
IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.1 ISSN: 1473-804x online, 1473-8031 print

Asynchronous Runtime Verification of Business Processes: Proof of Concept

Ivo Oditis
DIVI Grupa Ltd

Riga, Latvia
ivo.oditis@di.lv

Janis Bicevskis
University of Latvia

Riga, Latvia
Janis.bicevskis@lu.lv

Abstract— This paper describes a new approach to the runtime verification of business processes as well as discusses its
approbation. This approach utilizes the idea of a multi-agent system, presenting a runtime verification system that is able to
perform verification without affecting business processes that are running in a heterogeneous environment. The verification
mechanism monitors business process execution and verifies the compliance of the execution with the description of the verification
process. This research also led to the development of a domain-specific language to describe business process verification. The
prototype of verification mechanism is developed and tested on real business processes, and verification performance, produced
overhead and limitations are evaluated.

Keywords- business process verification, runtime verification, multi-agent systems

I. INTRODUCTION

There have been burning issues related to the
development of information systems (IS) ever since the very
beginning - whether the IS operates correctly, whether the
system's results are adequate, and whether the IS is in the
correct state in terms of the relevant business [1]. An
exceptional situation can be caused by a number of
circumstances such as poor quality, insufficient testing and
incorrect use of system: time limits, or the order in which
various operations must be performed, and others.

The origins of discussions about these problems can be
found in [2], [3], [4] with subsequent discussions found in
[5], [6], [7]. Most of these researchers have looked at the best
way of embedding supportive components into software so
as to control and verify the execution of software and the
communications process during runtime.

The authors of this paper argue that it is often impossible
to add any component to existing software, e.g., software
source code is not available or there is not enough know-how
about software implementation. Even if software involved in
business processes could be partly supplemented with
instrumentation, it is still doubtful that all the necessary
software could be prepared for required business process
verification.

The solution offered by the authors implies the
construction of an external process verification mechanism,
which relates to the scientific novelty of this paper. Unlike
the typical runtime verification (not monitoring) mechanism,
it is verification by observing processes from aside without
intervention into execution of processes. According to the
business process description, events confirming process step
execution are collected and verified. All events are detected
by event agents and sent to centralized controller for
verification. Agents are developed for different components

(databases, file systems, email servers etc.) and not
implemented into software under verification. Thereby
proposed mechanism allows verifying business processes
executed by more than one system, running over several
platforms and even provided by more than one operator (e.g.,
data published in web).

The first position paper containing the idea of solution
was published by authors in 2010 [8] with the following
publication of detailed mechanism in May, 2014 [9] and
June, 2015 [10]. This paper provides short introduction to the
solution and aims to describe the prototyping of the solution
and draws conclusions on its limitations and usability.

The second chapter of the paper deals with the problem,
the third analyses related verification solutions. The fourth
describes the proposed solution to the problem – as the
architecture of the business process verification mechanism
and the domain-specific language that describes the process
verification – and the fifth chapter introduces a prototype
used to test this concept, also offering related observations.

II. BUSINESS PROCESS VERIFICATION

A. The problem

The authors of this paper have investigated the use of
business processes at large companies where many different
types of software are used [1]. The establishment of a
heterogeneous environment in large and long–lasting
companies is inevitable, because the organizational size and
functions are subject to changes over the course of time and
develop gradually.

Serious problems are caused by a distributed
environment in which many systems are running
simultaneously on different platforms and are exchanging
data among themselves. As a general rule, service staff must
keep track of the correctness of the process, particularly if

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.2 ISSN: 1473-804x online, 1473-8031 print

the system has no built–in process controls. Many business
processes, however, involve two or more systems, and these
are typically controlled in a manual way. This means that the
smooth usage of the systems mostly depends on the technical
skills of the staff and the precise execution of operations by
employees.

Automated runtime verification is proposed in order to
address the aforementioned issues, also reducing the
dependency of system usage on the subjective factor of
employees. The business process runtime verification might
identify the following business process execution problems:

 problems arising from changes in execution
environment (in real life such problems are rarely
identified by testing);

 process execution delays (this is particularly
important for processes that require a quick
response or for long working processes);

 data exchange between two or more systems
implementing one business process;

 and others.

B. The essence of the solution

When it comes to aspiring business process verification,
this paper proposes the development of a separate
verification process for each controllable business process
(base process). Verification processes are described in
domain–specific language that has been developed by the
authors, and it is elaborated in further sections of this paper.
Base processes typically involve IS software, while
verification processes should be executed on the basis of
independent and external controlling software (a controller).
The steps of the verification process are linked to base
process steps and are described by events that acknowledge
the execution of the base process step. Base processes and
verification processes are executed independently.

