
MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 44

A Model Driven Analysis of the 802.11 CSMA/CA Protocol through SD2PN

Mohamed Ariff Ameedeen
Faculty of Computer Systems & Software

Engineering
Universiti Malaysia Pahang

Pahang, Malaysia
mohamedariff@ump.edu.my

Behzad Bordbar
School of Computer Science
University of Birmingham

Birmingham, United Kingdom
b.bordbar@cs.bham.ac.uk

Abstract— Unified Modelling Language (UML) has been conferred as the de facto standard in modeling by majority in the software
system development community. Among the various types of diagrams that exist under the umbrella of UML is Sequence Diagram.
Sequence Diagrams are capable of modeling interactional behaviours as well as dynamic happenings in a system, and as such are
generally used in the modeling of complex software systems. However in this paper, Sequence Diagrams are used in the modeling of
the IEEE 802.11 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. The Sequence Diagram
representing this protocol will then be used for formal, mathematical analysis by first transforming the Sequence Diagram through
the MDA model transformation tool called SD2PN, and performing analysis such as liveness analysis, boundedness analysis and
reachability analysis of the resulting Petri Net.

Keywords - sequence diagrams, Petri Nets; modelling, IEEE 802.11.

I. INTRODUCTION

Modelling is becoming more and more significant
nowadays, be it for software system designs or even for more
fundamental architectures such as protocols. Protocols such
as the IEEE 802.11 CSMA/CA [1] could also be represented
as visual models in the form of UML diagrams [2]. This
would not only benefit the protocol from being a textual
description to being depicted in an easier to understand,
semi-formal notation of the UML diagrams, but it will also
allow it to take advantage of the various analytical tools
available. 1

There are also Model-driven Architecture (MDA) [3]
based tools such as SD2PN [4] and UML2Alloy [5] that
transforms UML diagrams into formal languages such as
Petri Nets [6] and Alloy [7]. These tools could also be used
to perform mathematical analysis of protocols such as the
aforementioned IEEE802.11 CSMA/CA protocol.

In this paper, the IEEE 802.11 CSMA/CA protocol will
first be represented as a UML Sequence Diagram. The
Sequence Diagram will then be transformed into Petri Nets
using the MDA model transformation called SD2PN. The
resulting Petri Net would then be analyzed for its liveness,
boundedness and reachability.

In order to facilitate the understanding of this paper, the
Foundation chapter briefly introduces Sequence Diagrams,
Petri Nets, MDA, SD2PN and the IEEE 802.11 CSMA/CA
protocol. The following chapter presents how SD2PN is
used in the analysis of the IEEE802.11 CSMA/CA protocol,
and finally the Discussion and Conclusion chapter discusses
the outcome that can be concluded from this paper.

1 The preliminary version of this paper was presented at the

2012 Fourth International Conference on Computational
Intelligence, Modelling and Simulation

II. FOUNDATION

In this chapter, the foundation behind this paper is
established where preliminary knowledge of all the
underlying architecture and framework used in this paper is
provided.

A. Sequence Diagrams

Sequence Diagrams is UML 2.0 version of Message
Sequence Charts [2] and are widely used in Software
Engineering [8]. Sequence Diagrams can be used in
modeling complex Enterprise Systems as they provide a
sequential listing of events and are also able to model
parallelism and alternatives. They are also effective in
modeling behaviour and concurrency, and as such more than
adequate to model complex protocols such as the
IEEE802.11 CSMA/CA.

Fig. 1 represents a subset of UML 2.0 Sequence
Diagrams metamodel used in this paper, comprising of
important constructs used for depicting models with
complex behavior. The main fragments of the Sequence
Diagram are represented by model elements Message and
CombinedFragments. The model element Message
represents the interaction between the instances of objects in
the system while CombinedFragments are high level
addition to Sequence Diagrams and consist of Interaction
Operators alternative, option, break and parallel. These
model elements will be referred to as fragments of Sequence
Diagrams throughout this paper.

The model element EventOccurrence and
GeneralOrdering denotes the sequencing of events in the
diagram. EventOccurrence is a specialization of
MessageEnd where each message is given a specific order
in reference to the previous and subsequent messages.

MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 45

InteractionFragment

Interaction EventOccurrence

CombinedFragments

InteractionOperator :
InteractionOpetratorKind

InteractionOperand

Lifeline

Message MessageEnd

GeneralOrdering InteractionConstraint

Constraint

<<enumeration >>
InteractionOperatorKind

Alt
Opt
Break
Par

+coveredBy

+fragment

+enclosing
Interaction

+fragment
(ordered)

+interaction

+interaction

+covered

+message

+sendMessage

+receiveMessage

+sendEvent

+receiveEvent

+before +after

+toBefore+toAfter

+operand

+guard+generalOrdering

*
*

0..1

1

1

* 0..1

0..1 0..1

0..1

* *

11
0..1

1..*

0..1

1

Fig. 1 : Sequence Diagram Metamodel.

B. Petri Nets

Petri Nets are a graphical and mathematical modelling
language applicable to Enterprise Systems. Petri Nets can be
parallel, asynchronous, concurrent, distributed and stochastic
as well as being dynamic [6]. Similar to flow-charts, a Petri
Net can model the flow of events in a system graphically [9].
Petri nets can be formalized as follows:
Definition 1: A Petri Net is a triple N = (S, T, F) where S is a
finite set of places and T is a set of transitions where S T =
. F is a relations on S T where F (S x S) = F (T x T)
= . A marking of N is a function m:S 0,1,2,3, ,
where each place s S is assigned the number of tokens. M0
is used to show the initial marking, the number of tokens in
each place at the beginning of execution.

Graphical representations of Petri nets depict each place
as a circles and each transition as a square. Places are
generally used to represent states where as transitions are
used to represent actions or events.

Fig. 2 depicts the metamodel of Petri Net used in this
paper. Referring to Definition 1, S and T are represented by
the instances Place and Transition while InputArc and
OutputArc represents the relationship F. The instance
Marking refers to the function m:S. Every place may have a
Mark which represents the number of tokens that belongs to
a place. This instance is represented by an integer, i.e. 0, 1, 2
and so on.

C. Model Driven Architecture

Model Driven Architecture (MDA) [10] aims to promote
the role of modelling in software development. Models in the
context of MDA are captured in machine-readable
representations, using languages which are widely adopted
by the industry [7]. Hence it is possible to communicate such
models to various parties and reuse them. This results in
lower production cost and shorter development cycles. For
the purpose of this paper, MDD is used in the seamless
transition of models between two languages; Sequence
Diagrams and Petri Nets. As such, the IEEE 802.11
CSMA/CA protocol is designed in Sequence Diagrams and
analyzed using Petri Net, a more formal and mathematical
language.

Petri Net

Transition

OutputArcInputArc

Place

Marking

Mark

1

1
1 1

1

1 1 1 1

*

1..*

1..* 1..*

tokens: Integer

Fig. 2 : Petri Net Metamodel.

Fig. 3 : Model Driven Architecture.

MDA outlines the concept of model transformation
which is central to the work presented in this paper. Fig. 3
depicts an sketch of MDA model transformation as outlined
by MDA [3] and the metamodels that comply to the Meta-
Object Facility (MOF) [11]. A number of transformation
rules are used to define how various elements of one
metamodel (source metamodel) are mapped into the
elements of another metamodel (destination metamodel).
The process of model transformation is carried out
automatically via the software tools which are commonly
referred to as model transformation frameworks [12-14]. A
typical model transformation framework requires three
inputs: source metamodel, destination metamodel and
Transformation Rules. For any instance of the source
metamodel, a transformation engine executes the rules to
create an instance of the destination metamodel.

III. SD2PN: AN MDD MODEL TRANSFORMATION FROM

SEQUENCE DIAGRAMS TO PETRI NETS

SD2PN is a rule-based MDD model transformation that
transforms any Sequence Diagrams that conforms to the
metamodel in Figure 1 into Petri Nets. It was first introduced
in [4] and subsequently updated through [15-17]. The model
transformation process is hereby described in three stages:
Stage 1: Decomposition

The Sequence Diagram inputted into SD2PN is
decomposed into multiple small fragments based on
the Sequence Diagram metamodel.

Stage 2: Transformation
Each Sequence Diagram fragment from Stage 1 is
transformed into a Petri Net block based on a set of
model transformation rules.

Stage 3: Composition
The Petri Net blocks from Stage 2 are put together
using two local functions; morph and substitute.

MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 46

Each instance of the model transformation goes through
the three stages in order to successfully transform Sequence
Diagrams into Petri Nets. The three stages are explained in
depth in Sub-sections A, B and C below.

