Research on Incentive Mechanism of Knowledge Contribution of Enterprise Staff Based on Multi-task Principal-agent Theory

Le Cheng-yi 1, Duan Nuan-nuan 1

1 School of Economic and Management
East China Jiaotong University
Nanchang, Jiangxi, China

Abstract — At present, how to motivate staff to enhance their performance according to their different knowledge contribution behavior is a crucial issue in the research and practice of enterprise knowledge management. A new multi-task principal agent model is established to improve the knowledge contribution and knowledge competitiveness. In this paper, staff’s knowledge contribution behavior in knowledge creation and knowledge participation is described to explain the multi-task principal-agent relationship between enterprise and staff. Then, the multi-task principal agent model of knowledge contribution is built and analyzed. Finally, some incentive measures are proposed for enterprises to prompt knowledge contribution of creation and participation. The results show that staff's knowledge creation behavior and positive participation behavior will promote each other. Enterprise should set up respective target levels of both knowledge creation contribution and knowledge participation contribution, and make them irreplaceable. The research demonstrates that the proposed model is effective for the study of incentive mechanism of knowledge contribution.

Keywords - Knowledge contribution behavior, Multi-task Principal-agent, Knowledge creation contribution, Knowledge participation contribution, Incentive measures

I. INTRODUCTION

Employees, both the creators and users of knowledge, are enterprises’ key resources and sources of knowledge. Enterprise knowledge base’s ordering construction requires staff’s collective participation and wisdom [1]. However, employees worry that their knowledge dominance may be jeopardized, thus they have no willingness to share useful knowledge with others [2]. It is worth to mention that, How to motivate staff to contribute knowledge has been a crucial issue in the research and practice of enterprise knowledge management. Studies have shown that the largest challenge to knowledge management is whether individuals have intentions to propagate and share useful knowledge [3]. And enterprise always will take some incentive measures according their knowledge contribution behaviors, to encourage employees to contribute their knowledge. Besides, knowledge participation behavior and knowledge creation behavior have different effects on the knowledge contribution in enterprise [4]. Based on the multi-task principal-agent theory, when the agent is engaged in a number of tasks, incentives of one of the task is not only influenced by this task, but also influenced by other tasks [5]. That is very important to consider the differences of knowledge contribution behaviors, and make different incentive measures of knowledge creation task and knowledge participation task. Therefore, the paper constructs and analyzes the multi-task principal agent model of knowledge contribution, so that enterprise can propose some efficient measures to encourage staff to create and share knowledge.

II. LITERATURE REVIEW

The principal-agent theory has widely application in the research of information asymmetry and incentive issues, and it can be used to study the incentive problems of knowledge sharing in enterprise. Many scholars have applied the principal-agent theory in the economics analysis of incentive mechanism of knowledge sharing among employees. For instance, Wei Hong-mei et al. (2009) established knowledge sharing incentive mechanism model, dividing company clients into either risk neutral or risk aversion, and discussed their respective optimal incentive contract. Fan Bin et al. (2009) studied enterprises’ internal knowledge sharing mechanism under the condition of incomplete information. Zhang Peng et al. (2011) analyzed the incentive mechanism of crowdsourcing based on the principal-agent theory, and discussed how the enterprise should design the incentive mechanism. Yu Lin et al. (2011) put forward compensation strategy for tacit knowledge sharing behavior, helping achieve the flow, transformation, sharing and innovation of tacit knowledge. Liu Min-Shi (2012) explored the relationship among knowledge incentive mechanisms, knowledge psychological ownership, and individual knowledge creation behavior. Gong Lin (2014) proposed an incentive mechanism to realize knowledge sharing for improving the effect of the inter-organizational knowledge sharing in cooperative R&D. Besides, some researches focused on the studies of knowledge contribution in online communities. Jin Jia-hua et al. (2015) explored why users continuously contribute knowledge to online social Q&A communities. Cheng Zhi-chao and Guo Tian-chao (2015) brought social interaction tie and membership esteem
together as the mediating variables between knowledge contribution and social identity to construct an inductive route model, it showed that self-identity can form through an inductive route. Ye Hua-Jonathan et al. (2015) showed that perceived community support and perceived leader support positively affect users' knowledge contribution [6-8].

