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Abstract — We derive a measure that describes the complexity and consistency of a 3D virtual scene, so as to be able to compare
scenes used for training purposes, and to allow changes in a scene to generate appropriate responses within games. The measure is
calculated by constructing an entropy tree that links all the objects within the scene together. The total entropy is thus the sum of
all the individual ‘object to object’ entropies within the tree. The object to object entropy is derived from the nature of the objects
(their semantic relevance to each other, termed selection entropy) and to their geometric arrangement. We calculate the selection
entropy for a number of examples to show how it quantifies the aesthetic consistency and complexity of the scene.
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L INTRODUCTION

Within games and simulations, the need to increase
the richness of the experience has long been known.
Indeed, in military training simulators, one of the key
motivations for their use is to provide trainees with
scenarios of a richness and complexity that would be
expensive, difficult and dangerous to provide in 'real
world exercises. As the quality of graphics and
processing in home computers has increased, so this
quest for richness has moved into the domain of
computer games.

With modern hardware the level of sophistication is
now such that the nature of the complexity rather than
just the level of complexity becomes important. The
aesthetic aspects of consistency, relevance and
appropriateness contribute to the immersive qualities of
an environment, in that wholly consistent scenes will be
better accepted by the user as an environment within
which they enact their role.

In this paper we will show how scene layout can be
interpreted (and indeed calculated) mathematically as
entropy. One is usually introduced to the concept of
entropy by comparison with 'everyday untidiness' -
which is almost immediately discarded in favour of an
explanation that can be developed mathematically. This
could be based on information theory (in the case of
computer science) or statistical mechanics (for physics).
However, within a scene, entropy and untidiness can
both be understood as being due to geometry (where
things lie relative to each other) and content (the
selection of objects that are present). The former has
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been discussed elsewhere [1]. In this paper we consider
the contribution to scene entropy that is made by object
selection. The ability to express an ontology in
mathematical form allows the complexity, aesthetic
consistency and appropriateness of a scene to be
measured. The entropy thus calculated provides an
objective criterion for use in the design of games, or
during gameplay.

A brief survey of other measures used in scene
analysis and generation 1s provided in section 2. Section
3 explains the mathematical basis for our measure, and
section 4 shows how it applies in some examples of
manually generated scenes. Section 5 discusses these
results and how the measure may to be used with other
criteria to fully automate aesthetically appropriate scene
generation,

1L

Work on measurement of scene complexity has
been quite limited. Though 'real-world' cognitive
studies often vary scene complexity as part of their
experimental setup [2], they do so on a purely heuristic
and subjective basis. Measurement of 2-dimensional
scene complexity has been done by Feixas et al [3], but
based purely on visual aspects such as occlusion within
the field of view.

Consideration and measurement of the artefacts
within the visual scene is closely linked to the area of
automatic scene layout/generation, where more work
has been done. One would have thought that this
discipline would be relatively mature, since the

PREVICUS WORK
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problem of automated layout of circuit boards is an old
one [4]. However, the layout limitations of a circuit
board and the necessity of laying connective tracks
constraing the problem in a very different way to the
problem of laying out a human occupied scene.

Semi-automated layout of scenes was done by

WordsEye and Seversky and Yin [5] [6], but they took
no account of any 'appropriateness’ of the elements of
the scene. Kjolass [7] considered layout of furniture
based on templates of relationships between them, but
without adding the possibility of objects placed on
them. One of the earliest examples to add this feature
was Xu [8]; his aim was to ensure closest spacing of
placed objects. This was extended by Akazawa [9],
again using contact as constraints, but allowing regular
repeated layouts to occur automatically.
Sanchez [10] used a genetic algorithm to achieve a
room layout,  using explicitly defined rules for
constraints on objects and therefore for the fitness
function. Vassilas [11] also took the genetic algorithm
route, coupled with a declarative method for
establishing  hierarchical  relationships  between
architectural entities. Although these use some semantic
information for layout, this has not been extended into
the domain of 'relevance' to the location. In [12] we
considered the need to try and make this placement less
ordered, and started to develop a placement mechanism
controlled by criteria based on regularity and relevance.
More recently, [13] used a petri net method of
placement based on 'aftractor’ points within a room
around which to base the furniture. Ref [14] used
simulated annealing to place objects provided for a
scene in a manner suited to best movement around the
scene, but the objects used were pre-selected for the
room.