A. Decomposition

The process of decomposition of a Sequence Diagram is
carried out on the concrete syntax representation and
involves identification of various model elements and their
relationships. The metamodel in Fig. 1 depicts the model
elements used in a Sequence Diagram.

The main model element chosen from the metamodel is
message. Message refers to the events, or the flow of
information between objects in the Sequence Diagrams.
Each message consists of two MessageEnds, as its sending
and receiving events. These MessageEnds are instances of
EventOccurrence; where the causality of the events is
determined by GeneralOrdering. In Sequence Diagrams, this
causality ordering is identical to a top-down visual ordering.
For the purpose of SD2PN, a message is considered to be a
Sequence Diagram fragment.

CombinedFragments are high level additions to
Sequence Diagrams. They are instances of
InteractionFragment that consists of InteractionOperators.
CombinedFragments may include multiple
InteractionFragments; which means it could consist of other
CombinedFragments. As a consequence,
CombinedFragments may have a hierarchical structure. This
hierarchical structure is also sometimes referred to as nested
CombinedFragments. The nesting of CombinedFragments
may also occur between different InteractionOperatorKinds.
There are four InteractionOperatorKind used in this thesis as
depicted in Figure 1; alternative, option, break and parallel.
Since each of the four InteractionOperatorKind changes the
flow of events in a different way, they each are designated as
a fragment type.

Overall, there are five types of Sequence Diagram
fragments; message, alternative, option, break and parallel.
Each Sequence Diagram inputted into SD2PN is
decomposed based on these five fragment types. The
decomposition however preserves the causality of the
messages or the hierarchical structure of the
CombinedFragments. In the next section, these fragments are
transformed into an equivalent Petri Net block.

B. Transformation

 Before the transformation rules are presented, a
destination metamodel has to be introduced. The Petri Net
metamodel depicted in Fig. 2 corresponds to the description
of standard Petri Nets presented in the Foundation section.
However for the purpose of this section of this paper, a
temporary, necessary extension of Petri Nets is introduced
through two new concepts; placeholders and Petri Net
blocks. As such the metamodel of Fig. 2 is extended for the
use of SD2PN, as depicted in Fig. 4.

Definition 2: Placeholders are temporary nodes that
mimic the structure of a place in Petri Nets and are depicted
as dashed rectangles.

Petri Net

Place Transition

Marking

Mark

Arc

tokens : Integer
+in +in+out +out* * * *

1 1 1 1

Placeholder

Petri Net Block

Fig. 4 : Extended Petri Net Metamodel for SD2PN.

Definition 3: Petri Net blocks are blocks of Petri Nets that
have unique input and output places, which are referred to as
precondition and postcondition respectively. A more formal
definition of Petri Net blocks is as follows.

A Petri Net block is a four tuple B = (S, T, P, F) where S
is a finite set of places, T is a finite set of transitions, and P
is a finite set of placeholders. F  ((S  P)  T)  (T  (S 
P)) is a set of arcs. In(B), Out(B)  S are unique places
(precondition and postcondition respectively) such that In(B)
has no incoming arcs and Out(B) has no outgoing arcs. They
represent the start and end places in the Petri Net blocks
respectively. As such, a Petri Net block can also be textually
represented as the sum of all its components.

Using the extended Petri Net metamodel as depicted in
Fig. 4, as well as the definitions of placeholders and Petri
Net blocks, five model transformation rules are outlined to
transform every single Sequence Diagram fragment into a
corresponding Petri Net block. The rules are as follows:
Rule 1: For every message fragment, a corresponding Petri
Net block is generated with the following structure.

B = ({s1,s2},{m},{ },{(s1,m),(m,s2)})
Rule 2: For every CombinedFragment with the
InteractionOperatorKind alternative, an equivqlent Petri Net

block is created. The structure of this block is ��	 =

��,��,��,�� where

S = (s1,s2)
T = (t1,t2,t3,t4)
P = (ph1, ph2)

F = {(s1,t1), (s1,t2), (t1,ph1), (t2,ph2), (ph1,t3), (ph2,t4),
(t3,s2), (t4,s2)}

Rule 3: The Petri Net block that is generated for the option

InteractionOperatorKind is ��	= ��,��,��,�� where

S = (s1,s2)
T = (t1,t2,t3,t4)
P = (ph1, ph2)

MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 47

F = {(s1,t1), (s1,t2), (t1,ph1), (t2,ph2), (ph1,t3), (ph2,t4),
(t3,s2), (t4,s2)}

Rule 4: For the break CombinedFragment, a Petri Net block

is created such that ��	= ��,��,��,��	 where

S = (s1,s2,X)
T = (t1,t2,t3)

P = (ph)
F = {(s1,t1), (s1,t2), (t1,ph), (t2,X), (ph,t3), (t3,s2)}

Rule 5: The final rule of SD2PN is a rule that transforms
every CombinedFragment with InteractionOperatorKind
parallel into a Petri Net block such that
where

S = (s1,s2)
T = (t1,t2)

P = (ph1, ph2)
F = {(s1,t1), (t1,ph1), (t1,ph2), (ph1,t2), (ph2,t2), (t2,s2)}

For a more graphical reprrsentation of the rules, please refer
to [15].

C. Composition

Following the mapping of each Sequence Diagram
fragment into a corresponding Petri Net block, an integrated
Petri Net that corresponds to the original Sequence Diagram
needs to be produced by composing the Petri Net blocks.

Examined closely, there is a commonality between all the
Petri Net blocks generated via SD2PN; each have a single
input and output place, or as previously introduced,
precondition and postcondition. This is deliberate to allow a
uniform method of putting the Petri Net blocks together.
There are two local functions used for this purpose: morph
and substitute.
Definition 4: The function morph puts together two causal
Petri Net blocks. Suppose

B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2)
are two Petri Net Blocks. The morphing of B1 and B2,
denoted by B1  B2 results in a Petri Net Block B = (S, T, P,
F) such that

T = T1  T2
P = P1  P2

S = (S1  S2) \ {Out(B1)}
In(B) = In(B1) and Out(B) = Out(B2)

F = ((F1  F2) \ {(x, y)  y = Out(B1)}  {(x, In(B2) 
 (x, Out(B1)  F1}

Definition 5: The function substitute is used for composing
hierarchical behaviour between Petri Net blocks. Substitute
can only be used to replace a placeholder with a Petri Net
block. Suppose

B1 = (S1, T1, P1, F1) and B2 = (S2, T2, P2, F2)
are two Petri Net Blocks. Let ph1 be a placeholder in B2.
Substituting the Petri Net Block, B1 into ph1, denoted by
B2[B1/ph1] results in a Petri Net Block, B = (S, T, P, F),
where

S = S1  S2
T = T1  T2

P = (P1  P2) \ {ph1}
In(B) = In(B2)

Out(B) = Out(B2)
F = (F1  F2 \ {(x, y)  x = ph1 or y = ph1})  {(x, In(B1)) 

(x, ph1)  F1}  {(Out(B1), y)  (ph1, y)  F1}

Station 2

Station 1

Internet

Wireless Router

Medium

Fig. 5 : Overview of a Personal Area Network.

As with the Transformation rules in the previous section,

a more graphical representation of the morph and substitute
functions is available in [15].

IV. ANALYSIS OF IEEE 802.11 CSMA/CD VIA SD2PN

In a typical scenario of a Personal Area Network (PAN),
there exist a number of stations and a router. However, an
unseen element in the PAN is the medium between the
stations and the router. In order to send a packet to the router,
the stations in the PAN would have to compete to gain
access to the medium. Thus, the more stations there are in a
PAN, the larger the maximum waiting time is for a single
station to gain access to the medium. To deal with this,
various protocols have been introduced within the IEEE
802.11 standard. However in this example, a specific
protocol within the IEEE 802.11 standard is modelled using
Sequence Diagrams and transformed into a Petri Net for
analysis.

Fig. 5 presents a simplified PAN that has two stations
and a Wireless Router that serves as an access point to the
Internet. In the router, the basic IEEE 802.11 Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA)
protocol is used [1]. The router in this example uses a basic
IEEE 802.11 CSMA/CA protocol. CSMA/CA assigns
different waiting time to packets in order to manage the
access of the stations to the medium. There are three
different waiting times for various types of packets. The
shortest waiting time for medium access is called Short inter-
frame spacing (SIFS) which is used for short control
messages or polling responses. The waiting time for time-
bounded service such as a poll from the access point is
considered PCF inter-frame spacing (PIFS) and the longest
waiting time and lowest priority, DCF inter-frame spacing
(DIFS) is used for asynchronous data services. There is a
mechanism called contention window (CW), which is
introduced in order to facilitate collision avoidance. The
contention window makes use of an integer value that starts
with CWmin = 7 and doubles every time a collision occurs.

MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 48

Every time a station tries to gain access to the medium, a
random number is generated between 0 and CW and is added
to the waiting time. This ensures that the stations do not send
their packets at the same time. CW is doubled for every
collision that occurs to accommodate a larger number of
stations vying for the access of the medium. Readers are
referred to [1] for more information.

Station Medium

registerPacket

idle

checkStatus

sendPacket

waitForAccess

sendPacket

waitForAccess

sendPacket

waitForAccess

sendPacket

dropPacket

If free

If free

If free

If free

If busy

If busy

If busy

If busy

alt

alt

alt

alt

1

2

3

4
5

6

7
8

9

10
11

12

13
14

15

Fig. 6 : Sequence Diagram of the IEEE 802.11 CSMA/CA

Protocol.

Several assumptions were made in this example for the
sake of clarity and to provide a better understanding of the
tool. Firstly, the waiting time for all packets is constant and
all packets are categorized as DIFS. Secondly, the CW is
constant and does not increase, and since there are only two

stations, the CW would be minimum, i.e. CWmin = 7.
Thirdly, the packets are dropped after the unsuccessful tries
from the station and each station sends only one packet.
These assumptions do not invalidate the results of the
analysis by any means; they only limit the scope of this
example.

p0

p1

idle

p2

checkStatus

If free

p4

sendPacket

p5

p3

If busy

registerPacket

p6

waitForAccess

If free

p8

sendPacket

p9

p7

If busy

waitForAccess

If free

p12

sendPacket

p13

p11

If busy

p14

If free

p16

sendPacket

p17

p15

If busy

p18

dropPacket

p10

waitForAccess

1

2

3

4

6

7

8

5

15

11

14

13

9

10

12

Fig. 7 : Petri Net of the IEEE 802.11 CSMA/CA Protocol

Generated by SD2PN.

This scenario is modelled using a Sequence Diagram,

where a single station attempts to gain access to the medium
in order to send a packet to the router, based on the
CSMA/CA protocol.

The Sequence Diagram in Fig. 6 gives an overview of
how a station sends a packet to the medium in the IEEE
802.11 protocol. The medium access control (MAC) layer of
the station receives a packet from an application and
registers it.

It then idles before checking the status of the medium. If
the medium is free the station is able to send the packet
across to the medium. However, if the medium is busy the
station has to wait until the medium is free before idling
again. The MAC then checks the status of the medium again
before either sending the packet across or waiting again.

MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 49

Each of the events in this scenario has multiple sub-events
that occur in the background. The diagram is however
simplified for the sake of clarity.To perform analysis on the
protocol, the Sequence Diagram first needs to be transformed
into a Petri Net using SD2PN. The intricate details of the
transformation are omitted due to page constraints, however
it could be found in [15]. The Petri Net that is generated by
SD2PN is as depicted in Fig. 7.

Fig. 8 : Reachability Graph Generated using PIPE.

There are various analysis methods associated with Petri

Nets, however as mentioned in the introduction, only the
liveness analysis, boundedness analysis and the reachability
analysis will be performed for the purpose of this paper using
a well-known Petri Net tool, PIPE [18].

The liveness and boundedness of the Petri Net are both
calculated through State Space Analysis in PIPE where the
liveness is determined through the absence of deadlocks in
the Petri Net while boundedness is computed through a P-
invariant calculation. The result of the analysis confirms that
the Petri Net is both live and bounded. Through the P-
invariant calculation, it is also revealed that the Petri Net in
Fig. 7 is safe (bounded with the value of 1).

Subsequently, a reachability analysis is performed on the
Petri Net, resulting in a Reachability Graph as presented in
Fig. 8. As a result, the reachability analysis reveals that every
state in the Petri Net is reachable through a series of event.
Table 1 prints a summary of the basic analysis results for the
analyses performed on the protocol.

V. DISCUSSION AND CONCLUSION

The purpose of this paper is to illustrate the capability of
UML Sequence Diagram to model more than just software
systems. As such, the modelling of the IEEE 802.11

CSMA/CA protocol proves that modeling is more globally
beneficial and thus, everything that can be modeled in
Sequence Diagrams can be transformed into Petri Nets and
analyzed mathematically.