Execution of a base process modifies IS memory, for
instance, a file system or database. The controller receives
acknowledgement from event agents about these
modifications of memory, also identifying inconsistencies
between the information that is received and the description
of the verification process. If inconsistencies are detected,
then they are reported to system support staff. The proposed
approach, therefore, can verify a base process only if IS
memory changes that are caused by process execution can be
detected by event agents.

III. RELATED RESERCHES ANS SOLUTIONS

Several authors have argued that static verification and
testing of software are insufficient aids for modern business
process verification that relates to a complex and a
heterogeneous environment [11]. Processes are implemented
by many components which change independently over the
course of time. This means that the process runtime
verification must be conducted through the entire lifetime of
the process [12], [13].

A. A verification process that is integrated into software
which executes the base process

Verification of a business process execution can be
implemented in an IS if the execution verification is
specified in the relevant software requirements. If there are
time limits related to document processing, for instance, then
time limit controls can be applied to the IS, and the IS must
warn users when the time limit is expiring.

Many researchers (e.g., [5], [6]) have argued that runtime
verification can be effectively executed if it is installed into
IS software. In practice, however, very few information
systems have functionality in relation to runtime verification.
Most rely on event logging in case of a failure.

One of the related authors has proposed the use of
installed self–testing components for runtime testing [14].
This ensures the construction of a software testing code
inside the software itself, thus making it possible to test
software not just before deployment, as is suggested in
classical tests, but also in a production environment that
involves runtime data.

B. Business process runtime verification with the use of
separate components

Various authors have suggested runtime verification
solutions for SOA–based Web services. Verification
description language WSCoL is developed [13]: it makes it
possible to verify Web service calls by adding pre and post–
conditions. Monitoring involves a specific proxy server – it
verifies all service requests and responses. WSCoL was
updated with service execution timing, and the result was an
extension that is known as "timed WSCoL" [15].

Other authors have suggested solutions similar to
WSCoL. One example is the LTL–FO+ [16] language
(Linear Temporal Logic with Full First–Order
Quantification). This makes it possible to describe the
interdependence of SOA message services, also providing
their verification in runtime.

All of these solutions make it possible to develop
verification descriptions independently from the tested
software. As a rule, moreover, these solutions are focused on
a heterogeneous environment, because SOA serves as "glue"
in such environments. The drawback of these solutions is
orientation only on SOA, therefore these are not applicable
for legacy systems.

C. Business process runtime verification via combined
solutions

One of the so–called combined solutions is based on
trace analyses. The software must have a built–in trace writer
or logging mechanism.

The trace or log that is created by this process is analyzed
via a separate monitor process. Two types of trace analysis
algorithms can be used. The first algorithm analyses the trace
after the execution of the process has been finished [17], i.e.,
post–factum. The second analyses the trace in parallel with
the traced process [18].

Another combined solution is based on the generation of
a monitoring application [19]. This idea relies on the
automatic generation of a monitoring application and

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.3 ISSN: 1473-804x online, 1473-8031 print

instrumentation from the system's specification. This means
that the solution requires very detailed software
specification, as well as the availability of a source code.

IV. BUSINESS PROCESS RUNTIME VERIFICATION

Automated workstations, servers and network monitoring
that are supported by a number of software and controlling
systems have become a part of our daily working routines.
Business process runtime verification, however, is not so
commonplace and presents more sophisticated issues:

 Business process models tend to be ambiguous, thus
enabling incorrect interpretations and often missing
information about time control;

 Software implementing business processes is not
properly tested for non–standard situations, e.g., data
exchanges with other systems are typically treated as
being reliable and without errors;

 IS–based business processes often have no common
interface, and data exchange is conducted manually
by users.

Efforts to provide the verification of business process
have been focused on three main objectives:

 Verification of processes involving more than one
system, i.e., heterogeneous systems;

 Verification of a wide range of system platforms
(not just Web services);

 An early warning system for staff support.
This paper proposes the construction of an autonomous

process verification mechanism to reach these objectives.
The proposed automated process verification mechanism
checks whether a described process is running in accordance
with the verification process descriptions, i.e., verifying the
sequence of activities and the timing of operations. If a
discrepancy is detected between the description and the
ongoing process, then the control mechanism sends a report
to system support staff. The proposed verification
mechanism operates asynchronously to the base process. If
unconformity is detected, the base process is not stopped,
because the verification process runs in parallel to it.

A. The architecture of runtime verification – the controller
and the agents

The mechanism that has been proposed by the authors
verifies the compliance of business process execution with
the process verification description. The description of the
verification process must specify two aspects – event–
confirming step completion and the time when each step in
the process must be finished. Therefore, the proposed
architecture of the process verification mechanism contains
two major services – an event detector (agent) and a
controller. The agent is software that can check the
occurrence of a specific event such as "file deleted". The
controller is software that can analyze process verification
descriptions, require that agents detect events specified in the
verification description, collect event acknowledgements,
and verify flow compliance with the verification description.