The measures used by the papers on automated
placement do not easily relate to aesthetics. Within
industrial design, the last 10 years have seen attempts to
provide modelling tools that match the perceptions and
criteria of the artist, for example by tagging or
ontologies to relate the design elements to the intent of
the designer [15]. However, numerical analysis is often
limited to well-defined areas where some simple
criteria can be used and optimised [16]. The other
obvious place where consistency 1s considered is in
user interface design, but there the issues relate to
consistency of layout, colour etc. or the actions needed
to fulfil goals [17], [18].

We derive a complexity measure based on entropy
which includes semantic elements to assess scenes.
Previous work on the measurement and use of entropy
and information theory for graphical scenes includes
[3]. [19] and [20], but (as stated earlier) these relate
only to visual complexity of the field of view, with no
semantic content. However, a study by [21] assessing
similarity of human artefacts and relating this to their
levels of entropy found a “strong and linear”
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relationship between entropy and diversity, suggesting
that it is possible to use quantifiers of similarity to
calculate entropy for a scene. We would therefore argue
that any aesthetic measure of a scene should take into
account the semantic relationships between the cobjects.

III. FORMULATION OF THE ENTROPY MEASURE

A.  Basic Entropy Definitions

In this section we review the mathematical
formulation of our entropy measure and show how it
can be used as a quantitative aesthetic measure. An
initial discussion of this material can be found in [22],
however we clarify it here.

In  physics, entropy is a  well-defined
thermodynamic quantity. If a system is in a macrostate
that has N possible microstates (macroscopically
indistinguishable), then the entropy is defined as:

E=k,In(N)

Shannon [23] defined the concept of entropy as a
way of measuring the density of information in a
signal. It is usually expressed in terms of the
probabilistic rule that generates the data as:

E==),pIn(p)
where P, 1s the probability of the ith state.

Shannon's version of entropy is the same as the
physical one if all states have equal probability. When
evaluating the entropy of a scene we face a problem
because we do not have access to the rules that
generated the scene and we can only see a single
microstate. Thus we must infer the rules from the scene.

For a given scene it may be possible to deduce
many different rules that could have generated it. The
standard method to resolve this type of situation is the
principle of maximising entropy (see for example [24]).
However a simplistic application of this method lead to
an impasse, because given only a single sample of the
system, the inevitable result would be to choose the rule
that allows all possibilities equally and hence has
maximum entropy.

We resolve this problem by recalling that we are
considering scenarios that have been generated by
human agency as opposed to natural forces. In the latter
case it is reasonable to assume randomness as the
baseline and attempt to establish deviations from
randomness. Instead, we compare the observed
arrangement against an 1deal, perfectly ordered,
arrangement. The principle of maximising entropy is
then implemented by identifying the entropy of the
observed state with that of a rule that includes all states
that lie between the observed state and the ideal state,
with equal probability. Note that this implies choosing
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the lowest entropy representation of the observed state,
since that is the one that lies closest to the ideal. Thus
we initially choose the most ordered interpretation of
the observed state but then maximise entropy in our
choice of probability distribution.

B.  General Entropy Formulation

In this section we will discuss the general principles
of entropy based on sets of rules. In the following
section we will show how these general principles can
be applied to the selection of objects.

In general any system will have a large number of
potential states. Most of these will be unlikely if the
system 1s controlled by human beings because humans
have a tendency to impose structure on their
surroundings. For example if you move through a
typical dwelling house you will find that objects are
segregated by function.

Let T be the set of states of the system. We define a
rule R as a boolean function on T and so:

W (R)={teT|R(1)]

1s the set of states that are observed to obey the rule.
One example of such a rule might be “all pots and pans
are in the kitchen”, so states of the house in which there
was a pan in the dining room would disobey the rule
and fall cutside W.

Sometimes the differences between states are either
not observable or not important. We can handle this
situation using the concept of a symmetry, 7, which we
define as an equivalence relationon T.

lal={teT|tZa}

la| is the set of states that are deemed to be
indistinguishable from a.

In the kitchen example, |a| might be the set of states
corresponding to re-ordering of identical pans.

