An Approach Of Cellular Learning Automata To Job Shop Scheduling Problem

Masoud Abdolzadeh a and Hassan Rashidi b

a Department of Computer Engineering, Islamic Azad University of Qazvin, Qazvin, IRAN
b Department of Statistics, Mathematics, and Computer Science, Allameh Tabataba'i University, Tehran, IRAN

Abstract - The Job shop scheduling problem (JSSP) is one of the NP-Hard combinatorial optimization problems. During the last four decades, many researches were devoted on this problem. The goal in the problem is to minimize maximum completion time of jobs, known as makespan. This paper addresses an approach to evolve Cellular Learning Automata (CLA) to make it able to solve the JSSP by minimizing the makespan. This approach is applied to several instances of a variety of benchmarks and the experimental results show that it produces nearly optimal solutions, compared with other approaches. All rights reserved

Keywords: Job Shop; Scheduling, Makespan, Cellular Learning Automata.

I. INTRODUCTION

Scheduling problems in various systems is one of the major challenges to reach high performance. In order to simplify algorithms presentation and real world problems analyzing, scheduling problems classified into different groups. Each real world problem assigned to one of these groups and solved with appropriate solutions. One of these problems is called Job Shop Scheduling Problem (JSSP). This problem includes resource assigning to set of operations in their given time [1]. Industrial tasks ranging from assembling cars to scheduling airplane maintenance crews are easily modeled as instances of this problem, and improving solutions by even as little as one percent can have a significant financial impact. Furthermore, this problem is interesting from a theoretical standpoint as one of the most difficult NP-Hard problems to solve in practice and only small groups of them can be solved by searching all problem space [2].

A typical problem of JSSP with m machines and n Jobs has (n!)m possible states in its search space. Thus for problem with 10 jobs and 10 machines there are 7.2651 * 10183 possible states [3].

The approaches in literature to scheduling problem are classified in two groups. The first group identifies an exact solution via integer programming, dynamic programming, branch and bound (B&B) and enumeration [4]. This group needs too much time and becomes inefficient as the number of jobs increases. The second group is meta-heuristic, which yields an approximate solution in a very short time; the methods involved in the group are very diverse, including a Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), and Neural Networks (NN) [5-15]. These algorithms use problem search space and try to optimize the first or the current solutions and repeat optimization to get terminate criterion.

We propose an approach to JSSP based on the cellular learning automate. There is no solution for the problem by this approach. At the end-quarter of the 20th century, Cellular Automata was proposed as a model to analyze treatments of complex systems. Learning Automata presented at the beginning of 1960s which treats based on learning algorithm. This model learns how to choose its best action from a set of actions. The Cellular Learning Automaton proposed was based on a combination of cellular and learning automata. In this model each cell equips with a learning automaton that determines cell's state, which is a specific solution. This paper optimizes the solutions to the JSSP using features of CLA and makes possible learning the position of jobs in job sequence.

The rest of this paper is structured as follows. In section 2, literature review of the JSSP is given. A detailed description of the JSSP expressed in section 3. Section 4 summarizes the cellular learning automata. In section 5, our proposed algorithm is described. Section 6 is considered for experimental results and comparison with other algorithms. Section 6 is the conclusion.

II. LITERATURE REVIEW

Job shop makespan minimization is a challenging problem. Though efficient, polynomial time solutions have been found for the problem. Work on optimal solution procedures for general makespan problems has focused most heavily on the development of implicit enumeration, or branch and bound approaches. These approaches were not able to solve larger problems. As
observed in [21], the applicability of implicit enumeration schemes is limited to relatively small problems, and their performance is quite sensitive to particular problem instances and initial upper bound values.

Other research has investigated heuristic approaches. Simple priority dispatching algorithms are the most representative and the most widely used in practical environments. While dispatching algorithms are extremely fast and easy to implement, there are also drawbacks. The performance of any given rule is typically quite sensitive to problem characteristics, and it is generally quite difficult to find one that dominates in any particular environment. Such procedures are also susceptible to very poor performance in certain circumstances, due to the myopic nature of their decision-making. With the rapid increase in computing power in recent years, a growing body of research has focused on development of more sophisticated heuristic methods, which incorporate various forms of search and aim at striking a better cost performance tradeoff than the extremes that are provided by dispatch and optimal solution procedures. One notable approach emphasizes bottleneck tracking as a heuristic methodology for integrating optimal solutions to simpler, one-machine sub problems. A series of shifting bottleneck procedures have been defined which have demonstrated very strong performance on a range of previously published benchmarks, and provide a continuum of increasingly more accurate solution procedures at increasing computational expense.