Fig. 1 presents an example. Two systems (A and B)
provide one business process. The process starts by receiving
a data file from the client via FTP in system A. The file is
processed, and data are saved in the system's A database.
Then system A exports the received data as a structured text
file for system B. System B reads the file and saves the data
in its database. The process verification must check four
events: a new file created on an FTP server, new data records
are added to the system's A database, the export file is
created for system B, and new data records are saved in
system B's database.

Here process verification involves two types of agents – a
file system event agent and a database event agent. The
controller must take four steps in relation to the process
verification:

 First the controller requires the file system agent to
check the creation of new files on the FTP server. As
soon as notification about a new file is received from
the agent, the controller must create a new instance
of the verification process.

 According to the process verification description, the
next base process step prescribes the addition of data
to system A's database. Therefore, the controller
requires the database event agent to check
corresponding updates to the database.

 Upon receipt of a database update notification from
the database event agent, the controller requests and
awaits notification from the file system agent about
the generation of an export file.

 As soon as the generation of the export file is
verified, the controller sends an inquiry to the
database event agent about a notification about the
updating of system B's database.

Obviously this verification process can operate in parallel
with systems without affecting any of their operations and
without any modification of the systems. Thus the
mechanism is applicable to the verification of any process
that is provided by an IS, assuming that:

 There is enough information about events that
indicate the execution of base process steps;

 Agents are available in environments in which the
system that provides process execution is running.

B. The idea of a domain–specific process verification
language

Several languages can be used to describe business
processes, including UML activity diagrams, Event–driven
Process Chains, Business Process Model Notation or the
Business Process Execution Language. These languages
make it possible to describe base processes in detail, but they
fail to provide the following process verification data:

 How to determine that a step has been finished;
 When the process step must be completed;
 Where the process steps are executed.
Thus process verification description should be

implemented as extension of these languages.

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.4 ISSN: 1473-804x online, 1473-8031 print

Figure 1. A schema of business process verification.

Figure 2. A class diagram of elements in the verification process description language.

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.5 ISSN: 1473-804x online, 1473-8031 print

Process verification descriptions could be created using
WSCoL [15] or LTL–FO+ [16], however first of these is
applicable only for service oriented architecture and second –
requires very detailed process description. Therefore,
considering both, recommendations by other authors [20]
and small amount of concepts required for proposed
verification description, the authors decided to develop
compact xml–based domain–specific language (Fig. 2) that
enables specification of process verification. The language
contains only concepts required by verification with
insignificant overhead for workflow definition (states and
links). It was implemented in the prototype of verification
mechanism.

The process verification description that corresponds to a
particular base process is represented by a directed graph
whose vertices represent events that approve the execution of
base process steps and arcs – the order in which events are
executed. Fig. 3 shows a schematic example of base and
verification processes. As can be seen, the number of events
in the verification process is lower than the number of steps
in the base process. This means that not every step execution
can be detected by agents that are involved in the process
verification.

Figure 3. The base and verification process.

1) Elements of the process verification description
language

Process verification description contains two types of
elements – events and links between them. The term "event"
within the scope of verification description language implies
changes in the system's "memory" (file system, e–mail,
database etc.) which can be handled by the verification
mechanism agent. Links between events describe possible
event sequences that reflect the actual execution of a
business process. Each verification process must have one
and only one start event, as well as one or more final events.
It enables loops and parallel execution paths. Each
verification description has the following attributes:

 A verification process instance load flag – whether
the process instance is started by the occurrence of
the start event or by another verification process
instance;

 Parameters and variables that are used in process
verification events;

 Report settings when errors occur or time limit
warnings must be sent.

Given that the element "link between events" does not
have any attributes, further exploration is devoted to the
element "event." In fact, "event" describes action identified
by event. Each of process actions being verified has a name,
main event and potentially one or more sub–events. All of
events have attributes:

 The agent and event type (e.g., agent – "FileSystem",
event – "file created");

 The parameters of event detection;
 The agent's address, i.e., the server name or IP and

related port;
 Assignment of results – when an event is detected by

an agent, it returns notification with explanatory
attributes related to the event;

 Event time restriction, which can be expressed as an
exact time (e.g., before 14:30:20 and after 15:00:00),
a distance of time from one or several previous
events or combination of these two;

 Information about warnings and errors can be added
to each of the events.

The process verification mechanism checks sub–events
only when the main event has occurred. Obviously, the sub–
events have no time restrictions.

