimentally.  
The case of elliptic trajectories is particularly 
interesting because many portions of hand 
trajectories can be approximated fairly accurately by 
elliptic segments; a complex movement may be seen 
as a splined sequence of such segments [70].  
As reported in the early eighties, the correlation that 
exists between the kinematics handwriting and the 
movement trajectory was formalized in terms of 
equation, known as the 1/3 power law. This law 
links the radius of curvature R(t) which is the inverse 
of curvature C and the tangential velocity V(t) of the 
handwriting movement by a 1/3 power [61].  
Since then, the law has been shown to be valid for a 
certain class of movements and it has been slightly 
modified and adapted over the years to cover an 
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even large set of movements. Numerous studies 
have shown that the power of 1/3 holds mainly for 
elliptical movements [61, 99, 100]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Descriptive scheme of an ellipse. 
 
So we have proposed this more general structure of 
the contour curvature: not the circular path but an 
elliptic path verifying equation (3) [16, 17, 18], 
where X(t) and Y(t) are the cartesian coordinates of a 
point M along the elliptic stroke. a and b are the 
small and large axis dimensions, as shown in figure 
2.  
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  (3) 
A point M having the coordinates X(t) and Y(t) 
verified the set of equations according to the 
reference (O, X, Y) related to the elliptic stroke (see 
equation (4)).  
where (x(t), y(t)) are the coordinates of the point M 
according to the orthogonal spatial axis in Cartesian 
space (o, x, y) [11, 14, 15].  
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Theoretically, to design an elliptic stroke, we must 
have at least 5 points: we are based on the dynamic 
aspect of this stroke, in other words the Beta 
velocity profile fitting the original curvilinear 
velocity signal [63, 65, 66]. 

For the case of simple handwriting movement, the 
five points are deduced from the Beta profile 
approximating the original curvilinear velocity 
signal; the starting point M1 where the curvilinear 
velocity is near 0. The ending point M3 is defined 
such as the curvilinear velocity reaches 0. The point 
that corresponds in the timing space to the maximum 
velocity characterizes the intermediate point M2. The 
lasting two points M4 and M5 are constrained to 
belong to the considered Beta profile. 
Obtaining the 5 points (M1, M3, M2, M4, and M5), the 
problem now is to check the different parameters 
characterising the elliptic segment (x0, y0, a, b, θ), 
which are determined numerically by resolving the 
set of equations (see equation 10) [65, 66, 95, 97].  
Rewrite equation (3) using the (x, y) coordinates,  
then we have: 
[(x–x0) cosθ + (y–y0) sinθ]² / a²  
+ [(x0–x) sinθ + (y–y0) cosθ]² / b² = 1     
  (5)                
((x–x0)² cos²θ) /a² + ((y–y0)² sin²θ) /a²  
+ (2 sosθ sinθ (x–x0) (y–y0)) /a²  + ((x0–x)² sin²θ) /b²  
+ ((y–y0)² cos²θ) /b² – (2sinθ cosθ (x–x0) (y–y0)) /b² 
 = 1           
     
 (6)            
x² cos²θ /a² + x0² cos²θ /a² – 2xx0 cos²θ /a² 
+ y² sin²θ /a²+ y0² sin²θ /a²  – 2yy0 sin²θ /a² 
+ sin2θ /a² (xy – xy0 – x0y + x0y0)         
  (7)                  
+ y² cos²θ /b² + y0² cos²θ /b² – 2yy0 cos²θ /b²  
+ x² sin²θ /b² + x0² sin²θ /b²   
– 2xx0 sin²θ /b² – sin2θ /b² (xy – xy0 – x0y + x0y0) = 
1   
 (cos²θ /a² + sin²θ /b²) x² + (cos²θ /b² + sin²θ /a²)y² 
+ xy (b² – a²) / (a² b²) sin2θ  
– x [2x0  (cos²θ /a² + sin²θ /b²) + (1/a² – 1/b²) sin2θ 
y0]    
– y [2y0  (cos²θ /b² + sin²θ /a²) + (b² – a²)/ (a² b²) 
sin2θ x0] + x0² (cos²θ /a² + sin²θ /b²) 
+ y0² (cos²θ /b² + sin²θ /a²)   
    (8) 
+ x0y0 (1/a² – 1/b²) sin2θ – 1 = 0  
    
    
Let us represent a general conic by an implicit 
second order polynomial: 
F(x, y)= x2 + αy2 + βxy+ γx + δy+ ε=0;  
  (9)  
If we replace the different coordinates of the five 
points M1, M2, M3, M4 and M5 in equation (9), we 
construct 5 linear equations, which look like: 
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(A)            (K)         (B) 

where α = K(1), β = K(2), γ = K(3), δ = K(4) and 

ε = K(5). 