For Z to be consistent with R then for two states g
and b

aZb—-Rla)=R(b)

Formally we can define the entropy S for the rule R,
given the symmetry 7Z to be the logarithm of the
cardinality of the quotient set of W(R) by Z.:

S(R,Z)=Inl|w (R) 7]

In future we will write the cardinality:
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W (R)Z|=QlR, Z)

or more simply as £ (R)

Next we must move from defining the entropy of
the rule to defining that of the states. Most of the states
teT  will satisfy a number of different rules, and so
we need a criterion for choosing between them. We
implement the reasoning in subsection A, above, by
identifying the entropy of the state with that of the
lowest entropy rule that it satisfies.

In a practical system we would not expect to have
just a single rule, but rather a set of individual rules that
combine together to produce a composite overall rule.
We therefore need to consider the ways in which rules
can interact with each other Rules may be
characterised as incompatible or intersecting.
Intersecting rules can be ordered or orthogonal.

C. Incompatible Rules

Given two rules R; and R, if
W(R,)NW(R,)=0 then we say that R; and R, are
incompatible.

D, Intersecting Rules

When two rules are not incompatible then they can
be described as intersecting. In that case there will be
states that satisfy both. Two situations arise. It is
possible that satisfying one of the rules guarantees that
the other will also be satisfied In that case

W (R, )cW (R,) we say that the rules are ordered.
When that is not true then a new, lower entropy,
composite rule can be created by combiming the two:

B=RAR,, W(R3):W(R1)0W(R2)

E. Ordered Rules

Ordered rules may be defined as follows. If two
rules R and P exist such that a state s which satisfies R
must also satisfy P we write R <P.

IfR=<P AP <R, then P =R and the rules are
equivalent. If there are states that satisfy P but do not
satisty R then we write: R < Por P > .

For example, any object that satisfies “is a
tablespoon” will also automatically satisfy “is an item
of cutlery”.

Frequently, ordered rules will occur in sets. Let

R={R,.. }ielN,1=i<N
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be a totally ordered set such that Ry <R, #ff i <j .
And so:

W(R)W (R )iff i<y

We define the exclusive rule-set:

-~

R, where ﬁl-(t)ZRi( :
W (R )=W (R )W (R_)=W(R)\W(R,_))
R,(t)= false

wir =K

~
A
-
|
-
2
—
4
W

If we observe the system to be in a state £, satisfying
the exclusive rule R, then the “strictest” rule that it

satisfies from the original set 1s R.  We define the
entropy of ¢ based on R, rather than R, based on the

principle of maximising entropy. The entropy for £ is
thus:

S(t)=In(|w(R,)]) tew(R,)

n<iVi suchthat 1€ (R,)

This can be re-expressed in terms of the exclusive
rule-set as:

n

S(1)=n(X W (R))

i=1

We can define a maximum compatible symmetry
for the exclusive rule set using the equivalence relation
Z.. as follows:

aZ, biff Rla)=R (b)Y i

It is obvious that:

and so

S(t, 2, )=In(n)

In many cases each member of the exclusive rule-
set 1s satistied by the same number of elements 1.e.

W (R )=m¥ i
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and so

St =In(mn)=In{m)Hn(n)

F. Orthogonal Rules
Consider two sets of rules
R,...RyandR'|...R’',, and their exclusive rule-sets
R,..RyandR'...R',, Define the composite
rules:

~ -~

R;(t)=Rt)AR" (1)

if

If W(R,)20VYi,j
relation Z,° defined by:

. then the equivalence

aZob iff R(a)=R,(6)Vi,j

can be used to create the quotient set: T.=T/Z"
Soif:

teT,~(p.q) peT,q€T,’
then
S =81 n1 STl

1.e. the entropy can be calculated separately in each
domain and then added:

$(t)=In[Q(R,)Q(R,)]
=InQ(R,|HnQ(R,)
teW (RINWIR.)

teW (R )NWI(R,)

We will use this result frequently. Tn particular,
given a set of objects in a location (eg dining room,
study), it is possible to compute the entropy for each of
the objects individually and then derive the entropy of
the overall scene by simply adding the results together.
Tt also allows the entropy associated with the geometric
arrangement of objects to be separated from that
derived from the choice of objects. As this paper is
primarily concemed with the latter “selection entropy”™,
we will now consider it in detail.