A full list of items that are used for the description of a
verification process is shown in a UML class diagram
(Fig. 2).

2) Language implementation
Verification description is built using xml – based

language. There is xml schema created for validation of
description. Each description contains three sections:
description heading, description of actions and action links.
Description heading contains all common description items
like name, comment and initiation type. Common parameters
(directory names, server names etc.) and variables are
defined here, too.

Action section includes all events grouped by actions
they are describing. Each action should contain defined timer
restrictions and main event. Also sub–events may be
included there.

The last section contains action links. Links have three
limitations: start actions may have only outgoing links, final
actions – only incoming links and there must be path from
each of start actions to at least one of final actions. Cycles
are allowed.

C. Agents

Agents are one of two components in a process
verification mechanism, and their job is to detect changes in
the system's "memory." Agents can be universal software
components (e.g., a file system event agent) or developed for
a specific IS. The variety of available agents speaks to the
possibilities of process verification – the wider the range of
detectable events, the more detailed the process verification
that can be implemented. Depending on the event type, there
can be one of two types of agents – simple or thin agents, as
well as complex agents.

1) Simple agents

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.6 ISSN: 1473-804x online, 1473-8031 print

The model of a simple agent presumes that the agent can
detect all events without a controller request and that all of
them will be of use in process verification. A dedicated agent
that is developed for a single IS can be taken into account,
and it is likely that all events that are detected by the agent
will be of use in the process verification of the IS. A contrary
database agent may not send all of the detected events to the
controller, because most of them will not be required for
verification and will be nothing more than spam.

2) Complex agents
Unlike thin agents, complex agents are used in

environments in which only a few of many events must be
delivered to the controller. A typical example is a file system
event agent that runs on a corporate file server. Many file
system events occur every second on these kinds of servers,
but only some of them are required for business process
verification. A complex agent model, therefore, is based on
two–way communications (the request–response model).
The controller asks the agent to detect certain types of events
with specific parameters, the agent detects the required
events, and it then sends a response to the controller. The
complex agent model handles the processing of synchronous
and asynchronous event requests.

D. An example of a verification description

Let's imagine a system which processes some files that
contain messages (the process state chart is illustrated in
Fig. 4). From the system's point of view, the file processing
starts with the "File received" state, i.e., the file is copied
onto the system operator's file server (via FTP or other file
transfer services). Then the file is registered in the system's
database, and the actual processing is launched:

 The file is decrypted;
 The file is parsed and all messages are extracted;
 All messages are checked in accordance with the

particular business rules.

Figure 4. An example of a base process.

During the file processing, the system prepares one of
three types of responses: affirmative (A–type file), an error
list (E–type file) or a rejection of file procession (C–type
file). When the response is prepared, it is created in a
temporary directory as the respective type of file, it is
encrypted, and it is delivered to the recipient.

In order to verify file process execution, indicative
control states must be part of the file processing state chart.
When adding verification points to a process description, it is
necessary to think about whether it will be possible to detect
a situation in which the process has achieved a specific state.
For example, it is possible to detect the creation of a new file
in a specified directory or a new record in a database table,
but it is practically impossible to identify object value
changes in the memory (RAM) of another process. In the
example that is seen above, three states have been identified
as possible verification states (marked in grey in Fig. 4) –
File received, File registered and Response delivered. The
process verification description can be created when these
states and links among them are utilized.

According to the aforementioned process, control
description can be created from the state chart, as well as
from an activity diagram or other process descriptions. The
only requirement is to add extensions such as event and time
control concept.

E. Limitations of the solution

One of the most important aspects of any developed
solution is awareness of its capability limits. Particularly in
this case the mechanism has been developed mainly to serve
business process verification purposes. Accordingly,
limitations of proposed verification mechanism should be
examined from two aspects:

 Does the mechanism provide business process
verification?

 What are borderline cases of verification?
The scope of this work defines business processes as

processes that to some extent involve operations executed by
persons. Respectively, these processes are not computer
intensive, e.g., document flow. Therefore, the authors claim
that the proposed mechanism is able to provide business
process verification since the resulting event load on either
agents, or controllers is hardly comparable with agents’ or
controller’s execution speed.

The more complex and sophisticated issue is presented
by evaluation of borderline cases of verification. Evidently
the verification mechanism is not able to verify processes
whose execution speed is equal to execution speed of the
verification process itself. Processing of each verification
process’ event involves many single steps executed by
verification solution; therefore, intensity of verifiable events
should be several times less than a number of verification
steps. Moreover, verification of processes’ instances can be
executed for several processes simultaneously. Accordingly
the more verifiable process instances are involved; the less
process steps can be verified. However, certain limitations
directly depend on implementation of verification solution
and its operational environment. The next chapter “Proof of

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.7 ISSN: 1473-804x online, 1473-8031 print

concept” contains more detailed evaluation of the solution’s
limitations.