For the elliptic contour we may simply incorporate 
the constraint and impose the inequality constraint β2 
– 4α <0, then we have the 5 parameters:  
 
α = (a²os²θ+b²sin²θ)/(b² cos²θ+ a² sin²θ)         (11)    
β= (b²–a²)sin2θ/(b²cos²θ+a²sin²θ)                    (12)         
γ = – [2x0 + (b² – a²) sin2θ / (b² cos²θ  + a² sin²θ)] 
(13)                                   
δ = – [2y0 (a² cos² θ  + b² sin²θ)/(b² cos²θ  + a² sin²θ)                          
       +x0 (b²–a²) sin 2θ/ (b² cos²θ + a²sin²θ)]     
      (14)                    
 ε = x0² +  y0² (a² cos²θ + b² sin²θ)/(b² cos²θ+ a² sin²θ)          
+ x0y0 (b² – a²) sin2θ / (b²cos²θ +a² sin²θ)   (15)       
      – a²b² / (b² cos² θ + a² sin²θ)                                                   
If we consider m= b/a, we get from equations (11) 
and (12): 
α = (cos²θ + m² sin²θ) / (m cos²θ + sin²θ).     
      (16)  
m² = (cos²θ – α sin²θ) / (α cos²θ – sin²θ). 
      (17)  
β = (m² – 1) sin2θ / (m² cos²θ  +sin²θ). 
      (18)            
   = (1 – α) sin2θ / (cos2θ). 
and the deviation angle θ will be: 

θ = ½ Atn (β / (1 – α)).   
        (19)      
                     
The center coordinates (x0, y0) of an elliptic contour 
are deduced from equation  (13) and (14): 
 
x0 =  –δβ + 2 αγ / (β2 – 4α)   
       (20) y0 =  – γβ + 2 δ / (β2 – 4α)
           (21)
               
The axis lengths a and b of an elliptic arc are 

deduced by using equation (15).  

a = ((x0² + α y0² +β x0y0 – ε)(m²cos² θ+sin² θ))1/2  /m 
(22)  
b = ((x0² + α y0² +β x0y0 – ε)(m²cos²θ +sin² θ))1/2   
(23) 
The solution of equations system (10) subject to the 
constraint β2 – 4α <0 admits exactly one elliptical 
solution which provides the set of parameters (a, b, 
x0, y0, θ). 
In our case, a simple stroke is approximated by a 
beta profile in the dynamic domain which 

corresponds in turn to an elliptic arc in the static 
domain such that M1M3 is the large axis dimension 
a. As reported by Viviani and al. for human drawing 
curves, that the instantaneous tangential velocity of 
the hand decreases as the curvature increases [98], 
and then M1 and M3 which are characterized by 
minimum tangential velocity correspond to the 
maximum of curvature in the static domain. 
Consequently, a stroke is characterized by ten 
parameters; the first five parameters reflect the 
global timing properties of the neuromuscular 
networks involved in generating the movement, 
whereas the last five parameters describe the global 
geometric properties of the set of muscles and joints 
recruited to execute the movement.  
Figure 3 shows a typical one-stroke (solid line) as 
reproduced by the Beta-elliptic model. The 
curvilinear velocity relative to this stroke depicted in 
figure 4, provides a typical example of a single 
movement, within single-peak velocity, which might 
be reproduced with a two set of parameters. On each 
graph, the predictions of the kinematic theory are 
reported using dashed lines imposed on the 
continuous lines that extrapolate the original data, 
sampled at 200 Hz, by using a digitizer tablet type 
Wacom 4. 
 

 
Figure 3: Approximation of simple handwriting 
trajectory with elliptic contour.   
 
As can be seen, the Beta-elliptic theory is able to 
reproduce a stroke, both in the image and in the 
kinematic domain. Similar results have been 
reported over different databases for more than 5000 
strokes in all.  
 