G.  Selection Entropy

Using the result above, the selection entropy of the
whole scene can be derived by creating a tree structure

ISSN: 1473-804x online, 1473-8031 print



RICHARD CANT et al: ENTROPY AS A COMPUTATIONAL AESTHETIC MEASURE

that relates each object to another object, with the
“root” object being linked to the overall scene. Each
link in the tree structure will have an entropy and the
overall entropy will be the sum of all of these.

Consider first the overall scene. Let the set of all
available objects be U. The set of all possible
collections (multisets) of # objects 1s T where

tET =la by vy 3, BT
In the absence of any rules relating the objects to

each other or to the scene location, the overall entropy
1s given by the multinomial coefficient

(U n—1)/ )
S(eT)=In{[T) ln(n.f(Ul)f

Now we assume that the total set of available
objects is extremely large compared to the size of the
collection so we can use Stirling's approximation to
compute the factorials giving;

SlteT ~nn(|U])—In(n!) assuming (|U|>n)

The second term relates to the possible orderings of
the members. The process of choosing the lowest
entropy representation of the observed state effectively
picks a unique ordering, so this second term can be
disregarded. The overall selection entropy then
becomes simply the sum of the selection entropies for
individual objects. It is therefore sufficient to consider
the entropy of linkage between individual objects and
the location itself or between pairs of objects,

ZS

If we know something about the location then there
will be rules that relate the objects (individually) to that
location ie an ontology or a taxonomy. For example in
ontological terms, a kitchen “could contain™ a cooker,
a refrigerator etc., while in a taxonomy, they could be
considered members of the class “kitchen furniture” We
can form a hierarchical set of rules if U is a totally
ordered set, with the “most likely” objects at the start.

Thus if:

S(teT )=m(|T|)

UF={ 5. Uz}

then the associated rule-set 1s
EHR...
and S tET Z S

JieN,1<i<N where R (u,)=i>j
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now 3jsuch that @;=u,which obeys R, ¥V k> j

and hence
Sla,)= J=n(s)

Further simplification can be achieved by replacing
the total order < with a strict weak order <. For each
location L we identify Cy, a strict weak ordered subset
of {J consisting of those objects that are identified in the
ontology as being associated with L. Similarly for each
object O we define s, a strict weak ordered subset of
U consisting of the other objects that are identified in
the ontology as being associated with O in some way
(eg a desk and chair are associated).

Given < we define the equivalence relation ~ as:

In(|W (R

(a<bVb<a)—a~b (a,beC,)

A total ordering < can now be defined on the
quotient set C,/~ based on <
Cpl ™ Lhp) 1 EUSE S

:{51,02-- J

And arule-set R based on < can now be defined :

R (a)(age )iz )

These can be wused to compute individual
object/location entropies based on the results in the
previous section:

‘v’aEc;ECLfN:S(a)ZS(a,L)Zln(Z:l:|W(RI)|) (1)

¥ agC,:S(a)=In(|U7))

A similar process can be followed to compute
object/object entropies:

vae(:jecof~:S(a)=s(a,0)=1n(i|W(R)) (2)

For many objects there will now be more than one
way to compute the entropy depending on which
related object is used. To resolve the situation we use
the principles outlined above and use the object that
gives the lowest entropy result.

S(az'):Mm(S( s, j)(vJ?&J) S[az.,L),lnHU\))

However, because associations between objects are
symmetrical it is likely that:
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In other words, the two objects each justify their
presence in the scene in terms of each other. To
overcome this, we compute the entropy of the objects in
a directed acyclic graph. Thus the entropy of each new
object is calculated only with reference to those objects
that have already been calculated.

Given the collection of objects

t=(a,,...,a,)

at any stage of the process, when we have computed
the entropy contribution of m objects we can divide ¢
into two subcollections:

(t,.£,€P(1)), |t,l=m,|f,|=n—m,
t,otei<y, t, Ut =t
t—0 t —¢

(here Pf1) denotes the power set of £).