Although many scholars have studied the knowledge sharing problem based on principal agent theory, but most of the principal-agent models of knowledge sharing have not considered the discrepancies between different knowledge behaviors of enterprise staff, and also have neglected the interaction between different knowledge contribution behaviors and tasks. Thus the multi-task principal agent model of the knowledge contribution is proposed to improve knowledge sharing in enterprise [9, 10].

The remainder of this paper is organized as follows: Section 3 describes the principal-agent relationship between enterprise and staff, and the behavior of knowledge creation and participation. Section 4 gives the methodology of multi-task principal-agent model for knowledge contribution. Section 5 presents the results, analysis, and discussion of the model. Section 6 summarizes the conclusions [11].

III. DESCRIPTION OF ENTERPRISE KNOWLEDGE CONTRIBUTION RELATIONSHIP AND BEHAVIOR

A. Principal-agent relationship of enterprise knowledge contribution

There is a principal-agent relationship of knowledge contribution between the enterprise manager and staff. Enterprise manager, as the principal, knows that knowledge comes from the minds of all staff, and encourages the staff to contribute their knowledge. As the owner of the knowledge, the staff is the agent of knowledge contributing. When enterprise manager requests the staff to contribute their knowledge, the principal-agent relationship of the knowledge contribution of the enterprise is established, as shown in Figure 1. In addition, there is information asymmetry between the manager and the staff; the staff has information superiority, but enterprise manager doesn’t [12].

The staff doesn’t contribute their knowledge without stimulating remuneration. Then enterprise manager provide some incentive to encourage the staff to contribute their own knowledge, aiming to maximize benefits of the enterprise. The staff considers that knowledge contribution will take many time and efforts, and will also lose their ownership of the knowledge. By weighing the benefits and costs of knowledge contribution, the staff determines the level of knowledge contribution [13, 14].

B. Behaviors of knowledge creation and knowledge participation contribution

Knowledge contribution behaviors of the staff can be divided into two parts: direct knowledge contribution and indirect knowledge contribution. (1) Direct knowledge contribution: the staff produces and creates new knowledge to make contributions, such as new products, new design. (2) Indirect knowledge contribution: the staff takes an active part in knowledge sharing activities, e.g. knowledge reading, knowledge recommendation, knowledge transfer, knowledge evaluation, knowledge sharing and exchanging. Both of them are helpful for the positive knowledge sharing environment. The latter which needs staff to active participate in using, sharing and evaluating of enterprise knowledge, is called knowledge participation contribution behavior, as shown in figure 2.
IV. METHODOLOGY

A. Assumption and function description

The paper makes some following assumptions: Principal (enterprise manager, P), Agent (employee, A). They are all independent persons who aiming to maximize their own interests. The risk attitude of the principal is risk neutral and the agent is risk aversion. There is information asymmetry between the principal and the agent, that is to say, the principal cannot fully understand the level of the efforts of knowledge contribution of the agent.

Agent has two knowledge contributing tasks: knowledge creation contribution and knowledge participation contribution. \(a_1, a_2 \geq 1, i = 1, 2 \) is used to express the efforts of the agent, and \(a_i = 1 \) denotes that the level of staff effort is 0; \(a_i \) means the efforts that agent spent on knowledge creation, \(a_2 \) represents the agent's efforts of knowledge participation.