2. 2 Complex Handwriting Movements 
 
As shown previously, the Beta-elliptic model 
considers a simple movement as the response of the 



H. BEZINE et al.: GENERATION AND ANALYSIS OF HANDWRITING 

I.J. of SIMULATION Vol. 8 No 2                                                            ISSN 1473-804x online, 1473-8031 print 51

neuromuscular system, which is described by an 
elliptic trajectory and a Beta velocity profile. 
The serial nature characterizing the central 
representation of a movement is also detectable from 
a kinematic point of view during the generation of 
the movement in the external environment, where 
the velocity profile of the end effector is 
decomposable into a series of basic, approximately 
Beta, asymmetric profiles overlapping each other as 
a function of the speed of the whole movement [57, 
59, 68, 74]. 
Then the generation of handwriting scripts can be 
viewed as an algebraic summation in time of 
different strokes, such expressed in equation (24), 
where n stands for the total number of different Beta 
shape.  
 

 
 
Figure 4: Approximation of curvilinear velocity 
signal with Beta model.  
 

 

∑
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i )t()t(V                 (24)         

    
Superimposition of elementary strokes is a common 
assumption among modelling of handwriting (e.g. 
Morasso and Mussa Ivaldi 1982, Edelman and Flash 
1987, Plamondon 1989, Schomaker 1989) [30, 74, 
75, 91]. Models differ in the constraints they place 
on stroke superimposition. Schomaker et al. 1989 
[92], as well as Plamondon assumes essentially 
arbitrary timing relation between onsets of 
overlapping movement strokes [80]. Whereas, 
Morasso et al (1982), as well as for our case, 
constrain stroke superimposition by limiting the 
number of strokes that are concurrently executed to 
two [16, 17, 18, 71]. 
A simulated case of a complex handwriting script is 
depicted in figures 5A and 5B. 

For the case of the figure 5A, we can see the original 
handwriting script, which is the French word “elle” 
(“she” in English), as generated by a human subject. 
The curvilinear velocity signal associated to this real 
data is depicted in figure 5B. As previously, the 
original data was acquired by using a digitizer tablet 
type Wacom4, sampled at 200 Hz. In figure 5B, we 
remark, the presence of an inflexion point which will 
participate in the modelling process by adding a 
supplementary Beta profile.  
In Plamondon 98, the resulting curvilinear velocity 
of a handwriting trace, for a sequence of strokes is 
obtained by summing the vectors representing each 
individual stroke curvilinear velocity [85].  
 

 
 

 
   Figure 5: (A) The French handwriting script “elle”. 

(B) The curvilinear velocity signal related to 
the French handwriting script “elle”. 
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The same idea is applied for the case of the angular 
velocity: the resulting angular velocity is obtained 
by summing the vectors representing each individual 
angular velocity stroke.  
In order to eliminate the phase shift between angular 
and curvilinear velocity, which is implicit in the 
delta-lognormal model, the vectorial summation was 
investigated. 
For our case, we assume that handwriting 
movements are synthesized simply by using 
curvilinear velocity movements generator. 
A handwriting trace is segmented into curvilinear 
strokes, which are partially hidden in the signal.  We 
are based on the Beta-law [2, 3] which describes the 
curvilinear velocity profile of a single stroke, and on 
strategies for the superimposition of strokes, without 
the investigation of angular velocity and the notion 
of vectorial velocity summation.  
A stroke is defined as a trajectory between two 
extrema curvilinear velocity (minimum and 
maximum) and the inflexion points are considered as 
maximum of curvilinear velocity. Every two 
consecutives strokes are superimposed and the 
resulting curvilinear velocity signal is obtained by 
summing the Beta profiles representing each 
individual stroke curvilinear velocity. 
 
3. SIMPLE MOVEMENT ANALYSIS 
 
To extract the set of Beta model parameters that best 
fits the handwriting movements under study, an 
analysis-by-synthesis procedure was used. 
Obviously, the extracted parameters reflect the 
temporal properties of the neuromuscular networks 
involved in the handwriting movement and the 
geometric characteristics of the movement are 
analysed [7, 9, 47, 75]. 
The extraction of the set of parameters that best fits 
a simple movement i called also one stroke might be 
done in two steps: firstly, we have to estimate the 
parameters that describe the kinematics of the 
considered movement: to(i), t1(i), tc(i), p(i) and q(i) ; and 
secondly, is to estimate the static parameters which 
are: a(i), b(i), x0(i), y0(i) and θ(i). These earlier describe 
the geometric properties of the movement in 2 
dimensional space. Having obtained this set of ten 
parameters, a proper simple movement called stroke 
can be identified and completely characterized in 
both the kinematic and spatial domains.  
In order to use the optimal set of parameters that 
best fit the considered movement, we have to use 
some optimization methods that guarantee algorithm 
convergence. Because of the non linearity of the 
Beta function, non linear regression techniques are 
required to extract the optimal parameters from the 
original curvilinear velocity signals. Several 
techniques exist to solve non linear regression 
problems, for our case, we are limited to a brief over 
view of one of the most popular techniques [46, 67]. 
 