Other work has explored the use of various local search techniques as a basis for approximate solution [5-15] which yields a solution in a very short time; the methods involved in the work are very diverse, including a Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), Ant Colony Optimization (ACO), and Neural Networks (NN) [5-15]. These techniques use problem search space and try to optimize the first or the current solutions and repeat optimization to get terminate criterion.

III. JOB SHOP SCHEDULING PROBLEM

This section defines JSSP and describes problem and solution representation methods.

A. Problem Definition

A JSSP can be defined by (n) jobs and (m) machines. Each job consists of several operations. Each operation should be processed by specified machine. Processing time for each operation is fixed and predefined. In other words, there is a sequel of machines proportionate to each job that must be processed. We suppose all jobs are ready at the beginning time. Initialization time of operations set to zero or as a part of processing time. There is no precedence between jobs. Each machine can process just one operation of a job and each job can be processed by one machine at a time. There is no permission to interrupt for operation processing.

We can define Construction of JSSP as follows:
• A set of N independent Jobs. {Jj} 1≤j≤N
• Each Jj has a sequence of operations. (Gj)
• Each Gj is ordered series of operations and Oi,j determines the position of an operation in the job sequence. There is precedence between the operations of a job. In other words, operation Oi+1,j cannot processed before operation Oi,j.
• Each Oi,j needs to execute on a specific machine from the machine set : {Mk} 1≤k≤m (m is the number of machines). This issue implicitly makes an assignment problem.
• There is a set of predefined processing time. Pi,j is the processing time of Oi,j.
• Each machine processes operations sequentially.
• Cmax is the completion time of all jobs (makespan).

There are infinite buffers to queue operations before and after each machine. Each possible scheduling must determine start time of operations thus there was no conflict between operations. The goal in the JSSP is to find possible solutions that determine processing order of operations and processing capacity of machines. In other words, it identifies the set of finishing time for each operation {Ci,j,k} and minimizes makespan.

B. Problem Representation

A table with n rows and m columns can be used to represent a JSSP. Rows and columns present jobs and corresponding machines for their operations, respectively. Each cell of the table contains machine number and its processing time. Table 1 shows a typical JSSP with 2 jobs and 3 machines.

<table>
<thead>
<tr>
<th>Job</th>
<th>Machine(processing time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1(3) 2(2) 3(5)</td>
</tr>
<tr>
<td>2</td>
<td>3(5) 2(5) 1(4)</td>
</tr>
</tbody>
</table>

Another way to represent JSSP is using of disjunction graph G(V,C,D). V is the set of nodes. In this set, there is one node per each operation. Also there are two beginning (O) and finishing (*) nodes in this set. These nodes distinguishes start and stop time of scheduling respectively. C is the set of conjunction directional edges of graph. The Members of C are used to present processing order of operations. D is the set
of disjunction (bidirectional) edges. There is a disjunction edge between each pair of operations on a machine in corresponding graph. The processing time of each operation is assigned to corresponding node as weight. Fig.1 shows a graphical schema of Table 1.

Fig 1: Graphical representation of Table 1

Where Oij is the jth operation of job i and Pij is the processing time of jth operation of job i. Two nodes (O) and (*) are beginning and finishing nodes which determine start and stop time of scheduling respectively. JSSP solutions can be shown in various methods. Three common methods to represent JSSP solutions are as follows:

1. Disjunction graph: By determining the processing order of machines, a scheduling can be defined. If we convert disjunction edges (bidirectional edges) to directional edges, obtained graph shows a possible scheduling solution. This graph should not have any cycle.

2. Permutation: A schedule is represented by a set of permutations of jobs on each machine. In other words, there are m partitioned permutations of operation numbers. A possible representation for a 3×3 problem could be:

 M1 M2 M3
 132 231 213

3. Permutation with repetition: By repeating jobs for m times (m is the number of machines), an un-partitioned operation based representation can be used. The kth occurrence of a job number would refer to kth operation of that job. The sequence of operations thus represents the priority in which they are to be scheduled. We can produce a possible schedule by scanning job numbers from left to right. Fig.2 shows a possible representation for a 3×3 problem. E.g. the third number shows the second operation of job 2 (O22) that must be executed on machine M3 after first operation on the same job (O21). The next number is the first operation of job 3 (O31) that must be executed on machine M2 after O21.

