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Abstract— Unified Modelling Language (UML) has been conferred as the de facto standard in modeling by majority in the software 
system development community. Among the various types of diagrams that exist under the umbrella of UML is Sequence Diagram. 
Sequence Diagrams are capable of modeling interactional behaviours as well as dynamic happenings in a system, and as such are 
generally used in the modeling of complex software systems. However in this paper, Sequence Diagrams are used in the modeling of 
the IEEE 802.11 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. The Sequence Diagram 
representing this protocol will then be used for formal, mathematical analysis by first transforming the Sequence Diagram through 
the MDA model transformation tool called SD2PN, and performing analysis such as liveness analysis, boundedness analysis and 
reachability analysis of the resulting Petri Net. 
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I. INTRODUCTION  

Modelling is becoming more and more significant 
nowadays, be it for software system designs or even for more 
fundamental architectures such as protocols. Protocols such 
as the IEEE 802.11 CSMA/CA [1] could also be represented 
as visual models in the form of UML diagrams [2]. This 
would not only benefit the protocol from being a textual 
description to being depicted in an easier to understand, 
semi-formal notation of the UML diagrams, but it will also 
allow it to take advantage of the various analytical tools 
available. 1 

There are also Model-driven Architecture (MDA) [3] 
based tools such as SD2PN [4] and UML2Alloy [5] that 
transforms UML diagrams into formal languages such as 
Petri Nets [6] and Alloy [7]. These tools could also be used 
to perform mathematical analysis of protocols such as the 
aforementioned IEEE802.11 CSMA/CA protocol. 

In this paper, the IEEE 802.11 CSMA/CA protocol will 
first be represented as a UML Sequence Diagram. The 
Sequence Diagram will then be transformed into Petri Nets 
using the MDA model transformation called SD2PN. The 
resulting Petri Net would then be analyzed for its liveness, 
boundedness and reachability. 

In order to facilitate the understanding of this paper, the 
Foundation chapter briefly introduces Sequence Diagrams, 
Petri Nets, MDA, SD2PN and the IEEE 802.11 CSMA/CA 
protocol.  The following chapter presents how SD2PN is 
used in the analysis of the IEEE802.11 CSMA/CA protocol, 
and finally the Discussion and Conclusion chapter discusses 
the outcome that can be concluded from this paper. 

                                                 
1 The preliminary version of this paper was presented at the 

2012 Fourth International Conference on Computational 
Intelligence, Modelling and Simulation 

II. FOUNDATION 

In this chapter, the foundation behind this paper is 
established where preliminary knowledge of all the 
underlying architecture and framework used in this paper is 
provided. 

A. Sequence Diagrams 

Sequence Diagrams is UML 2.0 version of Message 
Sequence Charts [2] and are widely used in Software 
Engineering [8]. Sequence Diagrams can be used in 
modeling complex Enterprise Systems as they provide a 
sequential listing of events and are also able to model 
parallelism and alternatives. They are also effective in 
modeling behaviour and concurrency, and as such more than 
adequate to model complex protocols such as the 
IEEE802.11 CSMA/CA. 

Fig. 1 represents a subset of UML 2.0 Sequence 
Diagrams metamodel used in this paper, comprising of 
important constructs used for depicting models with 
complex behavior. The main fragments of the Sequence 
Diagram are represented by model elements Message and 
CombinedFragments. The model element Message 
represents the interaction between the instances of objects in 
the system while CombinedFragments are high level 
addition to Sequence Diagrams and consist of Interaction 
Operators alternative, option, break and parallel. These 
model elements will be referred to as fragments of Sequence 
Diagrams throughout this paper. 

The model element EventOccurrence and 
GeneralOrdering denotes the sequencing of events in the 
diagram. EventOccurrence is a specialization of 
MessageEnd where each message is given a specific order 
in reference to the previous and subsequent messages. 
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Fig. 1 : Sequence Diagram Metamodel. 