3. 1 Non Linear Regression Method 
 
Considering a regression problem, first of all we 
have a dependent variable y with n measures (y1, 
y2,………….., yn). For our case y is identified by the 
curvilinear velocity signal, that earlier depends on k 
independent variables (x1, x2,………., xk), (the 
curvilinear velocity depends only on the time t in our 
case) [12]. 
Then the relationship between the variable y and the 
independent variables xi is determined by a class of 
functions (a Beta function), which depends on m 
parameters, which are (t0, t1, tc, p, q) [86, 89, 94]. 
The regression techniques look for the set of 
functions parameters that best fits the measures 
according to some criteria: like the least squares fit, 
for example [46]. When the class of functions is 
nonlinear according to some of its parameters and no 
easy transformation is known to linearize the 
function, which is the case for the Beta function, non 
linear regression techniques might be used. Based on 
the derivability of the considered function, 
optimization methods can be used, such as the 
Levenberg-Marquardt [67, 94]. 
Around a set of initial conditions of the parameters, 
an iterative non linear regression algorithm was used 
to find the least square estimate of the parameters for 
the tuning functions given by equation (25): 

∑
=

β−=
n

1i
i )t()t(VF    

       (25) 

where the resulting velocity V(t) of the pentip, for a 
sequence of n strokes is obtained by summing the 
Beta profiles representing each individual stroke 
velocity. 
An iterative process is then necessary until the error 
becomes smaller than a certain fixed value, or a 
certain amount of computational time has exceeded 
[17, 46, 49].  

 
3. 2 Estimation of the Spatial Parameters 

 
To check the spatial parameters related to the elliptic 
trajectory that best fit the simple movement called 
“stroke” and referring to figure 4, we have used this 
algorithm: 
1. According to the Beta profile checked in 
the kinematic domain, we have to determine the two 
parameters t0(i) and t1(i) which correspond both to the 
curvilinear velocity near to zero.  
2. Having obtained the two instants: t0(i) and t1(i), 
we determine their equivalent in the space domain 
respectively M1(i) and M3(i), in other words the 
starting time and the ending time of the stroke.  
3. M2(i) corresponds to the instant tc(i) where the 
curvilinear velocity is maximum. 
4. M4(i) and M5(i)  are constrained to belong to the 
same Beta profile βi, in the timing domain, 
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respectively the ascendant part and the descendant 
part of the considered Beta profile. In practical 
situations, M4(i) and M5(i) correspond respectively to 
the quarter of the maximum curvilinear velocity. 
The curvature of a generated elliptic arc is 
enormously affected by the choice of both M4(i) and 
M5(i).  
Comparing to (M1(i), M2(i) and M3(i)), M4(i) and M5(i)  
have the most effect on the variation of the 
generated elliptic stroke curvature. If M4(i) and M5(i)  
are respectively far from M1(i) and M3(i), the 
curvature of an elliptic generated arc increases. 
5. Having located these 5 points (M1(i), M2(i), M3(i),   
M4(i), and M5(i)), described above, the five parameters 
defining the elliptic trajectory: a, b, x0, y0, and θ can 
be evaluated by resolving the set of equations 
defined by equation (10). Then we will have the 
different characteristics of an elliptic arc, as 
searched previously in section 2.  
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In practical situations, depending on the location of 
the points M4(i) and M5(i), multiple solutions of 
elliptic trajectories can be obtained. 
 