(1) Knowledge production function

According to the knowledge production function model proposed by (Griliches 1979), the paper supposes that the agent's knowledge contribution output function is a linear function about agent's effort level of knowledge contribution, so the knowledge contribution output function can be expressed as:

\[
\pi = r_i a_i + e_i, \quad r_i \text{ is the coefficient of the agent’s effort to output; } e_i \text{ represents output random factors which obeys normal distribution, setting its mean to be 0 and covariance to be } \Sigma, \quad i = 1, 2 \text{ denotes the different results from different degrees of efforts of knowledge creation and knowledge participation.}
\]

\[
\pi = r_1 a_1 + e_1, \quad \pi = r_2 a_2 + e_2; \quad e_1, e_2 \text{ are respectively independent, and they subject to normal distribution: } N = (0, \sigma^2). \text{ For simplicity, supposing if } r_i(a_i, a_j) = (a_i, a_j), \text{ so the output function is: } \pi = a_i + e_i; \]

\(\pi_i \) as the expected revenue of the principal, is a strictly increasing convex function (\(\frac{\partial^2 \pi}{\partial a_i^2} < 0 \)).

(2) Cost function of knowledge contributing

The agent spends a certain amount of time and effort on knowledge creating, sorting and sharing. So the paper assumes the effort cost function of the staff is \(C = \frac{1}{2} c a_i^2 \), \(C(a_1, a_2) \) denotes the effort cost that agent spends on knowledge creation and knowledge participation, and it is a strictly increasing convex function:

\[
C_i = \underline{C} + \frac{\partial C}{\partial a_i} \geq 0, c_{ij} = \frac{\partial^2 C}{\partial a_i^2} \geq 0, c_{ij} = c_{ji}
\]

When \(c_{ij} = 0 \), it says that knowledge creation contribution and knowledge participation contribution of agent are independent of each other, that is, a change of the effort cost of one task will not affect the effort cost of another task.

When \(c_{ij} < 0, i \neq j \), it shows that the two tasks of the agent are mutually complementary, namely, the reduction of the effort cost of one task will cause the increase of the effort marginal cost of another task.

When \(c_{ij} > 0, i \neq j \), it represents that two contribution tasks of the agent can be replaced, in other words, a rise in one task's effort cost will lead to an increase of another task’s marginal effort cost.

(3) Incentive contract function

Since the principal cannot directly observe agent's effort level (\(\alpha_i \)), but he can find agent's knowledge contribution output (\(\pi_i \)). Therefore, the incentive contract function is expressed as: \(s(\pi) = \alpha + \beta \pi_i \); \(\alpha \) is the fixed remuneration provided by the principal, \(\beta \) as the incentive intensity of knowledge contribution.
B. Multi-task principal-agent model of knowledge contribution

According to the above assumptions, the revenue of the principal depends on the effort the agent. The revenue can be got if subtracting the knowledge contribution contract payment from agent’s revenue expectation of knowledge output; the principal's expected revenue is:

\[p(E_w) = E(\pi - s(\pi)) = \pi(a_i, a_j) - \alpha - \beta^e(a_i, a_j). \]

And the agent’s expected revenue is:

\[E(s(\pi) - C) = \alpha + \beta^e(a_i, a_j) - C(a_i, a_j). \]

Because the agent is risk averse, the risk cost of the external influence must be considered. Thus, the equivalence income of the agent is:

\[E \left[\frac{1}{2} \rho \beta^e \Sigma \beta \right] \]

with \(\rho \) being absolute risk aversion measure, \(\beta \) being the covariance matrix of the random factor (\(c \)), and \(\Sigma \) being the risk cost of the external influence of the agent.

The principal expects the agent to work hard for his own profit maximization, and the agent is also seeking for his own interests. So the incentive compatibility constraint (IC) is required, that is:

\[\max_{a_i, a_j} F_r = \pi(a_i, a_j) - \alpha - \beta^e(a_i, a_j) \]

The agents are willing to participate in knowledge contribution, only if the profit is not less than the retained revenue. Therefore, the agent's participation constraint (IR) is necessary,

\[F_r = \alpha + \beta^e(a_i, a_j) - C(a_i, a_j) - \frac{1}{2} \rho \beta^e \Sigma \beta \geq \omega \]

\(\omega \) is the agent’s retained revenue.