B. Petri Nets 

Petri Nets are a graphical and mathematical modelling 
language applicable to Enterprise Systems. Petri Nets can be 
parallel, asynchronous, concurrent, distributed and stochastic 
as well as being dynamic [6]. Similar to flow-charts, a Petri 
Net can model the flow of events in a system graphically [9]. 
Petri nets can be formalized as follows: 
Definition 1: A Petri Net is a triple N = (S, T, F) where S is a 
finite set of places and T is a set of transitions where S T = 
. F is a relations on S T where F (S x S) = F (T x T)  
= . A marking of N is a function m:S 0,1,2,3, , 
where each place s S is assigned the number of tokens. M0 
is used to show the initial marking, the number of tokens in 
each place at the beginning of execution. 

Graphical representations of Petri nets depict each place 
as a circles and each transition as a square. Places are 
generally used to represent states where as transitions are 
used to represent actions or events.  

Fig. 2 depicts the metamodel of Petri Net used in this 
paper. Referring to Definition 1, S and T are represented by 
the instances Place and Transition while InputArc and 
OutputArc represents the relationship F. The instance 
Marking refers to the function m:S. Every place may have a 
Mark which represents the number of tokens that belongs to 
a place. This instance is represented by an integer, i.e. 0, 1, 2 
and so on.  

C. Model Driven Architecture  

Model Driven Architecture (MDA) [10] aims to promote 
the role of modelling in software development. Models in the 
context of MDA are captured in machine-readable 
representations, using languages which are widely adopted 
by the industry [7]. Hence it is possible to communicate such 
models to various parties and reuse them. This results in 
lower production cost and shorter development cycles. For 
the purpose of this paper, MDD is used in the seamless 
transition of models between two languages; Sequence 
Diagrams and Petri Nets. As such, the IEEE 802.11 
CSMA/CA protocol is designed in Sequence Diagrams and 
analyzed using Petri Net, a more formal and mathematical 
language. 
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Fig. 2 : Petri Net Metamodel. 

 
Fig. 3 : Model Driven Architecture. 

MDA outlines the concept of model transformation 
which is central to the work presented in this paper. Fig. 3 
depicts an sketch of MDA model transformation as outlined 
by MDA [3] and the metamodels that comply to the Meta-
Object Facility (MOF) [11]. A number of transformation 
rules are used to define how various elements of one 
metamodel (source metamodel) are mapped into the 
elements of another metamodel (destination metamodel). 
The process of model transformation is carried out 
automatically via the software tools which are commonly 
referred to as model transformation frameworks [12-14]. A 
typical model transformation framework requires three 
inputs: source metamodel, destination metamodel and 
Transformation Rules. For any instance of the source 
metamodel, a transformation engine executes the rules to 
create an instance of the destination metamodel. 

III. SD2PN: AN MDD MODEL TRANSFORMATION FROM 

SEQUENCE DIAGRAMS TO PETRI NETS 

SD2PN is a rule-based MDD model transformation that 
transforms any Sequence Diagrams that conforms to the 
metamodel in Figure 1 into Petri Nets. It was first introduced 
in [4] and subsequently updated through [15-17]. The model 
transformation process is hereby described in three stages: 
Stage 1: Decomposition 

The Sequence Diagram inputted into SD2PN is 
decomposed into multiple small fragments based on 
the Sequence Diagram metamodel. 

Stage 2: Transformation  
Each Sequence Diagram fragment from Stage 1 is 
transformed into a Petri Net block based on a set of 
model transformation rules. 

Stage 3: Composition 
The Petri Net blocks from Stage 2 are put together 
using two local functions; morph and substitute. 
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Each instance of the model transformation goes through 
the three stages in order to successfully transform Sequence 
Diagrams into Petri Nets. The three stages are explained in 
depth in Sub-sections A, B and C below. 

A. Decomposition 

The process of decomposition of a Sequence Diagram is 
carried out on the concrete syntax representation and 
involves identification of various model elements and their 
relationships. The metamodel in Fig. 1 depicts the model 
elements used in a Sequence Diagram.  

The main model element chosen from the metamodel is 
message. Message refers to the events, or the flow of 
information between objects in the Sequence Diagrams. 
Each message consists of two MessageEnds, as its sending 
and receiving events. These MessageEnds are instances of 
EventOccurrence; where the causality of the events is 
determined by GeneralOrdering. In Sequence Diagrams, this 
causality ordering is identical to a top-down visual ordering. 
For the purpose of SD2PN, a message is considered to be a 
Sequence Diagram fragment. 