4. HANDWRITING MOVEMENT ANALYSIS  

 
The analysis of complex movements such as 
handwriting poses more difficulties than that of 
simple movements. These difficulties are related to 
the fact that complex movements are composed of 
time-overlapped strokes. So we have firstly to 
estimate the number of strokes that might be 
involved to generate the observed complex 
movement. In other words we have to check the 
Beta profiles that compose the curvilinear velocity 
signal [17, 18]. For this purpose we have to search 
the different extrema:  minima and maxima related 
to the curvilinear velocity signal. The inflexion 
points are considered as maxima and the number of 
Beta profiles is equal to the total of maxima points. 
The second problem is related to the optimization of 
the parameters according to the different strokes. 
The complexity of this problem grows rapidly when 
the number of strokes increases, so the convergence 
problems become more serious [46, 67]. 
The development of robust parameter extraction 
techniques for the general problem of multiple 
strokes extraction presents several difficulties. One 
of the major difficulties is to ensure the convergence 
of numerical non-linear regression techniques when 
there are a large number of parameters to estimate. 

Furthermore, these numerical methods require initial 
conditions for the iterative procedure, so a judicious 
choice of initial conditions is required [67, 87]. 
Usually, handwriting analysis has been limited to 
direct measurements x and y sampled at a fixed 
frequency from digitizing tablets, such for our case. 
The overlapping effect was taken into consideration; 
it is observed each time a particular simple 
movement (i) starts before another simple movement 
(i-1) achieves its final target. Very different shapes 
can be generated with the same basic movements by 
changing only the starting time of the second stroke. 
For the most cases, the starting time of a particular 
movement (i) correspond to a dip in the original 
curvilinear velocity, when the particular movement 
(i-1) curvilinear velocity is near 0. If there exist two 
consecutives maxima -because of the presence of an 
inflexion point- the starting time of a particular 
movement (i) is equal to the time when the particular 
movement (i-1) reaches its maximum curvilinear 
velocity. 
 

 (A) 
 

(B) 
 

 
 
Figure 6: (A) The curvilinear velocity signal related 
to the French handwriting script “elle” approximated 



H. BEZINE et al.: GENERATION AND ANALYSIS OF HANDWRITING 

I.J. of SIMULATION Vol. 8 No 2                                                            ISSN 1473-804x online, 1473-8031 print 54

by Beta profiles: a Beta profile for each single 
stroke.  
(B) The curvilinear velocity signal related to the 
French handwriting script “elle” approximated    by 
Beta profiles: the summation of the different Beta 
profiles.   
 
According to our model, each handwritten script is 
generated by using the curvilinear velocity signal 
fitted by Beta profiles. Each handwritten script is 
thus made up of a set of strokes that are 
superimposed in time to produce the rapid 
movement.  
Figure 6 and 7 show the effect of the time 
overlapping of multiple stroke movements on the 
resulting curvilinear velocity and path corresponding 
to the French word “elle”. 
In figure 6A and 6B, the dashed lines show the 
hidden trajectory of each single stroke as taken 
separately and the continuous line shows the original 
curvilinear velocity signal related to the French word 
“elle”. 
For the case of the figure 6A, we can see, the Beta 
velocity profiles for each single stroke (squared 
lines). Every stroke is characterised by its own 
specific activation and target time respectively: t0(i) 
and t1(i).  
For two consecutive strokes, each one having its 
own specific activation and target time, the increase 
in the velocity of the second stroke compensates for 
the decrease in the velocity of the first stroke during 
the time shift of t1(i) - t0(i+1) between the two strokes. 
The number of Beta profiles is equal to the maxima 
points observed in figure 5B. Then, the summation 
of the different Beta profiles of the entire movement 
is depicted in figure 6B (squared lines). 
Figure 7A shows the different ellipses associated to 
the different strokes of the handwriting script “elle”. 
As we can see, different sizes of ellipses are 
depicted on this figure. This fact proved the 
variation of curvature during the handwriting 
process, then the variation of handwriting velocity. 
In figure 7B, we have elaborated the original 
handwriting script “elle” with the different elliptic 
strokes; we can remark that the different elliptic 
strokes (dashed lines) are superimposed on the 
original script. 
In this context, we have used the following 
procedure to generate a handwriting trace with 
elliptic arcs. Consider a handwriting trace, which 
have a curvilinear velocity signal V(t) that can be 
approximated by an algebraic sum of Beta profiles 
as shown in figure 6. To generate the elliptic arcs 
related to the continuous trace, which is the French 
word “elle” -as shown in figure 7B- we have used 
the different Beta profiles fitting the original 
curvilinear velocity. We have 10 Beta profiles from 
n=1 to n=10. 
The ascendant part of the first Beta profile Beta1A 
will generate solely the first elliptic arc started at the 

first letter “e”. M2 (1) corresponds to the instant 
where Beta1 reaches the maximum curvilinear 
velocity in the timing domain. 
In addition to the ascendant part of the second Beta 
profile Beta2A, the descendant part of the first Beta 
profile Beta1D will partially contribute to the 
generation of the first overlapped arc for the period 
of time that corresponds to the time shift of t1(i) - 
t0(i+1). Thus for the time shift between two 
consecutive Beta profiles, two elliptic strokes are 
executed and the mean of both will approximate the 
original handwriting script for that period of time. 
 

