Design of Autonomous Navigation Picking Robot Based on MCU and GPS Positioning

Na Liao¹*, Junhong Ma ²

1 Department of Computer engineering
Xi’an International University
Xi’an, Shaanxi, China
2 Department of Computer engineering
Xi’an International University
Xi’an, Shaanxi, China

Abstract — This paper studies the design of autonomous navigation picking robot based on MCU and GPS positioning. Researching on the key technologies of the picking robot can not only meet the demand of the market and reduce labor intensity, but also keep up with the pace of the new developing agricultural technology in the modern world and improve economic efficiency. The experiment result shows that the efficient and performance can be improved after using autonomous navigation picking robot based on MCU and GPS positioning.

Keywords - design; autonomous navigation; picking robot; mcu and gps positioning

I. INTRODUCTION

The picking robot is an integrated system, which can implement environmental awareness, dynamic decision-making and planning, and movement control. Research on the key technologies of the picking robot can not only meet the demand of the market and reduce labor intensity, but also keep up with the pace of the new developing agricultural technology in the modern world and improve economic efficiency.

At the same time, it is important to improve Chinese agricultural modernization. Chui [1] made some research on a prototype of the picking robot, such as modeling of the picking robot, control method, real-time obstacle avoidance algorithm and the design of control system software and hardware. Kinematics simulation modeling of the picking robot is done in his research. Through analyzing the robot’s mechanical structure, he had finished building the camera model and the mobile platform model. In the meantime, we have adopted the geometric structure algorithm to establish forward and inverse kinematics equations of the picking robot. Thus he had laid basic theoretical foundation for the robot control.

Wei [2] conducted research on control methods of the picking robot based on the characteristics of the robot’s mechanical structure. Meanwhile, Wei designed an image-based visual serving controller and adopted controlling algorithms of small step approximation to guide the robot’s end-effector to orientate the target exactly and designed a fuzzy-PID controller according to the nonlinear and strong coupling characteristics of the servo control system and put it in use to the servo motion control of the robot’s manipulator joints.

Pereira designed picking robot’s control system. In terms of openness and real-time principle, we finished building the open software and hardware platform for the picking robot’s control systems. In the hardware design, he focused mostly on the selection for the following key modules that compose the control system, such as industrial personal computer, serial communication interface converter, joint drive motor. He selected sensor in conformity with its working characteristics and designed corresponding signal acquisition circuit, thereby equipping it with such abilities as image acquisition, target localization, perception of the obstacles, position limiting protection and so on. As a result, the robot gets better in intelligence and perception of the environmental information on the external. As for the software design, mainly from the perspective of real-time, Zhang [4] applied the technology of VFW to achieve real-time image acquisition and worked out a real-time obstacle avoidance search algorithm. On the basis of VC ++ language, we utilized multi-threading technology to accomplish the whole control system software, which is capable of serial communications, image capture, target recognition, real-time obstacle avoidance control and limit protection.

Zhang carried on experiments with the picking robot platform in both laboratory and orchard environment in [5]. In the laboratory environment, the picking robot can finish the work automatically and continuously with a relatively high rate of successfully picking. Whereas, it could only preliminary complete picking operations in the complex orchard environment and showed general effect with a certain gap from the expected outcomes. These results demonstrate that the picking robot’s control system developed in our subject has relatively good reliability and a certain degree of adaptability. However, the picking robot’s control system is necessary to be further optimized if we
want to achieve the goal of continuous harvesting operations in orchard environment.

II. THE FRAMEWORK AND BASIC MODEL FOR PICKING ROBOT

Fruit and vegetable picking job is part of the whole fruit and vegetable production process, which is time and energy consuming. Its degree of automation is far behind of other sectors of agricultural production. With the rising cost of human resources and the popularity of both the large-scale and automation of agriculture, it is necessary study fruit and vegetable picking robot. This paper completes hardware and software design of robot control system against the existing six degrees of freedom picking robot mechanism and conducted relevant experiments of robot.