Different representation methods affect on used algorithms. Thereby, the chosen presentation method must be compatible with algorithm operators and not caused to produce impossible solutions. If so, the cost of converting impossible solution to possible solution should not be too much. We used permutation with repetition representation method in the algorithm. The second method (permutation) can be useful too, but, as the occurrence of deadlock is possible in this method, we must use a way to eliminate deadlock. Because this elimination makes additional costs, the second method is not useful in algorithm. In permutation with repetition representation method, the jobs are scanned from left to right order and then just one job can be chosen at a time, but in second method choosing m jobs is possible. E.g. A typical representation for a 2×2 problem by permutation method is as follows:

 M1 M2
 O12, O21 O22, O11

 M1 M2
 12 31

We suppose each machine process operations from left to right order, and then O11 and O21 should be processed after O12 and O22, respectively. On the other hand, O11 and O21 are prior to O12 and O22, respectively. Then, in this example, none of the operations can be processed on the machines. Thus, sometimes deadlock occurrence is not avoidable. One way to eliminate deadlock is generating new permutation for a randomly chosen machine.
IV. CELLULAR LEARNING AUTOMATA

In this section, we describe Learning Automata, Cellular Automata and Cellular Learning Automata, briefly.

A. Learning Automata

Learning automata is a machine that can execute a finite set of actions [16]. Each action has a certain probability (unknown for the automaton) and is evaluated by environment. The results of evaluation are sent to automaton as a positive or negative signal. Each action gets reward by this signal. The aim is to learn to choose the optimal action (i.e. the action with the highest probability of being rewarded) through repeated interaction on the system. Fig.3 illustrates how a learning automata works in feedback connection with a random environment.

An Environment is a triple E={α, β, c}, where α={α1, α2, ..., αs}, β={β1, β2, ..., βm}, c={c1,c2,...,cs} are an action set with s actions, an environment response set and the penalty probabilities set c containing s probabilities, respectively. Each element ci of c corresponds to one input of action αi. Learning automata generates actions α(n). These actions are evaluated by environment. The environment response (β) is sent to learning automata to generate next generation of actions α(n+1). There are three types environment based on its response. Whenever β=β1,β2) is a two members set, environment type is P. In this environment, β1=1 is the punishment and β2=0 is the reward. A further generalization of the environment, known as Q-model, allows finite output set with more than two elements that take values in the range [0,1]. A further step in this direction is the S-model whose responses can take continuous values over the unit range [0,1].

Learning Automata can be classified into two main families: Fixed Structure Learning Automata and Variable Structure Learning Automata (VSLA). We consider a VSLA in our algorithm and it operates as follows:

A VSLA is a quintuple <α,β,p,T> where α and β are the same parameters as the environment’s, and p={p1,p2,...,ps} is the action probability set, each being the probability of performing every action in the current internal automaton state. The function P(n+1)=T[α(n),β(n),p(n)] is the reinforcement algorithm which modifies the action probability vector p with respect to the performed action and received response at the next generation. This automaton operates as follows. Based on the action probability set p, automaton randomly selects an action αi, and performs it on the environment. After receiving the environment’s reinforcement signal, automaton updates its action probability set based on following reinforcement scheme; the equations (1) for favorable response, and equations (2) for unfavorable one. When an action gets reward, its probability pi increases, while the probability of all other actions decreases.

If β=0

\[P_i(n+1) = P_i(n) + a[1 - P_i(n)] \] (1)

\[P_j(n+1) = (1 - a)P_j(n) \text{ if } i \neq j \]

If β=1

\[P_i(n+1) = (1 - b)P_i(n) \] (2)

\[P_j(n+1) = (b / r - l) + (1 - b)P_j(n) \text{ if } i \neq j \]

Where a and b are reward and penalty parameters. When a=b, automaton is called "LRP". If b=0 and 0<b<a<l, the automaton is called "LRI" and "LRp", respectively [17].

