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Abstract: The paper reports on the development and simulation of a physiological model relating to Depth of 
Anaesthesia via Mean Arterial Pressure (MAP) measurements using the anaesthetic drug isoflurane. 
Isoflurane is an anaesthetic gas normally administered through a vaporiser-based system which was widely 
reported to be unreliable and unsuitable for precision driving. Hence, in this study we propose a new 
technique which allows such anaesthetic to be administered first as a liquid solution which is later vaporised 
as it is passed through a heating chamber; such effect being included in the overall model structure. Moreover, 
the development and application of a fuzzy constrained Single Input Single Output (SISO) version of the 
popular Generalised Predictive Control (GPC) algorithm, which uses the Quadratic programming (QP) 
approach, is presented; Mean Arterial pressure (MAP) is used as an inferential variable to indicate the level of 
unconsciousness. Simulation experiments showed that excellent regulation of blood pressure around set-point 
targets is achieved.  
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1. INTRODUCTION 
 
Anaesthesia is generally described as that part of 
the medical profession which ensures that the 
patient’s body remains insensitive to pain an other 
stimuli during surgical operations. It includes 
muscle relaxation (paralysis), unconsciousness, 
and analgesia (pain relief). In contrast to muscle 
relaxation, depth of anaesthesia is more difficult 
to quantify accurately. It is in fact agreed that 
there is no absolute standard for the definition of 
clinical state of anaesthesia against which new 
methods designed to measure ‘depth’ of 
anaesthesia can be proposed (Robb et al, 1988). 
Thus, one approach has been to merge a number 
of clinical signs and on-line monitored data to 
produce an expert system adviser for the 
anaesthetist.  In spite of the multi-sensor nature of 
the above approach, it appears that, during the 
majority of operating periods when no emergency 
conditions occur, a good indication of 
unconsciousness can be obtained from a single 
on-line monitored variable. Thus, the use of 
arterial blood pressure, monitored via an inflatable 

cuff using a Dinamap instrument, has been 
investigated for feedback control with simple PI 
strategies (Robb et al, 1988). In this case, the 
control actuation was via a stepper motor driving 
the dial on a gas vaporiser. This concept forms the 
basis for the modelling and control aspects of 
unconsciousness in the following work. In 
particular, we have focused on the drug isoflurane 
in these studies, it being commonly used in 
modern surgery. 
 
The control theme at the heart of this study is that 
of Model-Based Predictive Control, particularly 
Generalised Predictive Control (GPC) (Clarke et 
al, 1987). This strategy is seen by many as the 
control strategy that had the most significant 
impact on solving complex industrial problems, 
including those within the realm of biomedicine 
(Mahfouf and Linkens, 1998). In this paper hard 
constraints are introduced as part of the 
optimisation problem and the CARIMA1 model, 

                                                           
1 Controlled Auto-Regressive Integrated Moving 
Average 
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normally used in the standard GPC algorithm, is 
extended to include a fuzzy modelling approach 
via the Takagi-Sugeno-Kang model (Takagi and 
Sugeno, 1985), but in the CARIMA sense. Hence, 
this paper is organised as follows: Section 2 will 
review the re-circulatory physiological model 
relating to the drug isoflurane (Zwart et al, 1972), 
together with our own modification in terms of the 
modelling of the liquid anaesthetic. In Section 3, 
the development of constrained GPC but using the 
fuzzy modelling approach is briefly reviewed, 
while in Section 4 results of the simulation 
experiments are presented and discussed. In 
Section 5 the transfer of the overall control system 
to the operating theatre is described and briefly 
discussed. Finally, in Section 6 conclusions 
relating to this study together with plans for the 
future are given. 
 