Eventual process problems that can or cannot be detected
by the verification solution should be examined additionally
to the technical limitations:

 The proposed mechanism can detect problems
directly related to violation of verification criteria:
failure to execute all process steps, failure to execute
process steps in fixed sequence or failure to comply
with time limits.

 The proposed solution does not verify internal
algorithms of software operation, such as how
wording in e–mail or file content have been
prepared, i.e. it does not verify process consistency
with specification.

However, the solution can help detecting collateral
problems that impact execution of process steps. For
instance, if system’s operation has been interrupted due to
internal error, it will probably result in failure of some
process steps. Accordingly, incorrect execution of process
instance will be detected and support team will receive
notice containing information which process steps have been
executed and which ones failed.

V. PROOF OF THE CONCEPT

Prototype of the process verification controller and two
agents were developed so as to prove the concept and specify
the details of the proposed model. The scope of the prototype
included implementation of process verification description,
as shown in Fig. 5. Two agents were implemented – the
FileSystem agent for file system events and the DBEvent
agent for database event. Whereas processes used form
verification were running on Microsoft Windows platform,
the controller and agents were implemented as Windows
services using C# and Windows Communication
Foundation.

Figure 5. Settlement cycle processing.

Prototype was used in two separated environments:
 Some processes of Electronic clearing system were

verified in order to evaluate the usability of solution
and descriptiveness of supposed DSL for real life
processes;

 Test environment with process generator was
developed in order to test the solution’s limitations
under different workload.

A. Implementation of the controller

Even though the scope of prototype was rather narrow it
has final product features:

 It allows loading more than one process description;
 Many in parallel running process instances can be

verified;
 Communication with agents is based on interfaces

thereby new agents may be introduced without any
changes in the controller.

Controller runs as separate process and all process
descriptions are loaded automatically. When verification
descriptions are loaded, controller sends start event request
to agents (if verification process instance is started by an
event, it must be start event). When start event notification is
received, corresponding process instance is created and
following event notifications are requested.

All event time limitations are checked by controller in
parallel. To reduce timer mechanism impact on verification
performance, actually only one timer is set – only the closest
event in all verification process instances is selected. Timer
is reviewed or reset upon reception of any event notification
or when timer elapses. When controller detects some
inconsistencies in process instances under verification (event
timer elapses or notifications are received in wrong order),
controller prepares informative messages for support staff
(configured in verification process description) about
exception. Thereby support staff is informed as soon as
problem is detected.

B. Implementation of agents

Four event types were implemented in the FileSystem
agent:

 FileCreated – an event is fired when a new file is
created. This obviously is an asynchronous event,
and it has three parameters – directory to watch, file
name pattern, and subdirectory flag.

 FileModified – an asynchronous event is fired when
a file is modified.

 FileDeleted – an asynchronous event is fired when a
file is modified.

 FileExist – a synchronous event with three
parameters – the directory name and the file name to
check and existance flag (true – checks if file exists,
false – check is file does not exists).

The FileSystem agent was created for the Windows
operating system, and file system event watchers were used
whenever possible.

The DBEvent agent was only implemented for one
event – Request. It provides Microsoft SQL Server

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.8 ISSN: 1473-804x online, 1473-8031 print

procedure calls. When an event occurs, it returns the result of
the procedure call. The agent was developed on the basis of
timers. For this reason, some delays were observed.

C. Verified processes

1) Electronic clearing system
Prototyping involved two processes of Electronic

Clearing System (EKS) [21]:
 Reception of Payment File (illustrated by examples

Fig. 4);
 Execution of Settlement Cycle (see Fig. 5).
The first process allows evaluating performance options

of the proposed verification mechanisms. File processing has
to be executed relatively fast, because it determines the
whole settlement process: if file processing gets slow, it can
affect local settlement time and further participation in other
international settlements. File processing is executed in
parallel, and each file is processed relatively fast. The EKS
holder requires that processing time for each file should not
exceed five minutes, i.e., file sender must receive response
on file processing result and payments included in settlement
within five minutes of time. Also, the process itself is
interesting because it has a database and file system
activities. Therefore, verification requires involvement of
two agent types. Furthermore, this process was verified in
EKS test environment and agents were installed in
distributed environment: file system agent was installed on
file server, database agent – no SQL server and verification
controller on separate verification server; thus providing
collaboration framework for test agents and controller.

The second verification process relates to processing of
settlement cycle. System runs seven settlement cycles on a
daily basis. Each cycle has a fixed schedule including
deadline for file processing, deadline for settlement and
deadline for result file delivery. The next table presents
examples of settlement cycle deadlines (Table I).