CombinedFragments are high level additions to 
Sequence Diagrams. They are instances of 
InteractionFragment that consists of InteractionOperators. 
CombinedFragments may include multiple 
InteractionFragments; which means it could consist of other 
CombinedFragments. As a consequence, 
CombinedFragments may have a hierarchical structure. This 
hierarchical structure is also sometimes referred to as nested 
CombinedFragments. The nesting of CombinedFragments 
may also occur between different InteractionOperatorKinds. 
There are four InteractionOperatorKind used in this thesis as 
depicted in Figure 1; alternative, option, break and parallel. 
Since each of the four InteractionOperatorKind changes the 
flow of events in a different way, they each are designated as 
a fragment type. 

Overall, there are five types of Sequence Diagram 
fragments; message, alternative, option, break and parallel. 
Each Sequence Diagram inputted into SD2PN is 
decomposed based on these five fragment types. The 
decomposition however preserves the causality of the 
messages or the hierarchical structure of the 
CombinedFragments. In the next section, these fragments are 
transformed into an equivalent Petri Net block. 

B. Transformation 

 Before the transformation rules are presented, a 
destination metamodel has to be introduced. The Petri Net 
metamodel depicted in Fig. 2 corresponds to the description 
of standard Petri Nets presented in the Foundation section. 
However for the purpose of this section of this paper, a 
temporary, necessary extension of Petri Nets is introduced 
through two new concepts; placeholders and Petri Net 
blocks. As such the metamodel of Fig. 2 is extended for the 
use of SD2PN, as depicted in Fig. 4. 

Definition 2: Placeholders are temporary nodes that 
mimic the structure of a place in Petri Nets and are depicted 
as dashed rectangles. 
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Fig. 4 : Extended Petri Net Metamodel for SD2PN. 

 
Definition 3: Petri Net blocks are blocks of Petri Nets that 
have unique input and output places, which are referred to as 
precondition and postcondition respectively. A more formal 
definition of Petri Net blocks is as follows. 

A Petri Net block is a four tuple B = (S, T, P, F) where S 
is a finite set of places, T is a finite set of transitions, and P 
is a finite set of placeholders. F  ((S  P)  T)  (T  (S  
P)) is a set of arcs. In(B), Out(B)  S are unique places 
(precondition and postcondition respectively) such that In(B) 
has no incoming arcs and Out(B) has no outgoing arcs. They 
represent the start and end places in the Petri Net blocks 
respectively. As such, a Petri Net block can also be textually 
represented as the sum of all its components.  

Using the extended Petri Net metamodel as depicted in 
Fig. 4, as well as the definitions of placeholders and Petri 
Net blocks, five model transformation rules are outlined to 
transform every single Sequence Diagram fragment into a 
corresponding Petri Net block. The rules are as follows: 
Rule 1: For every message fragment, a corresponding Petri 
Net block is generated with the following structure. 

B = ({s1,s2},{m},{ },{(s1,m),(m,s2)}) 
Rule 2: For every CombinedFragment with the 
InteractionOperatorKind alternative, an equivqlent Petri Net 

block is created. The structure of this block is ��	 = 

��,��,��,�� where 

S = (s1,s2) 
T = (t1,t2,t3,t4) 
P = (ph1, ph2) 

F = {(s1,t1), (s1,t2), (t1,ph1), (t2,ph2), (ph1,t3), (ph2,t4), 
(t3,s2), (t4,s2)} 

Rule 3: The Petri Net block that is generated for the option 

InteractionOperatorKind is ��	= ��,��,��,��  where 

S = (s1,s2) 
T = (t1,t2,t3,t4) 
P = (ph1, ph2) 
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F = {(s1,t1), (s1,t2), (t1,ph1), (t2,ph2), (ph1,t3), (ph2,t4), 
(t3,s2), (t4,s2)} 

Rule 4: For the break CombinedFragment, a Petri Net block 

is created such that ��	= ��,��,��,��	 where 

S = (s1,s2,X) 
T = (t1,t2,t3) 

P = (ph) 
F = {(s1,t1), (s1,t2), (t1,ph), (t2,X), (ph,t3), (t3,s2)} 

 
 
Rule 5: The final rule of SD2PN is a rule that transforms 
every CombinedFragment with InteractionOperatorKind 
parallel into a Petri Net block such that  
where 

S = (s1,s2) 
T = (t1,t2) 

P = (ph1, ph2) 
F = {(s1,t1), (t1,ph1), (t1,ph2), (ph1,t2), (ph2,t2), (t2,s2)} 

For a more graphical reprrsentation of the rules, please refer 
to [15]. 