 
2. THE ANAESTHESIA MODEL RELATING 
TO LIQUID ISOFLURANE 
 
The model structure which was first introduced by 
Zwart and his co-workers (1972) and later 
exploited by Derighetti (1999), is shown in Figure 
1. It consists of two parts; one part for the uptake 
and distribution of drugs, and the other part for the 
circulation of the blood-flows. The overall non-
linear model associated with the anaesthetic 
describes such pharmacokinetics (uptake and 
distribution) of the drug, the circulation model 
(blood flow), as well as pharmacodynamics 
(effects of the drugs on the patient’s body) as 
follows: 
 
The state vector )(tp describes the partial 
pressure of the anaesthetic gas in every 
compartment.  The input to the system being the 
concentration of the anaesthetic gas in the inspired 
air ( )Airp , v refers to ‘venous’, A refers to 
“Artery”, and L refers to “Lungs”, 0,jg , ib , ik , 

0CO , and i� are all terms which can be inferred 
from the partial pressures or are constants which 
are either patient or drug dependent (Derighetti, 
1999). The Mean Arterial Pressure (MAP) is 
given by the following equation: 
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where 0CO is the total cardiac output prior to any 
anaesthetic being given.  
 
Because giving 100% 2O can cause the patient to 
have lung problems, a mixture of 70% ON 2 and 
30% 2O  is preferred during anaesthesia which is 
generally seen as a good compromise between a 
fast reaction to the anaesthetic and pollution of the 
operating theatre with gas. Because ON 2  has a 
mild anaesthetic effect it acts as a carrier for 
isoflurane and lowers the drug equilibrium-time. 
Hence, its effect was modelled by increasing the 
effective air-flow Airq  in Equation (1) to take into 
account the partial pressures in relation to this gas 
(Derighetti, 1999). Hence, the following modified 
expression for air-flow Airq is used: 
 

235.0

)1(

�

��

Air

Airnew

q

qAirAir

K

Kqq
                                     (3) 

 
It is widely recognised that the use of a 
continuous infusion pump provides a smoother 
method of controlling the anaesthetic agent 
concentration in comparison to a vaporiser. 
Hence, we adopted a more recent technique which 
consists of delivering the anaesthetic in a liquid 
form then transformed into a gas as it passes 
through a heating chamber, this having also the 
advantage of avoiding to drive a vaporiser with all 
its software complexity (Mahfouf et al, 1997). In 
order to reflect such a modification, a model 
which describes the dynamics associated with the 
vaporisation process, was elicited through an 
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experimental study using the following first-order 
differential equation: 
 

liqisoggasisoAirggasiso qkpqkp _2_1_ ����          (4) 
 
where gasisop _ , liqisop _ are the concentrations of 
the anaesthetic in “gas” and “liquid” forms 
respectively, and gk1 , gk2 are constants which we 
have determined experimentally as being (for a 2 
litres per hour volume of fresh air): 
 

40.32

22.01
�

�

gk
gk

  

Hence, Equation (4) can be written as follows: 
 

sLiquidIso
GasIso

44.01
4.3

_
_

�

�                                        (5) 

 
The model described by Equations (1-5) is 
represented via a SIMULINK diagram as shown 
in Figure 2. Figures 3a, b, and c show the results 
of an open-loop study in which a continuous 
infusion of 70 ml/hr of liquid isoflurane was 
initiated for a period of 200 minutes. The level of 
blood pressure dropped from a baseline of 90 
mmHg to 45 mmHg which later rose to 83 mmHg 
after isoflurane was switched-off indicating the 
nonlinear behaviour of this variable. 
 
This model will form the basis for a closed-loop 
control strategy design using the theme of 
constrained fuzzy model-based predictive control 
as will be outlined in the next section. 
 
 
3. CONSTRAINED GENERALISED 
PREDICTIVE CONTROL 
 
3.1 Controller Formulation 
 
The long-range predictive controller developed in 
this research study is based on the Popular 
Generalised Predictive Control (GPC) strategy 
(Clarke et al, 1987) whose theoretical background 
is briefly reviewed here: 
 
Consider the following locally linearised discrete 
model in the backward shift operator 1�z : 
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)(tu represents the control input and )(ty  is the 

measured variable. The controller computes the 
vector of controls using optimisation of a function 
of the form: 
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where 1N  is the minimum costing (output) 
horizon, 2N  is the maximum costing horizon, 
NU is the control horizon, �  is the future set-
point, )( j� is the control weighting sequence, and 

)( 1�zP  is the inverse model in the model-
following context with 1)1( �P . Furthermore, the 

)( 1�zC  polynomial in Equation (4) is replaced by 

a fixed polynomial )( 1�zT  known as the observer 

polynomial for the predictions ).(ˆ)( 1 jtyzP �
�  

This as already mentioned, enables an offset of 
the effect of the � operator as a high-pass filter on 
the input-output data. 
 