Now define the entropy of a single object 5 relative
to a subcollection £, as:

S(a,t )=Min(S(b,a)(act,),S[b,L),In(|U]))

We can now define the whole sequence of t's as
tfollows:

t,..\t,=b, ., chosen such that
8(b, s b )=Min(8(b,1,), ¥ bEL)

and the total entropy:

F

8(t)=2 8(b,,t, 1)

m=1

This process effectively constructs an “entropy tree”
linking all the objects to each other or to the location.
The absence of cycles in the tree guarantees that objects
are not bootstrapped off each other; all must link back
to the location.

This derivation of the entropy only takes account of
the collection of objects and the location. Such a
calculation is potentially useful on its own, however it
is limited because it disregards the geometric
arrangement. If one is trying to measure a pre-existing
scene then the entropy is more useful if it takes account
of the arrangement of the objects. Similarly, if one is
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trying to synthesize a scene using entropy then
considerations about how the objects will physically fit
together are important. As detailed in [22] it is possible
to compute a geometric entropy relationship between
objects and to build a geometric entropy tree. Once this
1s done, the selection entropies carresponding to the
links in the geometric entropy tree can be computed.
This gives a better idea of the true selection entropy of
the scene since it now guarantees to link together
objects that are in physical proximity.

An even better result can be given by computing a
combined entropy tree, using both selection and
geometric entropy to guide the process. Since this paper
1s principally concerned with selection entropy rather
than geometric, all the numerical results presented here
are pure selection entropy, although we have used
geometric entropy to guide tree construction. Thus from
the scene shown in Figure 1 we derive a tree structure
of which a fragment is shown in Figure 2. Note the way
that the links reflect natural expectations about the way
that tables, chairs, mats, cutlery and glasses relate
together.

H. Practicalities of the Entropy Calculation

We now consider the practicalities of selection
entropy calculation. To do this we use two sets of data.
The first is an ontology that describes the way in which
different types of objects relate together. The second is
a library that contains a list of all the objects available
to us for scene building together with their detailed
characteristics. We showed above that what we need to
compute scene entropy is object-object entropy and
object-location entropy. Equation (2) above indicates
that object-object entropy requires a count of the
number of objects that lie “in between™ the two that we
are trying to link. The ontology provides a framework
of links that can be used to navigate from one object to
another. The entropy 1s then computed as the logarithm
of the number of objects that are encountered during the
navigation.

The ontology includes the following types of
linkage for objects:

Goes with

Similar to

Could be contained by

Could contain

The computation of object-location linkage based
on equation (1) is similar. The ontology also containg
these linkages for object-location:

Could be found in (object-location)

Could have (location-object)

The archetypes in the ontology form a flat structure
rather than a hierarchical one. Furthermore, archetypes
have to be specific to a location in order to be linked to
that location directly. Thus “dining chair” would be
linked to dining room and “office chair” would be
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linked to office and study. The archetype “chair”,
however, would not be directly linked to any of these
locations. It could be indirectly linked because it would
be linked to the more specific archetypes via the
“similar to” mechanism.

The basic entropy calculation works as follows. In
the entropy tree we always link a "new" object to one
that is already in the tree. Let object A be the new
object and object B the object that is already in the tree.
If the two objects have the same archetype (ontology
entry) then the entropy is simply the logarithm of the
total number of objects available of that archetype.
Otherwise we explore one level of linkage from object
A and count all the items that exist at that level. Note
that in this case we do not count the number of
alternatives for object A, only the possible choices for
object B. If object B has been found at that level then
the entropy is the logarithm of the count. Otherwise we
explore a second level of linkage, counting all the
objects, and continue with greater and greater levels
until the object B is found. The count that is generated
in this basic entropy calculation is culled by two further
considerations.

The first is what we term the containment level. If
we know from the scene that one object contains the
other, then we only count linkages that reflect that
containment. For a mug contained by a display
cupboard, an example of a valid link would be:

Mug "could be contained by" cupboard "similar to"
display-cupboard.

In the same situation an invalid one would be:

Mug "could contain” teaspoon "which could be
contained by" display cupboard.

In the latter case the "could contain” and "could be
contained by" effectively cancel each other, leaving a
peer relationship where a containing relationship was
present in the original scene. Similarly if we know that
two objects are in a simple peer relationship (next to
each other) then links that imply containment are
rejected.