The problem that the principal faces is how to set \(\beta^e \), so that his income \(F_r \) is the largest, as the function:

\[\max_{\beta^e} \max_{a_i, a_j} F_r = \pi(a_i, a_j) - \alpha - \beta^e(a_i, a_j) \]

By combining the constraints function of IC and IR with \(F_r \), the multi-task principal-agent knowledge contribution model can be built as:

\[\max_{a_i, a_j, \beta^e} F_r = \pi(a_i, a_j) - \alpha - \beta^e(a_i, a_j) \]

s.t.

\[\max_{a_i, a_j} F_r = \alpha + \beta^e(a_i, a_j) - C(a_i, a_j) - \frac{1}{2} \rho \beta^e \Sigma \beta \]

(\(IC \))

\[\alpha + \beta^e(a_i, a_j) - C(a_i, a_j) - \frac{1}{2} \rho \beta^e \Sigma \beta \geq \omega \]

(\(IR \))

V. RESULT ANALYSIS AND DISCUSSION

A. Optimal solution of the principal-agent model

According to the incentive compatibility constraint(IC), the agent gains the optimal revenue when:

\[\frac{\partial F_r}{\partial a_i} = 0. \]

Thus,

\[\frac{\partial \beta}{\partial a_i} = \left(\frac{\partial \pi}{\partial a_i} \right) \left[c_i \right]^{-1} - \beta^e \left[c_i \right]^{-1} - \rho \beta^e \Sigma = 0 \]

\[\beta = (I + \rho \left[c_i \right] \Sigma \beta)^{-1} \frac{\partial \pi}{\partial a_i} \]

As \(c_i \) and \(c_j \) are respectively independent, and covariance \(\Sigma \) is a diagonal matrix, then

\[\beta = (I + \rho \left[c_i \right] \sigma_i^2)^{-1} \frac{\partial \pi}{\partial a_i} \]

In order to simplify the process, setting \(\frac{\partial \alpha}{\partial a_i} = 0 \), and the meaning of \((\theta_1, \theta_2) \) is the marginal revenue derived from the efforts spent on the two tasks.

\[\beta = \frac{\theta_1}{I + \rho \left[c_i \right] \sigma_i^2 \sigma_j^2} \]

\(\beta \) is a decreasing function of effort cost coefficient \((c) \), risk aversion \((\rho) \) and uncertain risk \((\sigma) \).

Because the knowledge participation contribution behavior of the agent can be recorded by using information measures, the principal can fully observe the degree of effort
of knowledge participation contribution of agent, hence \(\sigma_i^2 = 0 \).

However, it is difficult to inspect the effort of knowledge creation contribution owing to the different knowledge levels of agents, and the inability of measuring tacit knowledge in their minds.

B. Principal-agent model analysis and discussion

In light of the above analysis, it can be considered that there are three kinds of relationship between knowledge creation contribution and knowledge participation contribution, which are mutually independent, complementary and replaceable.

1. When the knowledge creation contribution and knowledge participation contribution of the agent are independent of each other \((c_i = 0, i \neq j) \), which shows that the rising effort cost of one party would not cause the change of the cost of the other party.

\[
\begin{bmatrix}
\beta_i \\
\beta_2
\end{bmatrix} = \begin{bmatrix}
\frac{\theta_i}{1 + \rho c_{i1} \sigma_i^2} \\
\theta - \frac{\rho c_{i1} \sigma_i^2}{1 + \rho c_{i1} \sigma_i^2} \theta_i
\end{bmatrix}
\]

Due to the independence of two effort cost coefficients, the incentive coefficients \((\beta_i) \) of the two tasks are also independent. The incentive coefficient of knowledge creation contribution \((\beta_1) \) is a decreasing function of effort cost coefficient \((c_{i1}) \), risk aversion \((\rho) \) uncertain risk \((\sigma_i^2) \), as shown in Figure 3.

The lower the risk aversion of the agent is, the higher the incentive intensity of knowledge creation should be given.

With the rising of marginal cost of knowledge creation, the principal should reduce the incentive intensity of it, while giving more incentives to knowledge participation contribution.

The principal should consider reducing the incentive intensity \((\beta_1) \) and giving more fixed remuneration \((\alpha) \) when the uncertain risk increases.