 
(A) 

 
(B) 

 
Figure 7: (A) The French handwriting script “elle” 
approximated by elliptic portions-The different 
ellipses are designed. 
(B) The French handwriting script “elle” 
approximated by elliptic portions-The different 
elliptic arcs are designed. 
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In other words two portions of different Beta 
profiles, respectively Beta(i)D and Beta(i+1)A are  
partially integrated for the generation of the original 
handwriting script: each portion will generate an 
elliptic arc and the mean of both fit the original 
handwriting script during the time shift between 
them. Each handwritten component is thus made up 
of a set of strokes that are overlapped in time to 
produce a fluent trace. According to the model, these 
strokes constitute the basic units of human writing 
movements and serve as the coding elements in the 
motor planning of complex trajectories. 
 

 
(A) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B) 
 
 
 
 
 
In terms of spatial constraints, two consecutive 

strokes are superimposed during the time shift 
between them t1(i) - t0(i+1) to regenerate the 
handwriting trace for several reasons such as: 
• Firstly, stroke superimposition is constrained by 
limiting the number of strokes that are concurrently 
executed to two, 
• Secondly, the time shift is fixed to t1(i) - t0(i+1) 
because of the existence of hidden strokes and 
mainly the existence of inflexion points. 
 
 
Figure 8:  (A) The Arabic handwriting script 
“Houa”. 
(B) The curvilinear velocity signal related to the 
Arabic handwriting script “Houa”. 
 
 
• Firstly, stroke superimposition is constrained by 
limiting the number of strokes that are concurrently 
executed to two, 

• Secondly, the time shift is fixed to t1(i) - t0(i+1) 
because of the existence of hidden strokes and 
mainly the existence of inflexion points. 
 
The same procedure of modelling was applied with a 
second example of handwritten script, which is the 
word “Houa” in Arabic, as shown in figure 8.  
Figure 8A, shows the original handwriting script, as 
it was acquired from a digitizer tablet type Wacom4 
with a sampling frequency of 200Hz. 
The curvilinear velocity signal relative to this earlier 
handwriting script “Houa” is depicted in figure 8B. 
We remark the presence of inflexion points which 
will participate to add further Beta profiles, as 
shown in figure 9A.  
 

 (A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: (A) The curvilinear velocity signal related 
to the Arabic handwriting script “Houa” 
approximated by Beta profiles: a Beta profile for 
each single stroke. 
(B) The curvilinear velocity signal related to the 
Arabic handwriting script “Houa” approximated by 
Beta profiles: the summation of the different Beta 
profiles.   
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In figure 9A, we have the different Beta profiles 
approximating the original curvilinear velocity, 
which are depicted (dashed lines). Analysing these 
earlier, we remark that the original curvilinear 
velocity is dynamically fruitful: we have 4 inflexion 
points. The overlapping effect was taken into 
consideration; it’s observed that the starting time of 
a particular Beta profile (i) depends on the presence 
of the inflexion points: the activation time of a Beta 
profile may corresponds to a dip in the original 
curvilinear velocity and it may corresponds to the 
time when a previous Beta profile (i-1) reaches its 
maximum.   
The summation of the different Beta profiles is 
depicted in figure 9B (dashed lines). We remark that 
the approximated sum is related to the optimization 
of the parameters according to the different strokes. 
The complexity of this problem grows rapidly when 
the number of strokes increases. 
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Figure 10: (A) The Arabic handwriting script 
“Houa” approximated by elliptic portions -The 
different ellipses are designed. 
  (B) The Arabic handwriting script “Houa” 
approximated by elliptic portions-The different 
elliptic arcs are designed. 

The same procedure of modelling was applied with a 
third example of handwritten script, which is the 
word “Hala” in Arabic, as shown in figure 11.  
Figure 11A, shows the original handwriting script, 
as it was acquired from a digitizer tablet type 
Wacom4 with a sampling frequency of 200Hz. 
The curvilinear velocity signal relative to this earlier 
handwriting script “Hala” is depicted in figure 11B. 
Comparing to the last example of the Arabic word 
“Houa”, we remark that the curvilinear velocity 
signal related to the handwritten script “Hala” 
contains more discontinuities.  