The correctness of the model transformation performed
by SD2PN has also been proven mathematically using a
common semantics domain in Labelled-Event Structures
[19] by using the semantic mapping introduced in [20, 21].

TABLE I. SUMMARY OF ANALYSIS RESULTS

ANALYSIS RESULT
Liveness Yes
Boundedness (Value) Yes (Value 1)
Safeness Yes
Reachability All states are reachable

As such, the validity of the analysis results obtained via
SD2PN should be regarded as accurate.

Petri Nets could also perform time related analysis such
as performance analysis and Quality of Service (QoS)
analysis. This flavor of Petri Nets can be obtained using the
enhancement of SD2PN that is described in [16].

REFERENCES
[1] Schiller, J.H., Mobile Communications. 2003: Pearson Education.

[2] UML, UML Superstructure 2.0, Object Management Group, available
at www.omg.org. 2003.

[3] MDA, Model Driven Architecture, Object Management Group
www.omg.org/mda/. 2005.

[4] Ameedeen, M.A. and B. Bordbar, A Model Driven Approach to
Represent Sequence Diagrams as Free Choice Petri Nets, in 12th
International IEEE Enterprise Distributed Object Computing
Conference (EDOC). 2008: München, Germany. p. 213 - 221.

[5] Anastasakis, K., et al. UML2Alloy: a Challenging Model
Transformation. in ACM/IEEE 10th international conference on
Model Driven Engineering Languages and Systems. 2007.

[6] Murata, T., Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 1989. 77(4): p. 541-580.

[7] AlloyAnalyzer, Alloy Analyzer Website, http://alloy.mit.edu/beta/
2005.

[8] Campos, J. and J. Merseguer. On the Integration of UML and Petri
Nets in Software Development. in 27th International Conference on
Applications and Theory of Petri Nets and Other Models of
Concurrency. 2006. Turku, Finland: Springer.

[9] Butler, J., R. Hubbly, and W. Melo. An MOF-based repository for
enterprise architecture models. in avaialble at www-
128.ibm.com/developerworks/rational/library/mar05/melo/index.html
. 2005.

[10] Stahl, T. and M. Volter, Model Driven Software Development;
technology engineering management. 2006: Wiley.

[11] MOF. Meta Object Facility (MOF) 2.0 Core Specification, Object
Management Group, available at www.omg.org,. 2004; Available
from: http://www.omg.org.

[12] ATLAS, ATLAS, Université de Nantes, http://www.sciences.univ-
nantes.fr/lina/atl/. 2005.

[13] kermeta, Triskell Metamodelling Kernel, www.kermeta.org. 2005.

MOHAMED ARIFF AMEEDEEN et al: A MODEL DRIVEN ANALYSIS OF THE 802.11 CSMA/CA . . .

IJSSST, Vol. 15, No.1 ISSN: 1473-804x online, 1473-8031 print 50

[14] Akehurst, D.H., et al. SiTra: Simple Transformations in Java. in
ACM/IEEE 9TH International Conference on Model Driven
Engineering Languages and Systems. 2006.

[15] Ameedeen, M.A., A Model-Driven Approach for Analysis and
Synthesis of Sequene Diagrams, in School of Computer Science.
2011, University of Birmingham: Birmingham.

[16] Ameedeen, M.A., B. Bordbar, and R. Anane, A Model Driven
Approach to Analysis of Timeliness Properties, in Fifth European
Conference on Model-Driven Architecture Foundations and
Applications (ECMDA 2009) (to appear). 2009.

[17] Ameedeen, M.A., B. Bordbar, and R. Anane, Model Interoperability
via Model Driven Development accepted for publication in Journal of
Computer and System Sciences, 2010.

[18] Bonet, P., et al., PIPE v2.5: a Petri Net Tool for Performance
Modeling, in XXXIii Conferencia Latinoaméricana de Informática.
2007.

[19] Winskel, G., An introduction to event structures, in Linear Time,
Branching Time and Partial Order in Logics and Models for
Concurrency, School/Workshop. 1989, Springer-Verlag.

[20] Küster-Filipe, J., Modelling concurrent interactions. Theoretical
Computer Science, 2006. 351(2): p. 203-220.

[21] McMillan, K.L., A technique of state space search based on
unfolding. Form. Methods Syst. Des., 1995. 6(1): p. 45-65.