B. Cellular Automata

Cellular Automata consist of a regular array of cells, each in one of finite number of states. The array can be in any finite number of dimensions. The state of a cell at the time t+1 in cellular automata is a function of the states of a finite number of cells (called its "neighborhood") at the time t. The simplest cellular automata would be one dimensional with two possible states per cell and a cell's neighbors defined to be the adjacent cells on either side of it.

C. Cellular Learning Automata

CLA is obtained by combining cellular automata and learning automata. It is a mathematical model for dynamical complex systems that consists of a large number of simple learning components. Any number of learning automaton can reside in a specific cell. Reinforcement signal for every automaton is computed according to CLA rule and actions of other learning automata residing in neighbor cells. This model has learning capability of learning automata and collective
behavior and locality of cellular automata. A d dimensional CLA is a quintuple $\text{CLA}=(Z_d, \mathcal{O}, A, N, F)$ that:

- Z_d is a d-dimensional grid of cells.
- \mathcal{O} is a finite set of states that each cell can possess.
- A is a set of learning automata that each of them are assigned to a specific cell.
- $N = \{X_1, ..., X_m\}$ is a finite subset of Z_d that is called neighborhood vector.
- $F: \mathcal{O}_m \rightarrow \beta$ is a local rule of CLA. β is a set of valid reinforcement signals that can be applied to learning automata.

Like cellular automata, CLA operate subject to a rule. The rule of CLA and the actions selected by neighboring learning automata of any particular learning automaton determine the reinforcement signal to the learning automaton residing in that cell. In CLA, the neighboring learning automata of any particular learning automaton constitute its local environment, which is non-stationary because it varies as action probability vector of neighboring learning automata vary.

V. PROPOSED ALGORITHM

In this section a new approach for solving Job Shop Scheduling Problem, using cellular learning automata is proposed. First, a solution representation method should be chosen for this purpose. In this paper, permutation with repetition is used. We used an array with a length of $m\times n$ to represent solutions that named Cell. Each cell has $m\times n$ learning automata. Fig.4 shows the construction of used CLA in our algorithm.

![Fig 4: The construction of CLA in proposed algorithm](image)

Where LA is the learning automata residing in each cells. We consider two neighborhoods for each cell. Thus for cell i, neighbors are cell $(i-1)$ and cell $(i+1)$. Each cell chooses its best neighbor based on makespan values. In other words, the best neighbor for one cell is the cell that has lowest makespan value and we denote it by LBI. Furthermore, the best global cell based on makespan value denoted as GB and the best previous cell state set to PB array.

Since the JSSP is the ordering problem and each element of the cell represents an operation of jobs, thus for every learning automaton, actions 'set $\alpha(n)$ must be chosen based on this purpose.

Two kinds of actions' sets can be used in this paper:

- In a form of a set with two actions as follows:
 - a) Preserve current position of Oij in the cell.
 - b) Move Oij to other position.
- In a form of a set with n actions (n is the number of jobs) that each action (α_i) is "choose operation (i)".

In the first method, probability set has two members for each learning automata which initialized with 0.5 values for each action. Actions are chosen based on the probability of each action. If the cell has a lower makespan value in the next generation, we reward actions which their corresponding operation positions (Oij) are suitable and try to preserve their position in the cell. Otherwise, by selecting the other action and changing position of Oij the other states are checked.

In the second method, probability set has n members for each learning automata which initialized with $1/n$ values for each action. Like above, the operations of jobs with suitable positions are rewarded and by increasing their corresponding action probability, situation preserving chance is grown. Otherwise, by decreasing corresponding probability and increasing the other jobs' probabilities, possibility of choosing job's operation in the next generation is weakened.

In the first method, to prevent convergence and local minimums, we forced the probabilities of actions lie in the range of $[1-Pmax, Pmax]$. $Pmax$ is parameter with $Pmax > 0.5$ values. If the actions probabilities exceed from this range, we convert them to this range.

In the second method, to prevent from premature convergence and local minimums, we used an operator similar to the mutation operator in genetic algorithm. If cell stay in one state for several generations, we change some elements' position randomly.

Reinforcement signal is considered as $\beta=\{0,1\}$. If reward signal is generated for environment, $\beta_{ij}=0$ otherwise, if punishment signal is generated, $\beta_{ij}=1$. This approach uses learning automata with type LRP.