(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (B) 

 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

 
 
Figure 11: (A) The Arabic handwriting script 

“Hala”. 
(B) The curvilinear velocity signal related   to the 
Arabic handwriting script “Hala”. 

 
The velocity amplitude varies with time, which 
reflects the form of the generated letter during the 
handwriting process. The minimum of velocity 
corresponds in the space domain to the letter “Alif”. 
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In figure 12A, we have the different Beta profiles 
approximating the original curvilinear velocity 
relative to the word “Hala”, which are depicted 
(dashed lines). Analysing these earlier, we remark 
that the original curvilinear velocity is dynamically 
fruitful: every maximum is succeeded by an 
inflexion point and the number of curvilinear strokes 
will be multiplied.  
In figure 12B, we have elaborated the sum of the 
different Beta profiles. We can remark that the Sum 
obtained for the case of the word “Houa” is more 
satisfactory, which could be explained by the 
increase of the strokes number and the fruitful 
dynamics. 
 

(A) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: (A) The curvilinear velocity signal related 
to the Arabic handwriting script “Hala” 
approximated by Beta profiles: a Beta profile for 
each single stroke. 
 (B) The curvilinear velocity signal related to the 
Arabic handwriting script “Hala” approximated by 

Beta profiles: the summation of the different Beta 
profiles 
 
In figure 13A, we remark the different ellipses 
approximating the original handwriting script 
“Hala”. Using the decomposition scheme, different 
elliptic strokes are depicted in figure 13B. These 
strokes are not apparent directly in the image of the 
handwriting script “Hala”. They are partially hidden 
in the trajectory as a consequence of superimposition 
process.    
Despite the presence of the inflexion points, an 
important error between the original handwritten 
trace and the 7th stroke was observed in figure 13B, 
compared to the other strokes.  
 

 (A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
(B) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 14: (A) The French handwriting script 
“Bonjour”. 
(B) The curvilinear velocity signal related to the 
French handwriting script “Bonjour”.  
 



H. BEZINE et al.: GENERATION AND ANALYSIS OF HANDWRITING 

I.J. of SIMULATION Vol. 8 No 2                                                            ISSN 1473-804x online, 1473-8031 print 58

This is due to mainly to the fruitful dynamics in this 
part of the fluent trace. 
 
For the case of the figure 14A, we can see the 
original handwriting script, which is the French 
word “Bonjour”, as generated by a human subject. 
The curvilinear velocity signal associated to this real 
data is depicted in figure 14B. As previously, the 
original data was acquired by using a digitizer tablet 
type Wacom4, sampled at 200 Hz. 
The curvilinear velocity signal presents three 
interesting parts where the amplitude is greater 
comparing to the other parts of the signal. As we 
have seen previously that the curvilinear velocity 
varies from a letter to another, depending on the 
form of this earlier. 
In figure 15A, we have the different Beta profiles 
approximating the original curvilinear velocity 
related to the script “Bonjour”, which are depicted 
(dashed lines). Analysing these earlier, we remark 
that the original curvilinear velocity becomes more 
complicated comparing to the previous cases, from 
the point of view that it contains more inflexion 
points and hidden strokes. 
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Figure 15: (A) The curvilinear velocity signal related 
to the French handwriting script “Bonjour” 
approximated by Beta profiles for each single stroke. 
(B) The summation of the different Beta profiles.  
 
In figure 16A, we remark the different ellipses 
approximating the original handwriting script 
“Bonjour”. We observe that the dynamics observed 
in the original curvilinear velocity signal had 
significant effect on the regeneration of the original 
script. Using the decomposition scheme, different 
elliptic strokes are depicted in figure 16B. These 
strokes are not 
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Figure 16: (A) The French handwriting script 
“Bonjour” approximated by elliptic portions-The 
different ellipses are designed. 
(B) The French handwriting script “Bonjour” 
approximated by elliptic portions-The different 
elliptic arcs are designed. 
 
For the last example of handwritten script, we have 
used the fluent trace “enis” as depicted in figure 
17A. The curvilinear velocity related to this script is 
represented on figure 17B. We remark that the 
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curvilinear signal have less dynamics comparing to 
the precedent cases of handwriting scripts “Bonjour 
and Hala”. 
 