TABLE I. SETTLEMENT CYCLE DAILY DEADLINES.

Cycle Files processed Settlement Results delivered
1. 08:00 08:15 08:45
2. 09:30 09:45 10:15
3. 11:30 11:45 12:15
4. 13:00 13:15 13:45
5. 15:00 15:15 15:45
6. 17:30 17:45 18:15
7. 18:30 18:45 19:30

As illustrated in Fig. 5 the supervision of settlement cycle

is not very intensive process since event occurrence is
relatively rare; though supervision process itself is crucial. If
one of the settlement cycle deadlines is delayed, the next
cycle will be potentially delayed. Each settlement cycle is
regarded as a separate process being a component part in the
whole settlement process; therefore an automated
verification would significantly facilitate supervision of the
whole settlement process. Execution of system’s settlement
cycles was verified in the live environment, for only the live
environment provides acceptable execution schedule. In
order to reduce eventual verification impact on verifiable

environment, all components of verification mechanism
(controller and data base agents) were installed on separate
control server.

a) The results of the file processing verification
First prototypes provided an insight into process

verification performance possibilities. There were 80
payment files generated for three EKS participants (Table II)

Three separate process verification descriptions were
created for three system participants (system participants are
commercial banks) – one description for each participant’s
file processing process. Therefore prototype used three
process verification descriptions simultaneously (although
these descriptions were similar, they differed from the
controllers perspective) and process verification instances
were attached to three different processes.

TABLE II. FILES USED FOR TESTING.

Participant Files Payments
Bank 1 50 3070
Bank 2 10 200
Bank 3 20 400
Total 80 3670

Test files were created in a way that differs from real life

system usage, namely, all test files were copied to system
directories simultaneously, while in real life due to network
latency system’s participants usually copy files gradually.
Thus, creation of 80 process verification instances instantly
resulted in a reasonable workload for file system agents and
controller; though further in processing all verification
instances were verified gradually. Considering that EKS
processes several files in parallel, the controller received file
processing event notifications alternately from several
processes in parallel. Since EKS processed files alternately,
finishing was not simultaneous for all 80 files. Some files
were processed with delay. Verification mechanism
identified delay for 11 files and this number was verified as
correct using EKS data base.

File processing was verified using two event agents: file
system agent and database agent. File system agent is event
based; therefore the agent gets active only after the required
system activity has happened, i.e. an event has occurred.
Accordingly, in a moment when the payment files were
copied for processing, the file system agent received
information that 80 events “file created” have occurred. All
these events were received and processed by the file system
agent simultaneously, thus creating insignificant overload for
the agent. During further file processing when other file
system events occurred progressively, process overload was
not detected.

Contrary to the file system agent, the database agent is
timer based. According to its configuration the database
agent executed database requests every five seconds.
Although SQL profiling tools recorded this activity, no really
significant processor’s overload was identified due to the
small amount of verifiable process instances.

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.9 ISSN: 1473-804x online, 1473-8031 print

b) Verification of settlement cycles
The second example of verifiable processes (execution of

settlement cycles) was verified in EKS live environment.
Since there are seven daily settlement cycles in the EKS and
every cycle has slightly different settings, the verification
controller had to treat them as seven different processes, i.e.,
seven process verification descriptions were prepared.
Contrary to the file processing, the settlement processes are
executed rather slowly; therefore, verification configuration
was set to check for cycle status changes once per minute
and as a result, there were no signs of overload detected in
the EKS live environment. Further execution of cycle
processes was in compliance with all time constraints, thus
all process instances were recognized as correctly executed.

2) Test environment
Test environment containing business process test

generator was created to provide solution workload testing.
According to the test plan, seven different complexity
processes were described, and test generator was able to
operate with all process instances simultaneously. In order to
reduce the influence of various implantation factors to the
assessment, all processes were related to the file processing
(creation of new files, modification, deletion, copying and
moving). Therefor only one file system events agent was
used. According to the approach of the proposed solution,
two nodes were used:

 Test generator and file system agent were running on
one of the nodes (agent should be as near as possible
to the place of events used for verification);

 The second node was used by the verification
controller.

The frequency of event occurrence for process instances
was limited to align instance execution intensity with agent’s
ability to handle filesystem events. Thus solution were tested
on different number of simultaneous process instances.

The initial hypothesis was confirmed. Verification
process operated as intended to a certain number of
concurrent process instances: all events were handled and
identified and all delayed process instances were noticed
(Fig. 6).

Figure 6. Process instances and missed events.