Ref. [5] studied significance of picking robot and the present researching and study status in the world, and then introduced the robot’s structure and operating manner, carries out the hardware design of robot control system, which mainly indicates the selection of motor and drive and the motion control card, circuit design and Construction of control system hardware. Secondly, it finishes control parameters configuration and PID tuning of PMAC. Then it introduces the theory of binocular vision system and completes camera calibration in use of the calibration method. It also studies the target identification which is through the image dealing method of linearization and median filtering and the eight regional connectivity area method. It also studies the target identification which is through the image dealing method of linearization and median filtering and the eight regional connectivity area method. It also studies the target identification which is through the image dealing method of linearization and median filtering and the eight regional connectivity area method. It also studies the target identification which is through the image dealing method of linearization and median filtering and the eight regional connectivity area method.

The basic framework is shown in the following figure 1.

![Figure 1. The basic framework](image)

Internet, mobile communication and satellite-based navigation are three most important industries in the information society of 21st century. Meanwhile, the technical level and the development course of GPS system represent the development status of the satellite navigational system in the whole world. At present, our country has already become a great user of GPS. The satellite navigation industry chain has basically formed. Nevertheless, we have not gone deep into the core GPS technology, as the most important part of our GPS products are mostly import.

Complex signal processing has to be done to synchronize the local signal with the received one when a GPS receiver works. How to acquire the satellite signal and keep track of it is one of the most important techniques in the GPS receiver technology. Many researchers have come up with lots of solutions on that question, but most of them are only on the theory level, and are difficult to apply them in a GPS receiver system to do the real-time processing. It has researched and designed a GPS signal acquisition and tracking system on FPGA based on the analysis of the algorithms existing. In that course, a GPS receiver module has firstly been designed and made using Nemerix Corporation’s GPS chip group. It works stably and can be used as a GPS baseband signal processing research platform that outputs real-time GPS IF signal. Based on that, the article researches deeply on the GPS signal acquisition and tracking technique.

It compared several GPS signal acquisition solutions, and determines to use the step forward correlation in [7]. Then analyzes the characteristics of tracking loop, and determines to make FLL and PLL work in turn to track the carrier and let the carrier assist the pseudo-code tracking. All of these solutions have finally been realized. The GPS signal acquisition and tracking system in this theme is realized by the operation of the hardware cooperating with the software. The hardware mainly realizes the functions of correlate that have high data rate and simple logic, and the software based on Micro Blaze processor mainly realizes the functions that have low data rate and complex logic. Liu [8] gave detailed design and simulation results of the hardware circuit and detailed flow of the software design. The figure 2 shows the principle of operation for GPS.

![Figure 2. The principle of operation for GPS](image)

![Figure 3. The schematic diagram of the picking robot](image)

III. THE DETAILED DESIGN

We describe and express the spatial relationship of the two rod pieces of the manipulator, which simplifies the kinematics question to solve the 4×4 equivalent transformation matrix that connects the ends coordinates system and the fixed reference coordinate system, i.e., the kinematical equation of the robot. Figure 3 shows the structure diagram of the picking robot. Figure 4 is the schematic diagram of the connecting rod coordinate system.
When the spatial relationship between the two adjacent connecting rods i-1 and i changes in accordance with the following motions, the coordinate transformation can be accomplished.

1) Revolve θ_i around axes Z_{i-1} until it reaches the position where axes Z_{i-1} is parallel to axes Z_i;
2) Translate distance d_i along axes Z_{i-1} to cause X_{i-1} to be collinear with X_i;
3) Translate distance λ_i along X_i to cause the coordinate system origins of the connecting rods to be coincided;
4) Revolve angle λ_i along X_i to cause axes Z_{i-1} to be collinear with axes Z_i.