C. Composition 

Following the mapping of each Sequence Diagram 
fragment into a corresponding Petri Net block, an integrated 
Petri Net that corresponds to the original Sequence Diagram 
needs to be produced by composing the Petri Net blocks.  

Examined closely, there is a commonality between all the 
Petri Net blocks generated via SD2PN; each have a single 
input and output place, or as previously introduced, 
precondition and postcondition. This is deliberate to allow a 
uniform method of putting the Petri Net blocks together. 
There are two local functions used for this purpose: morph 
and substitute. 
Definition 4: The function morph puts together two causal 
Petri Net blocks. Suppose 

B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) 
are two Petri Net Blocks. The morphing of B1 and B2, 
denoted by B1  B2 results in a Petri Net Block B = (S, T, P, 
F) such that  

T = T1  T2 
P = P1  P2 

S = (S1  S2) \ {Out(B1)} 
In(B) = In(B1) and Out(B) = Out(B2) 

F = ((F1  F2) \ {(x, y)  y = Out(B1)}  {(x, In(B2)  
 (x, Out(B1)  F1} 

Definition 5: The function substitute is used for composing 
hierarchical behaviour between Petri Net blocks. Substitute 
can only be used to replace a placeholder with a Petri Net 
block. Suppose  

B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2) 
are two Petri Net Blocks. Let ph1 be a placeholder in B2. 
Substituting the Petri Net Block, B1 into ph1, denoted by 
B2[B1/ph1] results in a Petri Net Block, B = (S, T, P, F), 
where  

S = S1  S2 
T = T1  T2 

P = (P1  P2) \ {ph1} 
In(B) = In(B2) 

Out(B) = Out(B2) 
F = (F1  F2 \ {(x, y)  x = ph1 or y = ph1})  {(x, In(B1))  

(x, ph1)  F1}  {(Out(B1), y)  (ph1, y)  F1} 
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Fig. 5 : Overview of a Personal Area Network. 

 
As with the Transformation rules in the previous section, 

a more graphical representation of the morph and substitute 
functions is available in [15]. 

IV. ANALYSIS OF IEEE 802.11 CSMA/CD VIA SD2PN 

In a typical scenario of a Personal Area Network (PAN), 
there exist a number of stations and a router. However, an 
unseen element in the PAN is the medium between the 
stations and the router. In order to send a packet to the router, 
the stations in the PAN would have to compete to gain 
access to the medium. Thus, the more stations there are in a 
PAN, the larger the maximum waiting time is for a single 
station to gain access to the medium. To deal with this, 
various protocols have been introduced within the IEEE 
802.11 standard. However in this example, a specific 
protocol within the IEEE 802.11 standard is modelled using 
Sequence Diagrams and transformed into a Petri Net for 
analysis. 

Fig. 5 presents a simplified PAN that has two stations 
and a Wireless Router that serves as an access point to the 
Internet. In the router, the basic IEEE 802.11 Carrier Sense 
Multiple Access with Collision Avoidance (CSMA/CA) 
protocol is used [1]. The router in this example uses a basic 
IEEE 802.11 CSMA/CA protocol. CSMA/CA assigns 
different waiting time to packets in order to manage the 
access of the stations to the medium. There are three 
different waiting times for various types of packets. The 
shortest waiting time for medium access is called Short inter-
frame spacing (SIFS) which is used for short control 
messages or polling responses. The waiting time for time-
bounded service such as a poll from the access point is 
considered PCF inter-frame spacing (PIFS) and the longest 
waiting time and lowest priority, DCF inter-frame spacing 
(DIFS) is used for asynchronous data services. There is a 
mechanism called contention window (CW), which is 
introduced in order to facilitate collision avoidance. The 
contention window makes use of an integer value that starts 
with CWmin = 7 and doubles every time a collision occurs.  
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Every time a station tries to gain access to the medium, a 
random number is generated between 0 and CW and is added 
to the waiting time. This ensures that the stations do not send 
their packets at the same time. CW is doubled for every 
collision that occurs to accommodate a larger number of 
stations vying for the access of the medium. Readers are 
referred to [1] for more information. 
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Fig. 6 : Sequence Diagram of the IEEE 802.11 CSMA/CA 

Protocol. 
 