As shown in figure 18A, the different Beta profiles 
approximating the curvilinear velocity related to the 
script “enis”. One can see that the absence of an 
inflexion point for the second Beta profile have 
considerable effect on the obtained sum of the 
different Beta profiles in figure 18B. 
In figure 19A, we remark the different ellipses 
approximating the original handwriting script “enis”. 
For each Beta profile of figure 18A corresponds an 
elliptic stroke in figure 19B. We remark that the 
approximation with elliptic strokes is more 
satisfactory for the case of smooth handwritten 
scripts, where the dynamics are rather absent.    
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Figure 17: (A) The French handwriting script “enis”. 
(B) The curvilinear velocity signal related to the 
French handwriting script “enis”.  
 
In figure 19A, we remark the different ellipses 
approximating the original handwriting script “enis”. 
For each Beta profile of figure 18A corresponds an 
elliptic stroke in figure 19B. We remark that the 
approximation with elliptic strokes is more 

satisfactory for the case of smooth handwritten 
scripts, where the dynamics are rather absent.    
One note worthy feature of the Beta elliptic model is 
that the via-points are necessary reached. It’s not the 
same case for the delta-Lognormal model of 
Plamondon and Guerfali [49, 86], where the via-
points are not necessarily ever reached: a new stroke 
may be launched toward a via-point in a different 
direction and super-imposed on the prior stroke so 
that the first “virtual” via point is not reached. 
Instead of choosing a via-point, which is far away 
and does not to be reached, we preferred to choose a 
closer via-point and reach it 
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Figure 18: (A) The curvilinear velocity signal related 
to the French script “enis” approximated by Beta 
profiles.  
(B) The summation of the different Beta profiles.  
 

5. CONCLUSION  
 

In this paper, we present a novel generation 
modelling approach for the analysis and 
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understanding of online cursive handwriting. Our 
scheme is based upon a dynamic fitting of the 
handwriting scripts, both in the static and the 
kinematic domains, using the Beta-elliptic model.  

To represent a simple movement called stroke 
the model requires a set of ten parameters that 
describes the movement in both domains. 
Complex movements such as handwriting are 
described by the model as an algebraic summation 
of time overlapped single strokes. These strokes are 
not apparent directly in the image of a handwriting 
script. They are partially hidden in the trajectory as a 
consequence of superimposition process [28, 66]. 
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Figure 19: (A) The French handwriting script “enis” 
approximated by elliptic portions-The different 
ellipses are designed. 
(B) The French handwriting script “enis” 
approximated by elliptic portions-The different 
elliptic arcs are designed. 

 
 

As one can see from the previous examples, 
different type of realistic patterns can be produced 

by the Beta-elliptic model. Using the decomposition 
scheme of handwriting scripts into strokes, 
depending on the tuning between two strokes, 
different visual patterns can be generated with 
specific curvilinear velocity components.  
Many models have been applied to French 
handwriting, but unfortunately, only a few 
publications have been interested to the modelling of 
Arabic handwritten scripts so far. It has been shown 
that the Beta-elliptic model can be applied not only 
to French handwriting but also to Arabic 
handwriting words. Nevertheless, it is likely, that we 
will see more applications to our Beta-elliptic model 
in the future. 
A method for parameters estimation and 
optimization is proposed in this paper. A two-step 
approach is proposed, one step to approximate the 
parameters and a second to optimize the solution by 
means of non linear regression technique. Despite 
the fact that the optimal tuning functions provide 
better explanation of the experimental data, still 
there is a fraction of difference between the two 
curvilinear velocity profiles. 
So, our model can be employed as a preliminary 
state of a dynamic signature verification system, as 
well as, for an on-line handwriting recognizer 
system. As we have shown that we can generate 
human handwriting, not only Latin handwriting 
scripts but also Arabic ones using the Beta-elliptic 
model. Then as a future work, we have firstly to test 
our model for multi signatures: European signatures 
and Arabic ones. Assuming that, European 
signatures have more a resemblance for shapes, 
usually displaying a number of loops lines and 
curves surrounding the main body of the signature. 
Furthermore, Arabic signatures are written in the 
opposite direction from right-to-left. Secondly the 
Beta-elliptic model can be investigated for the 
segmentation state of an automatic signature 
verification system, it may incorporate design 
considerations covering a wide range of signatures 
taken into account the style of these signatures, that 
can be universally successful. 
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