2. When the knowledge creation contribution and knowledge participation contribution of the agent are interdependent \((c_i \neq 0) \), which demonstrates that change in one job’s effort cost will lead to a change in the marginal cost of the other task.

The formula points \(\beta_i \) has no relationship with \(c_i(i \neq j) \), namely, the incentive intensity of knowledge creation is independent of the relationship. The incentive intensity \((\beta_1) \) should be increased with the increase of the marginal revenue \(\theta_i \), and be decreased with the increases of the risk aversion \((\rho) \), the effort cost of knowledge creation \((c_{i1}) \) and the uncertain factors \((\sigma_i^2) \).

Besides, the discussion of incentive coefficients of knowledge participation contribution \((\beta_2) \) can be divided into two different cases.

When the knowledge creation contribution and the knowledge participation contribution of the agent are complementary to each other \((c_{ij} < 0, i \neq j) \). Because \(c_{ij} < 0, \beta_2 \) should be increased as the marginal cost of effort \((c_{ij}) \) and the marginal revenue of the knowledge creation \((\theta_i) \). Therefore, enterprises should increase incentive intensity of the knowledge creation and knowledge participation contribution, so that the overall knowledge contribution output of staff would be improved.

When the knowledge creation contribution and the knowledge participation contribution of the agent can be replaced with each other \((c_{ij} > 0, i \neq j) \). As \(c_{ij} > 0, \beta_2 \) should be decreased with the increase of the marginal cost \((c_{ij}) \); that is to say, when knowledge creation contribution can be replaced by knowledge participation contribution, enterprises should reduce the incentive intensity of knowledge participation contribution. Employees will participate in the knowledge participation for getting a higher
knowledge contribution output if β_2 is comparatively high, while ignoring the contribution of knowledge creation. Consequently, enterprises should reduce β_2, prompting the staff to contribute knowledge creation, as shown in Figure 4.

After all, when knowledge creation and knowledge participation are interdependent, incentive of knowledge creation contribution has nothing to do with the relationship between them, but the incentive intensity of knowledge participation contribution is associated with the relation between the two.

VI. CONCLUSION

In this paper, a multi-task principal agent model is built to analyze the incentive measures of knowledge contribution. The principal-agency theory and mechanism design theory is applied by considering the multi-task of knowledge creation and participation. The main results are as follows:

1. In generally, the two tasks of knowledge creation and participation are mutually interdependent. Knowledge created by a staff is not valuable until the others read, evaluate and use it. Staff's knowledge creation behavior and positive participation behavior play a mutual promoting role in advancement of enterprise knowledge.

2. What is more, the effort cost coefficient ($c_i > 0$, $i \neq j$) is more common in many cases; knowledge creation contribution and knowledge participation contribution are replaceable with each other. Under the circumstances, if the enterprise’s incentive intensity of the knowledge participation is set too high, employees will focus on the participation and usage of the enterprise knowledge base, while ignoring the creation of new knowledge, which will cause lack of new creative knowledge in enterprise. The effective way to solve this problem is transforming the substitution relationship between the two tasks into complementary relationship ($c_i < 0$, $i \neq j$). Therefore, enterprises should set up respective target levels of both knowledge creation contribution and knowledge participation contribution, making them irreplaceable to each other.

The results will help enterprises to design different incentive intensities for knowledge creation contribution and participation contribution, and promote the continuous development of enterprise knowledge base. In further studies, evaluation method and empirical study of knowledge creation and participation contribution are required.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foundation of China (No.71301068), National High Technology Research and Development Program of China (No.2013AA040602), Key Project in Jiangxi Education Science Program during the Twelfth Five-year Plan Period (No.15ZD3L018), Postdoctoral Science Foundation of Jiangxi (NO.2015KY52), Research Project of the Social Science and Humanity in Jiangxi Province (GL1514, TQ1502).

REFERENCES

[10] Yu Lin, Zhao Shi-jun, Li Zhen, “Studies on the incentive mechanism of TMT tacit knowledge sharing behavior: analysis based on multi-