Several assumptions were made in this example for the 
sake of clarity and to provide a better understanding of the 
tool. Firstly, the waiting time for all packets is constant and 
all packets are categorized as DIFS. Secondly, the CW is 
constant and does not increase, and since there are only two 

stations, the CW would be minimum, i.e. CWmin = 7. 
Thirdly, the packets are dropped after the unsuccessful tries 
from the station and each station sends only one packet.  
These assumptions do not invalidate the results of the 
analysis by any means; they only limit the scope of this 
example. 
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Fig. 7 : Petri Net of the IEEE 802.11 CSMA/CA Protocol 

Generated by SD2PN. 
 
This scenario is modelled using a Sequence Diagram, 

where a single station attempts to gain access to the medium 
in order to send a packet to the router, based on the 
CSMA/CA protocol. 

The Sequence Diagram in Fig. 6 gives an overview of 
how a station sends a packet to the medium in the IEEE 
802.11 protocol. The medium access control (MAC) layer of 
the station receives a packet from an application and 
registers it. 

It then idles before checking the status of the medium. If 
the medium is free the station is able to send the packet 
across to the medium. However, if the medium is busy the 
station has to wait until the medium is free before idling 
again. The MAC then checks the status of the medium again 
before either sending the packet across or waiting again. 
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Each of the events in this scenario has multiple sub-events 
that occur in the background. The diagram is however 
simplified for the sake of clarity.To perform analysis on the 
protocol, the Sequence Diagram first needs to be transformed 
into a Petri Net using SD2PN. The intricate details of the 
transformation are omitted due to page constraints, however 
it could be found in [15]. The Petri Net that is generated by 
SD2PN is as depicted in Fig. 7.  

 

 
Fig. 8 : Reachability Graph Generated using PIPE. 

 
There are various analysis methods associated with Petri 

Nets, however as mentioned in the introduction, only the 
liveness analysis, boundedness analysis and the reachability 
analysis will be performed for the purpose of this paper using 
a well-known Petri Net tool, PIPE [18]. 

The liveness and boundedness of the Petri Net are both 
calculated through State Space Analysis in PIPE where the 
liveness is determined through the absence of deadlocks in 
the Petri Net while boundedness is computed through a P-
invariant calculation. The result of the analysis confirms that 
the Petri Net is both live and bounded. Through the P-
invariant calculation, it is also revealed that the Petri Net in 
Fig. 7 is safe (bounded with the value of 1). 

Subsequently, a reachability analysis is performed on the 
Petri Net, resulting in a Reachability Graph as presented in 
Fig. 8. As a result, the reachability analysis reveals that every 
state in the Petri Net is reachable through a series of event. 
Table 1 prints a summary of the basic analysis results for the 
analyses performed on the protocol. 

V. DISCUSSION AND CONCLUSION 

The purpose of this paper is to illustrate the capability of 
UML Sequence Diagram to model more than just software 
systems. As such, the modelling of the IEEE 802.11 

CSMA/CA protocol proves that modeling is more globally 
beneficial and thus, everything that can be modeled in 
Sequence Diagrams can be transformed into Petri Nets and 
analyzed mathematically. 

The correctness of the model transformation performed 
by SD2PN has also been proven mathematically using a 
common semantics domain in Labelled-Event Structures 
[19] by using the semantic  mapping  introduced  in  [20, 21].  
 

TABLE I.  SUMMARY OF ANALYSIS RESULTS 

ANALYSIS RESULT 
Liveness Yes 
Boundedness (Value) Yes (Value 1) 
Safeness Yes 
Reachability All states are reachable 

 
 
As such, the validity of the analysis results obtained via 
SD2PN should be regarded as accurate. 

Petri Nets could also perform time related analysis such 
as performance analysis and Quality of Service (QoS) 
analysis. This flavor of Petri Nets can be obtained using the 
enhancement of SD2PN that is described in [16].  
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