The basic algorithm is shown as the equation (1):

$$C^i = C - C^0, e^i = e - e^0,$$

$$\eta^i = \eta - \eta^0, \rho_i = \rho - \rho_0,$$

$$f(x, \omega) = f^0(x, \omega) + \int_y S(x - x')(L^1F(y')$$

$$+ \rho_0 \omega^2 g(R)T_i f(y')S(y')dy'. $$

Then we get:

$$\frac{1}{\Gamma(1 + \alpha)} \int_{x_{i-1}}^{x_i} f(t) (t - x)^{\alpha}(dt)^\alpha$$

$$= \lim_{\epsilon \to 0^+} \frac{1}{\Gamma(1 + \alpha)} \int_{x_{i-1} - \epsilon}^{x_i} f(t) (t - x)^{\alpha}(dt)^\alpha +$$

$$\frac{1}{\Gamma(1 + \alpha)} \int_{x_{i-1} - \epsilon}^{x_i} f(t) (t - x)^{\alpha}(dt)^\alpha]$$

$$\gamma_i(\vec{k}_i, \omega) = \frac{1}{\rho_0 \omega^2 (\eta_{11})} \beta_i^2 - \beta_{i+1}^2$$

$$\gamma_i(\vec{k}_i, \omega) = \frac{1}{\rho_0 \omega^2 (\eta_{11})} \beta_i^2 - \beta_{i+1}^2$$

Where,

$$\alpha^2 = \frac{\rho_0 \omega^2}{C_{11}},$$

$$\alpha^2 = \frac{\rho_0 \omega^2}{C_{66}}, \beta_i^2 = \frac{\rho_0 \omega^2}{C_{44}},$$

$$C_{44} = C_{66} + \frac{(e_{15}^0)^2}{\eta_{11}}.$$
The TMS320F2812 chip from TI Company was selected to be the control chip. This chip is a 32-bit fixed-point DSP chip which is suitable for use in industrial control, motor control etc. Its running clock can reach 150MHz, and each instruction cycle is 6.67ns. It has 128k x16-bit on-chip FLASH, 18kx16-bit SRAM and abundant peripheral interfaces. In order to reduce the difficulty of the system design, the mature development board QQ2812 was selected. This development board equipped with the F2812 chip and commonly used peripherals and interfaces. Fig. 5 shows the system function block diagram. The communication between the image processing unit and the DSP controller was achieved by RS232 serial port, transmitting the three-dimensional coordinate information of each plucking. According to the position gotten from image processing unit, the DSP can achieve the close-loop control of DC servo motor on X, Y and Z axis and the open-loop control of gripper steer engine.

\[f(x, \omega) = \left[\begin{array}{c} u_1(x, \omega) \\ \phi(x, \omega) \end{array} \right] \] (10)

The result of calculation shows that the robot's working space V equals 1.92m³, and the volume index reaches 0.64. The simulation results prove such designed robot meets the expectations for eggplant picking in greenhouse and is able to work more efficiently. The simulation validates the rationality of the structure design.
V. CONCLUSION

This paper studies the design method of autonomous navigation picking robot based on MCU and GPS positioning. Researching on the key technology of the picking robot can not only meet the demand of the market and reduce labor intensity, but also keep up with the pace of the new developing agricultural technology in the modern world and improve economic efficiency. It selected sensor in conformity with its working characteristics and designed corresponding signal acquisition circuit, thereby equipping it with such abilities as image acquisition, target localization, perception of the obstacles, position limiting protection and so on. As a result, the robot gets better in intelligence and perception of the environmental information on the external. The experiment result shows that the efficient and performance can be improved after using autonomous navigation picking robot based on MCU and GPS positioning.

ACKNOWLEDGMENT

This work is supported by the Key Project of Guangxi Social Sciences, China (No.gxsx201424), the Education Science fund of the Education Department of Guangxi, China (No.2014JGA268), and Guangxi Office for Education Sciences Planning, China (No.2013C108).

REFERENCES