The stages of our proposed algorithm are as follows:
1. First generate initial cells with action probabilities equal to $1/k$ values (k is the number of actions) for each learning automaton. Each cell has $m\times n$ learning automata.
2. Generate actions based on probabilities vector for each learning automata.
3. Generate new cells (Xi) using learning automata.
4. Obtain makespan value for new cell and compare with PBi. If new cell has a better makespan value, replace it. (update PBi)
5. Choose the best neighbor (LBi) for each cell based on makespan values.
6. Choose the best global cell too. (GB)
7. According to the following conditions generate reinforcement signal for each learning automaton and update probability vectors.

 If(Xi.Cmax<=LBi.Cmax && Xi.Cmax<=PBi.Cmax
 && Xi.Cmax<=GB.Cmax)
 {
 For each j residing in cell i
 If(Xij==PBij && Xij==LBij && Xij==GBj)
 Reward Xij
 Else
 Penalt Xij
 }

 Where Xij, PBij and LBij are the jth elements of Xi, PBi and LBi, respectively. Cmax is the makespan value. In the mentioned algorithm, reinforcement signal is generated for each cell based on current and previous makespan values and the neighbor cell' states. Then the probability vectors are updated and new generation of the cells is produced. This algorithm is applied on all cells simultaneously and will be repeated until a termination criterion is met.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In order to analyze performance of the algorithm, it was tested on several instances of some benchmarks such as ABZ7, ABZ8, LA19, LA21, LA22, LA24, LA38 and LA40. These benchmarks are shown on Table 2. In this simulation, we used CLA with type of LRP and with reward and penalty rates \(\alpha = \beta = 0.1 \).

We used C# language to implement our algorithm and perform a simulation. The Simulation is executed on PC platform with configuration of:

- 1.86 GHz CPU,
- 1MB RAM and
- Windows XP operating system.

The algorithm is repeated on all mentioned benchmarks until a termination criterion is met. In order to show convergence process, we took makespan values of a randomly chosen benchmark LA19 along the 1000 iterations with 100 initial cells.

Fig.5 illustrates the convergence process of the algorithm on LA19 benchmark.

Fig 5: Convergence process of the simulated algorithm on LA19 benchmark

Where vertical axis shows makespan values and horizontal axis represents the spent CPU time. In the beginning of the optimization, the best makespan value is 1223. After 1000 iterations, the best obtained makespan value is 845. We see that the makespan is significantly decreasing over the execution time. The convergence rate is higher at first and it reduces while we proceed to the next iterations. This process continues until the solution converges to the optimal solution, 842.

The rates of reward and penalty (\(\alpha \) and \(\beta \)) effect on premature convergence rate. We tested the algorithm on LA19 benchmark with three different reward and penalty rates. Fig.6 shows convergence process of the algorithm on three rates \(\alpha = \beta = 0.1, \alpha = \beta = 0.3 \) and \(\alpha = \beta = 0.5 \) during 500 iteration.

Fig 6: Convergence process of the simulated algorithm on LA19 benchmark with three different reward and penalty rates

Where horizontal axis shows the optimization process and vertical axis represents makespan values. Fig.6 shows that the premature convergence rate is significantly higher when the reward and penalty rates possess higher values.
The results of simulation are compared with some other approaches. These approaches are: Electro Magnetism, Tabu search with neighborhood structure known as N6, T12 tabu list method and 4628 moves and Genetic algorithm with simple operators, 100 individuals and 3000 generations that have represented good results. Table 2 illustrates the experimental results of the approaches on the mentioned benchmarks. Mentioned comparisons in Table 2 are shown on Fig.1 graphically. For more information about implementation details and parameters’ values of so called approaches refer to [13, 18, 19, 20]. A comparisons on percentage of errors among approaches are calculated in Table 3. As the table shows, our algorithm most often performs better than the others.