When the control horizon NU ,which reflects the 
number of degrees of freedom for the controller, 
is greater than 1, the solution of (7) in the 
unconstrained case (physical and terminal 
constraints not included prior to optimisation), 
differs from that in the constrained case (physical 
and terminal constraints included before 
optimisation takes place). In the latter case the 
final solution can be found in the ‘optimal’ sense. 
Hence, one way of solving (7) in the constrained 
case is to consider the following Least Squares 
Inequality (LSI) problem (Mahfouf and Linkens, 
1998): 
Minimise bAx �  subject to hHx �                (8)  
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Where x  is the NU solution vector, H  is the 
static/dynamic constraints information matrix and 
h is a vector containing the lower and upper limits 
of the constraints. In the case of Equation (7), we 
have: 
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H and h  will depend on the types of constraints 
which are considered, i.e. input rate constraints, 
input magnitude constraints and output magnitude 
constraints. If all three types of constraints are 
considered, then we would write the conditions as 
follows: 
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where ,,,,, minmaxminmaxmin 	

 uuuu and max�

are the minimum and maximum allowed control 
increments, absolute control moves, and the 
outputs respectively. It is worth noting that the 
Quadratic Programming (QP) problem can be 
solved using the method proposed by Lawson and 
Hanson (1974). Also, when using both input and 
output constraints simultaneously infeasibility 
problems may be encountered (when the optimiser 
cannot satisfy all constraints at once). Several 
methods can be used to circumvent such a 
problem, but the one we used in this instance is 
the hierarchical removal of output constraints 
starting from the bottom predictions until the 
optimiser is capable of returning a feasible 
solution (Mahfouf and Linkens, 1998). 
 
 
3.2 Fuzzy Process Model 
 
One common denominator of all Model Based 
Predictive Control (MBPC) strategies which 
represents their “raison d’etre” is their 
assumption of a model which has to be quite 
accurate. The modelling of real world systems, 
however, often presents problems. As processes 
increase in complexity, they become less 
amenable to direct mathematical modelling based 
on physical laws since they may be distributed, 
stochastic, non-linear and time-varying, uncertain, 

etc. According to Zadeh’s Principle of 
Incompatibility (Zadeh, 1973), the closer one 
looks at a real world problem, the fuzzier becomes 
the solution. Hence, the modelling problem, 
instead of being posed within a strictly analytical 
framework, is based on empirically acquired 
knowledge regarding the operation of the process. 
 
Many fuzzy modelling methods have been 
proposed in the literature. Most are based on 
collections of fuzzy IF-THEN rules of the 
following form: 
 

              1
1 CisyTHENBisxandandBisxIF n

n� (10)  
 
where � �Tnxxx ,,1 ��  and y are the input and 

output linguistic variables respectively, and iB  
and C  are linguistic values characterised using 
membership functions. It is considered that this 
fuzzy rule representation provides a convenient 
framework to incorporate human experts' 
knowledge  
 
An alternative method of expressing fuzzy rules 
proposed by Takagi and Sugeno (1985) has fuzzy 
sets only in the premise part and a regression2 
model as the conclusion: 
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where x , y and iB  are defined as above, and 

ic are real-valued parameters.  
 
Consider a single input single output (SISO) 
system which can be modelled using the method 
proposed by Takagi and Sugeno. Assuming that 
the input space is partitioned using p fuzzy 
partitions and that the system can be represented 
by fuzzy implications (one in each fuzzy sub-
space), we can write the following implication L : 
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Such model representation in the consequent part 
of the above implication is called a Auto-
regressive Moving Average (ARMAX) model. 
                                                           
2 This model can be either linear or non-linear. 
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Several linear adaptive predictive controllers have 
been designed using such model representation, 
however, the most popular linear model structure 
is the so-called CARIMA structure which was 
found to be effective against offsets which can be 
present in the data.  Using a CARIMA model 
structure, the fuzzy implication (10) can be 
written as follows: 
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The model parameters can be expressed in the 
following matrix form: 
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The overall fuzzy model output (in incremental 
form) can be written as follows: 
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� �)(tyBi  is the grade of membership of y(t) in 

iB and �  is a vector of the weights assigned to 
each of the p implications at each sampling 
instant. 
 