By increasing number of parallel process instances (the
intensity of the events were running over 33 events per
second), some of the process instance events were missed
and thus the controller identified those instances incorrectly
as faulty (false negative). By increasing the number of
instances the rapid growth of the number of missed event
and instances identified as "false negative" was caused.

When the operations of the prototype were analyzed, it
was found that the file system agent identified all the
requested events. Verification errors were caused by the
workload of the controllers prototype: the controller delayed
further event requests because of processing of event
notifications received from agents. Thus, the agent received
requests for event identification after events occurred.
Meanwhile, event controller were overloaded, agent it-self
left insignificant effect on test generator operation. i.e.,
overhead created by agent were imperceptible even there
were relatively high number of events to detect.

The detected problem of controller could be partly solved
if controllers would request not only events of next direct
process steps, but all further events as far as it is possible
according process description (further event parameters
could depend on previous events results). Thereby controller
would have more time on instance verification upon arrival
of the event’s notification. Although these updates could
improve controller’s performance, however, also in this case
there would be number of instances when controllers
operations will become inefficient because of many “false
negative” notices.

The other way to improve the operation of solution is to
use simple (i.e., built in) agents as widely as possible, Simple
agents detects events without controller’s request, therefore
controller’s workload can be minimized and less time will be
spent on communications: controller would not request all
possible future process instance events, but it will just
receive occurred events.

D. Prototyping conclusions

Even though first experiments have been rather inspiring,
it is obvious that increased complexity of verification process
descriptions will trigger increase of number of events to be
detected. As a result this will increase agent impact on
system under verification. Also, there is evidently a limit to
the number of event notifications and process instances
which can be processed by controller.

Thereby first prototype tests satisfied expectations of
authors. Even tested verification mechanism is rather simple;
it leads to some conclusions about its application:

 Solution can provide verification of business
processes that run with typical business process
intensity when process steps are executed or initiated
by man;

 Solution provides verification for a wide range of
processes;

 Verification of processes (create and add new
description) can be easily accomplished and
modified if necessary;

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.10 ISSN: 1473-804x online, 1473-8031 print

 Verification mechanism is extendable by adding new
agents, thus providing verification for a wide range
of environments and platforms;

 Higher process verification intensity can be achieved
by use of simple (i.e., simple agents).

There were also several suggestions that must be taken
into account:

 A fairly detailed base process execution model must
be available so as to develop a detailed process
verification description;

 Various event peculiarities may affect process
verification description, e.g., when two events occur
at the same time, but cannot be verified
simultaneously. In such cases, sub–events can be
used. Therefore, when file is moved, the main event
is FileCreated in the destination directory, and the
sub–event is FileDoesNotExist for the source
directory.

VI. CONCLUSIONS

This paper has described an approach of business process
runtime verification – the execution of a base process and a
separate verification process in parallel. Also approbation is
discussed for proof of concept.

The verification mechanism is based on two components:
controller and agents. Event agents pass affirmation of base
process step execution to the verification process. A
formalized verification process description allows the
controller to identify incorrect base process execution, to
warn IS support staff immediately about any process errors
that are defined, and to track the exact process step in which
the error occurred. The proposed reaction contributes toward
efficient reaction when there are incorrect business process
executions. In comparison to other, similar solutions ([12],
[13], [15], [18]), this solution has several positive features:

 The verification process can be defined without
modifying the base process – the base process can
have more than one verification process so as to
verify all of its various aspects;

 The verification process runs in parallel to a base
process and does not interfere with it;

 The solution is applicable to the base processes of
heterogeneous systems, i.e., the business process is
tracked as a whole even if it is being implemented
by two or more systems;

 The verification process does not limit the language
that is used for base process modeling and
implementation;

 When verification process execution is tracked and
logged, it can be used to gather statistics about the
base process execution time, thus identifying
bottlenecks and providing warnings about changes in
the duration of the process execution [22].

The proposed solution can be broadly applied. Although
the primary research objective was to develop a runtime
verification mechanism for business processes, the prototype
solution showed that it can also be used for runtime
verification in real–time and even embedded systems. The

same verification description language and controller can be
used in all cases, only adjusting the necessary event agents.

This research is based on years of experience in building
systems related to business process verification abilities [23].
The experience of the authors contributed toward the
definition of business process verification as a separate
component [8], [9]. The research led to the development of a
prototype verification mechanism, including two types of
agents. This resulted in further research efforts that were
focused on event agent standardization and unification, as
well as on the development of the relevant language
description.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the research project "IT Competence Centre" of EU
Structural funds, contract nr. L–KC–11–0003 signed
between IT Competence Centre and Investment and
Development Agency of Latvia, Research No. 1.6
"Algorithms for verification of business processes".

REFERENCES
[1] C. Atkinson and D. Draheim, Business process technology: A unified

view on business processes, workflows and enterprise applications.
Springer, 2010.