Table 2: Simulation results of solving JSSP using CLA

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Problem size (n x m)</th>
<th>Optimal value (makespan)</th>
<th>Electro Magnetism</th>
<th>Tabu Search</th>
<th>Genetic Algorithm</th>
<th>Our algorithm (Best)</th>
<th>Our algorithm (worst)</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>CPU Time Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abz7</td>
<td>20 x 15</td>
<td>656</td>
<td>744</td>
<td>696</td>
<td>700</td>
<td>696</td>
<td>726</td>
<td>714.22</td>
<td>11.007</td>
<td>1617</td>
</tr>
<tr>
<td>Abz8</td>
<td>20 x 15</td>
<td>638</td>
<td>798</td>
<td>697</td>
<td>720</td>
<td>716</td>
<td>745</td>
<td>726.81</td>
<td>10.63</td>
<td>1330</td>
</tr>
<tr>
<td>LA19</td>
<td>10 x 10</td>
<td>842</td>
<td>886</td>
<td>860</td>
<td>850</td>
<td>845</td>
<td>866</td>
<td>855</td>
<td>6.86</td>
<td>314</td>
</tr>
<tr>
<td>LA21</td>
<td>15 x 10</td>
<td>1046</td>
<td>1143</td>
<td>1099</td>
<td>1074</td>
<td>1092</td>
<td>1119</td>
<td>1106</td>
<td>13.81</td>
<td>125</td>
</tr>
<tr>
<td>LA22</td>
<td>15 x 10</td>
<td>927</td>
<td>962</td>
<td>962</td>
<td>940</td>
<td>934</td>
<td>963</td>
<td>946.28</td>
<td>9.93</td>
<td>192</td>
</tr>
<tr>
<td>LA24</td>
<td>15 x 10</td>
<td>935</td>
<td>1006</td>
<td>989</td>
<td>984</td>
<td>972</td>
<td>992</td>
<td>985.82</td>
<td>7.31</td>
<td>99</td>
</tr>
<tr>
<td>LA38</td>
<td>15 x 15</td>
<td>1196</td>
<td>1381</td>
<td>1254</td>
<td>1273</td>
<td>1264</td>
<td>1309</td>
<td>1284.33</td>
<td>14.86</td>
<td>516</td>
</tr>
<tr>
<td>LA40</td>
<td>15 x 15</td>
<td>1222</td>
<td>1425</td>
<td>1261</td>
<td>1278</td>
<td>1259</td>
<td>1275</td>
<td>1269.08</td>
<td>9.43</td>
<td>469</td>
</tr>
</tbody>
</table>

Table 3: A comparison of percentage error among solution results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Problem size (n x m)</th>
<th>Percentage error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abz7</td>
<td>20 x 15</td>
<td>Electro Magnetism: 13.41463, 6.097561, 6.707317, 6.097561</td>
</tr>
<tr>
<td>Abz8</td>
<td>20 x 15</td>
<td>Tabu Search: 25.07837, 9.247649, 12.85266, 12.22571</td>
</tr>
<tr>
<td>LA19</td>
<td>10 x 10</td>
<td>Genetic Algorithm: 5.225653, 2.13776, 2.676864, 4.397706</td>
</tr>
<tr>
<td>LA21</td>
<td>15 x 10</td>
<td>Our algorithm (Best): 9.273423, 5.066922, 3.77562, 3.77562</td>
</tr>
<tr>
<td>LA22</td>
<td>15 x 10</td>
<td>3.77562, 1.402373, 5.793583, 5.775401, 5.240642</td>
</tr>
<tr>
<td>LA38</td>
<td>15 x 15</td>
<td>5.46823, 4.849498, 5.46823, 4.849498</td>
</tr>
<tr>
<td>LA40</td>
<td>15 x 15</td>
<td>16.61211, 3.191489, 4.582651, 3.027823</td>
</tr>
</tbody>
</table>
The horizontal axis shows the benchmarks with detailed corresponding makespan values for each and vertical axis represents makespan values. The Fig. 7 shows that our proposed algorithm often produces solution with lower makespan values than other approaches. These values are near to the results of genetic algorithm.

VII. CONCLUSION

In this paper, we used Cellular Learning Automata based approach to solve the Job Shop Scheduling Problem. The approach was presented in a new algorithmic form, in which it has two kinds of actions’ sets. These actions were generated to transfer cells into best states by changing position of operations of the jobs. The algorithm found out the best position of jobs’ operation in the execution sequence using the learning aspect of CLA. The results of simulation on several instances of the problem showed that our proposed algorithm often produces optimal or near to optimal solutions. In our results, the makespan values were significantly better than other approaches.

REFERENCES