 
 
 

4. SIMULATION RESULTS 
 
The simulation study considered the continuous 
non-linear system (1-5) which was represented in 
MATLAB-SIMULINK, using a sampling interval 
of 1 minute, while the external constrained 
predictive control module was coded in ‘C’. For 
parameter estimation, a UD-factorisation method 
was used on incremental data. At time 0�t  an 
initial arterial pressure of �0MAP 90 mmHg was 
assumed. The set-point command was 70 mmHg 
then 80 mmHg for a 400-minute total simulation 
time. The GPC algorithm used a combination of 
tuning factors of (1, 8, 2, 0) for ),,,( 21 �NUNN  
together with a filter polynomial 

211 )8.01()( ��

�� zzT . Different fuzzy partitions 
of the input space can be used; we chose 
triangular shapes for simplicity (see Figure 4).  
 
The algorithm used the three types of constraints 
with the following limits: 
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In the first experiment (an air-flow of 2 litres per 
hour was used throughout), a fuzzy model with 2 
partitions was used and the output obtained was 
that shown in Figure 5 where it can be seen that 
tracking was good without too much compromise 
on the control activity which remained reasonable. 
This is in contrast to Figure 6 which corresponds 
to the application of the unconstrained GPC 
algorithm where, although the output tracking was 
good, the control activity was too high; in 
anaesthesia terms the patient would be consuming 
an unnecessarily high dose of isoflurane which, 
apart from not being cost-effective, can delay the 
patient’s recovery from anaesthesia significantly.  
 
It is worth noting that this simulation study and 
others (not reported here) formed the basis for the 
transfer of the overall closed-loop control system 
to the operating theatre for administration of 
isoflurane during surgery as the next Section 
explains. 
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5. REAL-TIME SET-UP 
 
The real-time closed-loop control system which 
was transferred to the operating theatre is shown 
in Figure 7 and comprises: 
 
�� An IBM compatible microcomputer which 

incorporates the control system. 
�� A Braun Perfusor Secura digital pump driving 

a disposable syringe containing a liquid 
solution of isoflurane. 

�� A Dinamap Instrument for measuring the 
arterial blood pressure. 

�� A Capnomac Ultima Device for measuring 
the inspired and expired isoflurane 
concentrations. 

 
The links between the syringe pump, the 
Capnomac machine, the blood pressure monitor, 
and the computer are via three RS-232 serial 
ports. 
 
Such closed-loop system is in the process of being 
applied in theatre after having undergone the most 
rigorous tests in terms of reliability and also safety 
to gain the approval of the relevant Ethics 
Committee at the Western Infirmary in Glasgow. 
 
 
6. CONCLUSIONS 
 
A new algorithm, which combines the advantages 
of model-based predictive control, particularly 
GPC in terms of constraints, and fuzzy systems, 
which allows the absorption of model 
uncertainties, has been proposed for the control of 
unconsciousness via blood pressure 
measurements. First, a simulation platform was 
built around a non-linear recirculatory 
physiological model which was modified to 
include a more efficient way of delivering the 
anaesthetic in a liquid form rather than gas. The 
simulation results showed that the fuzzy-based 
constrained algorithm was effective in terms of 
set-point tracking and drug consumption. It is 
hoped that the constrained version of the 
algorithm will be tested in a series of trials and 
that the control system is extended to include an 
inner loop which will take into account the true 
inspired concentration of isoflurane. 
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Figure 1 The patient physiological model relating to  
                inhalational anaesthesia (Zwart et al, 1972). 

Figure 2 A SIMULINK representation of the anaesthesia 
               model relating to isoflurane 
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Figure 3 Patient physiological model relating to  
                inhalational anaesthesia. 
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Figure 4 A 2-partition fuzzy representation of the input 
               space using triangular membership Functions. 
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Figure 5. Fuzzy constrained GPC using the simulated anaesthesia model. 
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Figure 6. Fuzzy unconstrained GPC using the simulated anaesthesia 
model. 
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Figure 7. Diagram representing the closed-loop control system as used 
                in the operating theatre to monitor anaesthesia via blood pressure 
                measurements. 
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