The second is controlled by the tagging of objects in
the library. Each object in our object library is tagged
with a number of two word (type plus descriptor) tags.
For example it could be: colour red or size large or age
modern. The use of typed tags is advantageous as it
avoids the ambiguities that can occur with single word
tags. It also allows us to ignore tags that are not relevant
and avoids the need for total consistency in tagging.
When calculating the entropy between two objects we
only include objects in the count if they match the
primary objects as well as they match each other. Thus
when linking the modern dining fork to the Victorian
place-mat there were ten alternative objects found
because there was no match between any of the tags.
However, linking the Victorian dining fork to the
Victorian place-mat produced only two, the place-mat
itself and the Victorian dining table.
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IV. RESULTS AND DISCUSSION

In order to assess whether our entropy measure has
predictable behaviour, and actually captures a sense of
the degree of aesthetic consistency of the scene, we
conducted a set of experiments. A virtual scene was
created which represents a modern dining room as
shown in Figure 1. Then successive changes were made
to this scene by replacement of assets with others that
'matched' less well, and the entropy tree recalculated at
each stage. The important factor here is the tagging of
the objects using the mechanism described in the
previous section.

Figure 1: Basic dining room layout
The entropy associated with the portion of the tree
containing the dining table and chairs, taking all the
assets into account, is shown in row 1 of Table 1 (and
as illustrated in Figure 2). We then replaced one chair at
a time by a Victorian one, until we were left with the

scene shown in Figure 3 where all four chairs were
Victorian but the table was modern.

ﬁ = Entregy=0.0 ” Trupp:a 0
Ertropy=0.5453
Ertregy=0.0

¢El1rnw= 1066

Entropy=1386

Figure 2: Partial entropy tree

At each of these changes, the entropy was seen to
increase, as the chairs were less well suited to the rest
of the assets (rows 2,3,4,5 in Table 1). Then the table
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itself was replaced by a Victorian one, followed by the
plates and the mats. which were Victorian tartan. These
changes are shown in Figure 4, and rows 6, 7 in Table
1.

An attempt to change the modem cutlery for a
'rustic' or Jacobean set made no difference to the overall
entropy. This is also understandable, as the rustic set is
no more well matched with the Victorian aesthetic than
the modemn set. This change is shown in row 8 and
Figure 5. The next stage was to introduce Victorian
cutlery as shown in row 9. This time the entropy falls
significantly because there are now no inconsistent
objects on the branches of the entropy tree associated
with the place-mats.

Figure 3: Chairs changed to Victorian style

Finally, substituting Victorian glasses as shown in
Figure 6 (row 10) lowered the entropy even further.
since this made every part of the scene consistent. It is
noteworthy that the entropy of the pure Victorian scene
is lower than that of the modermn scene. This occurs
because “modern” is a very general category that has
many entries in the object library whereas “Victorian™
is specialised and so generally does not have as many
entries.

ngu 4: Table, placemats, plates changed
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Though the change to a Victorian table increased
the entropy yet again, it then fell back when the plates
and mats were changed to be Victorian. This is
understandable in that the whole table is now more
consistent aesthetically as it is a Victorian table with
Victorian contents.

Figure 6: Entirely Victorian settings

A further test on measurement of consistency was
undertaken by experiments on the contents of the wall
cupboard. where collections of plates, glasses and mugs
are stored. Figure 7 shows the baseline state of this
cupboard. although in later images. the cupboard itself
is sometimes made invisible for clarity. Table 2 shows
the results of the entropy calculations here — although
only the entropy contribution from the cupboard
contents is shown. as the rest of the scene remained
unchanged.. At each of these stages, the previous
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changes were left in place and the new change is
additive — for example, the china plates in row 2 were
still in place when the willow pattern ones replaced the
other modemn plates.

As we progress through the sequence of changes,
we see the increasing entropy as each change makes the
cupboard contents less consistent. In particular, the
final change (as shown in Figure 8) where the glasses
were exchanged, has a large effect on the entropy. This
1s not surprising, because we are essentially making two
changes at once, one to each group of glasses. It clearly
illustrates how consistency and similarity generate
much lower entropy values than where a group is
disparate.