[2] D. Gelernter and N. Carriero, "Coordination languages and their
significance," Communications of the ACM, vol. 35, no. 2, p. 96,
1992.

[3] T. W. Malone and K. Crowston, "The interdisciplinary study of
coordination," ACM Computing Surveys (CSUR), vol. 26, no. 1, pp.
87–119, 1994.

[4] J.-M. Andreoli, Coordination programming. World Scientific, 1996.

[5] P. Ciancarini and C. Hankin, Coordination Languages and Models:
First International Conference, COORDINATION’96, Cesena, Italy,
April 15-17, 1996. Proceedings. Springer, 1996,vol. 1.

[6] J. A. Bergstra and P. Klint, "The discrete time TOOLBUS – a
software coordination architecture," Science of Computer
Programming, vol. 31, no. 2, pp. 205–229, 1998.

[7] C. Liu, Q. Li, and X. Zhao, "Challenges and opportunities in
collaborative business process management: Overview of recent
advances and introduction to the special issue," Information Systems
Frontiers, vol. 11, no. 3, pp. 201–209, 2009.

[8] I. Oditis and J. Bicevskis, "The concept of automated process
control," Computer Science and Information Technologies, Scientific
Papers, University of Latvia, vol. 756, pp. 193–203, 2010.

[9] I. Oditis and J. Bicevskis, "Runtime verification of business
processes," in Databases and Information Systems, Proceedings of the
11th International Baltic Conference, Baltic DB&IS 2014, H.-M.
Haav, A. Kalja, and T. Robal, Eds. Tallin University of Technology
Press, jun 2014, pp. 363–370.

[10] Oditis I., Bicevskis J. Asynchronous Runtime Verification of
Business Processes. In Proceedings of the 7th International
Conference on Computational Intelligence, Communication Systems
and Networks (CICSyN), Riga, 2015, pp. 103-108.

[11] C. W. W. Wu, "Methods for reducing monitoring overhead in runtime
verification," Ph.D. dissertation, University of Waterloo, 2013.

[12] C. Ghezzi and S. Guinea, "Run-time monitoring in serviceoriented
architectures," in Test and analysis of web services. Springer, 2007,
pp. 237–264.

[13] L. Baresi and S. Guinea, "Towards dynamic monitoring of WS-BPEL
processes," in Service-Oriented Computing-ICSOC 2005. Springer,
2005, pp. 269–282.

IVO ODITIS et al: ASYNCHRONOUS RUNTIME VERIFICATION OF BUSINESS PROCESSES: PROOF . . .

DOI 10.5013/IJSSST.a.16.06.06 6.11 ISSN: 1473-804x online, 1473-8031 print

[14] E. Diebelis and J. Bicevskis, "Software self-testing." in DB&IS, 2012,
pp. 249–262.

[15] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini, "A
timed extension of WSCoL," in Web Services, 2007. ICWS 2007.
IEEE International Conference on. IEEE, 2007, pp. 663–670.

[16] S. Halle and R. Villemaire, "Runtime monitoring of message-based
workflows with data," in Enterprise Distributed Object Computing
Conference, 2008. EDOC’08. 12th International IEEE. IEEE, 2008,
pp. 63–72.

[17] D. Kortenkamp, T. Milam, R. Simmons, and J. L. Fernandez,
"Collecting and analyzing data from distributed control programs,"
Electronic Notes in Theoretical Computer Science, vol. 55, no. 2, pp.
236–254, 2001.

[18] M. Ducassé and E. Jahier, "Efficient automated trace analysis:
Examples with morphine," Electronic Notes in Theoretical Computer
Science, vol. 55, no. 2, pp. 118–133, 2001.

[19] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis, "Testing
conformance of real-time applications by automatic generation of

observers," Electronic Notes in Theoretical Computer Science, vol.
113, pp. 23–43, 2005.

[20] M. Mernik, J. Heering, and A. M. Sloane, "When and how to develop
domain-specific languages," ACM computing surveys (CSUR), vol.
37, no. 4, pp. 316–344, 2005.

[21] Electronic Clearing System EKS, Latvijas Banka, 2013. [Online].
Available: http://www.bank.lv/en/payment-and-settlement-
systems/electronic-clearing-system-eks

[22] B. F. van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters,
and W. M. Van Der Aalst, "The prom framework: A new era in
process mining tool support," in Applications and Theory of Petri
Nets 2005. Springer, 2005, pp. 444–454.

[23] J. Cerina-Berziņa, J. Bicevskis, and G. Karnitis, "Information systems
development based on visual domain specific language bilingva," in
Advances in software engineering techniques. Springer, 2012, pp.
124–135.