Fieure 7: Baseline state of cupboard

Figure 8: Cupboard after sequence
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As a final test of the variation of entropy, we replaced
one of the plates in the cupboard by a model Viking
helmet — an artefact with absolutely no relevance to
dining rooms, Victorian or modem. (See Figure 9.) This
caused an increase in entropy for the cupboard contents
to 21.13. This is clearly a far larger increment than any
other single change, as compared with row 4 or 5,
reflective of the incongruity of the object.

Figure 9: Incongruous viking helmet

Row

Scene Entropy
1 Baseline Modern 17.787389
2 1 Victorian Chair 19.173683
3 2 Victorian Chair 20.559978
4 |3 Victorian Chair | 21.946272
5 |4 Victorian Chair | 2333236
6 4 Victorian Chair + Table l 26981753
7 | 4 Victorian Chair + Table + 23.008745
plates, mats
8 4 Victorian Chair + Table + 23.008745
plates, mats + rustic cutlery
9 |4 Victorian Chair + Table + 13.798405
plates, mats + Victorian cutlery
10 |4 Victorian Chair + Table + 11.025816
plates, mats + Victorian cutlery +
Victorian glasses

TABLE | ENTROPY CHANGE FOR OVERALL ROOM ADJUSTMENTS

V. CONCLUSIONS AND FURTHER WORK

We have developed selection entropy, a
mathematical formulation of everyday untidiness, and
demonstrated that it can be used to quantify the
aesthetic consistency of a scene. In this section we will
first discuss an alternative way of implementing the
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scheme and then consider ways in which the work
could be used and extended in future. The fact that the
entropy is derived from the counting of objects in the
library does make it dependent on the library contents.
There is also the potential for errors in the ontology or
library structure to distort the answers. This could be
particularly problematic if the library is small. However
our library contains only 81 objects at the time of
writing and yet we observe from the results presented
above that the numbers are plausible, with consistent
changes as the scene is modified. We also note that the
relative entropies do not change in any significant way
when we add objects to the library. We believe that thig
shows that our definitions give rise to an adequately
robust result, however it is interesting to consider the
possibility of using a larger pre-existing library such as
Google Warehouse (as was utilised by [25])

Row Scene Change Entropy

|| Baseline — modern plates, mugs, | 10.805274
glasses, well ordered

2 | Victorian china large plates 11.498421

3 | Willow pattern plates 12191568

4 |Red straight sided mug 12.884715

5 | Red mug changed to be tapered 13.801006
(ie different style)

6 | Wine glass and flute swapped 15.187300
over

TABLE 2 ENTROPY CHANGE FOR ADJUSTMENTS IN THE CUPBOARD

Once the library becomes really large the exact
details of its contents should be irrelevant, since the
entropy is defined logarithmically. Unfortunately
Google Warehouse is set up with single word (untyped)
tags and so cannot be used directly with our scheme.
However it is possible to derive some estimates that
show how a large library might affect the results.

As a simple experiment, consider the linkage
between our Victorian dining table and the Victorian
plate, compared to the linkage between the Victorian
dining table and the modem plate. This is a containing
relationship (the table contains the plate) so we can
assume that the table is in the entropy tree before the
plate. This means we consider only the number of
alternatives to the table. Our library gives 8 altematives
for the Victorian table linked to the modem plate,
giving an entropy of 2.1. Of these 8, 4 are dining tables,
2 are table mats, one is a display cupboard and one is a
cupboard Google warehouse gives 3792 hits for dining
tables, 1165 for cupboards and 201 for table mats. The
total is thus 5158 and the entropy is 8.5. When we
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restrict to Victorian objects our library gives just 2 and
an entropy of 0.7. Google warehouse now gives 37
objects and an entropy of 3.6. The entropy ratios are
quite similar, suggesting that the qualitative nature of
the results is not very sensitive to library size.

In this paper we have only considered selection
entropy in any detail. There is considerable scope to use
geometric entropy as an aesthetic measure and we
intend to pursue this further in the future. There are
many ways in which the entropy measurements could
be exploited. For example they can be used to assist in
the automatic generation of virtual environments with
predictable aesthetic characteristics. This would be
particularly relevant to a game developer who had built
up a substantial library of 3D assets and wished to re-
use them in new projects. It would also be interesting
to use this measure to drive the behaviour of non-player
characters in games. In particular it should enable such
a character to react to disturbances that change the
aesthetic consistency of the scene.
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