
W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

PERFORMANCE EQUIVALENCE IN THE SIMULATION
OF MULTIPROCESSOR SYSTEMS

W.M. ZUBEREK

Departmentof ComputerScience
MemorialUniversity

St.John’s,CanadaA1B3X5
Email: wlodek@cs.mun.ca

Abstract. In simulation–basedperformanceevaluation, thesimulationtime is directlyrelatedto thecomplexity of
thesimulatedsystems.Sincemodernmultiprocessorsystemscontainhundredsandeventhousandsof processors,
simulationof suchsystemscanbequitetime–demanding. This paperstudiesmultiprocessorsystemswith differ-
ent numbersof processors but with the sameutilizationsof corresponding components;suchsystemsarecalled
performanceequivalent.Performanceequivalencecanbeusedto simplify simulation–basedperformanceanalysis
of complex systemsby simulatingmuchsimplersystemswhich areequivalent with respectto performance to the
original ones.It is shown thatin somecasesidentifying performanceequivalentsystemsis quitestraightforward.

Keywords: multiprocessorsystems,timedPetrinets,performanceequivalence,discrete–eventsimulation.

1. INTRODUCTION

Multiprocessor systems are usually classified as
shared–memory systemsor distributed–memorysys-
tems[8]. Shared–memory systemscanhave uniform
accessto the(shared) memory (typically centralized,
as in bus–basedsystemsor systemswith multistage
connectingnetworks or crossbarswitches),or the la-
tenciesof memory accessesmay differ, as is typi-
cal for distributed (sharedon non–shared) memory
systems.In distributed–memory systems,the (total)
memory is composedof modules physically located
at different nodes of the system,so the latency de-
pends uponthenode which originatestherequestfor
memory accessas well as the node which contains
the requestedinformation. Shared–memory systems
arebelieved to beeasierto program,but distributed–
memory systemsscalein a betterway; systemswith
large numbersof processors areusuallydistributed–
memory systems[17].

Theperformanceof adistributed–memory systemde-
pends upon a number of factors. The probability of
requestinganaccessto aremotenodeis oneof impor-
tantparameters; if thisprobability is closeto zero,the
nodes canbe analyzedin isolation from eachother,
which significantlysimplifies the evaluation. If this
probability cannotbeneglected, theanalysisneedsto
beperformedfor thecompletemultiprocessorsystem

sincethebehavior of theinterconnectingnetwork, and
in particular, its congestion,affectsthe performance
of eachnodeof the system. If the systemis com-
posedof identical nodes, the steady–statebehavior
of all nodescanbeassumedidentical,which creates
symmetries that can,sometimes,be usedfor simpli-
fication of the evaluation process. For simulation–
basedperformanceevaluation,however, suchsymme-
triescannoteasilybe taken into account, so a model
of thecompletesystemneedsto besimulated.

The purpose of this paper is to study simplifica-
tionsof thesimulation–basedperformanceevaluation
of distributed–memory multiprocessorsystems.The
simplificationsarebasedonperformanceequivalence
of systems.More specifically, thepaperstudiesmul-
tiprocessor systemswhich are composed of identi-
cal processors,but which have different numbersof
processors,yet all corresponding components(such
as processors,memories, or interconnects)have the
sameutilizations. Suchsystemsarecalledequivalent
with respectto performanceor performance equiv-
alent. Performanceequivalencecan be usedto re-
duce the simulation time required for simulation–
basedperformance analysisbecauseinsteadof the
original complex system,a muchsimplersystemcan
be analyzed providing a good approximation of the
resultsfor the original, complex system. The paper
alsoshows that for somesystemssuchperformance

I.J.of SIMULATION Vol.3 No.1-2 80 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

equivalenceis quitestraightforwardto establish.

A multiprocessorsystemwith 16 processorscon-
nectedby a2–dimensionaltorus–likenetwork,shown
in Fig.1[19], is usedasa running example in this pa-
per.

Fig.1.Outlineof a 16–processorsystem.

In distributed–memory systems,it is usuallyassumed
that thememory accessrequestssentfrom onenode
to another are routedalong the shortestpaths. It is
alsoassumedthat this routing is done in a nondeter-
ministic way, i.e., if thereareseveral shortestspaths
betweentwo nodes,eachof themis equallylikely to
be used. Consequently, the traffic is assumedto be
uniformly distributedin theinterconnectingnetwork.
Theaverage lengthof theshortestpathbetweentwo
nodes,or theaveragenumberof hops(from onenode
to another) that a request must perform to reachits
destination, ��� , is usuallydetermined assumingthat
the memory accessesareuniformly distributedover
thenodesof thesystem.

In modern computer systems,the performanceof
memory is increasingly often becoming the factor
limiting theperformance of thesystem.Dueto con-
tinuous progressin manufacturing technologies,the
performanceof processorshasbeendoubling every
18months(theso–calledMoore’s law [7]). However,
theperformanceof memorychipshasbeenimproving
by only 10% per year[14], creatinga “performance
gap” in matchingprocessor’s performance with the
requiredmemory bandwidth. In effect,it is becoming
moreandmoreoften the casethat the performance
of applications depends on the performanceof ma-
chine’s memory hierarchy [3].

Memory hierarchies, and in particular multi–level
cachememories,have beenintroducedto reducethe
effective latency of memory accesses.Cachememo-
ries provide efficient accessto informationwhenthe
informationis availableat lower levelsof memory hi-
erarchy; occasionally, however, long–latency memory
operationsareneededto transfertheinformationfrom

the higher levels of memory hierarchy to the lower
ones. Extensive researchhas focused on reducing
and toleratingtheselarge memoryaccesslatencies.
Techniquesfor reducing thefrequency andimpactof
cachemissesincludehardwareandsoftwareprefetch-
ing [5, 10], speculative loads andexecution [15] and,
increasingly often,multithreading[1, 4].

Instruction–level multithreading, and in particular
block–multithreading[1, 2, 4], tolerateslong–latency
memory accessesand synchronization delays by
switching the threads rather than waiting for the
completion of a long–latency operation which, in a
distributed–memory system,canrequire thousandsof
processorcycles. A combination of multithreading
andsuperscalararchitecture is alsoanapproachused
in high–performancemicroprocessors [11].

Eachnode in thesystemshown in Fig.1is assumedto
bea multithreadedprocessor, local memory, andtwo
network interfaces,asshown in Fig.2.

Processor
�Ready

�
Queue
�

Interconnecting
Network
�

Memory
�
Queue
� Memory

�

Outbound
�
Interface

Inbound
Interface

Fig.2.Outlineof a multithreadedprocessor.

Theoutboundswitchhandlesoutgoing traffic, i.e.,re-
queststo remotememories originating at this node
aswell asresultsof remoteaccessesto the memory
at this node; the inbound interface handlesincoming
traffic, i.e., resultsof remote requeststhat ‘return’ to
this node and remote requeststo accessmemory at
this node.

Fig.2 also shows a queueof ready threads; when-
ever theprocessorperformsa context switching(i.e.,
switchesfrom onethreadto another), a threadfrom
this queue is selectedfor execution and the execu-
tion continuesuntil anothercontext switchingis per-
formed.In blockmultithreading,context switchingis
performedfor all long–latency memoryaccessesby
‘suspending’ thecurrent thread, forwarding themem-
oryaccessrequestto therelevant memorymodule(lo-

I.J.of SIMULATION Vol.3 No.1-2 81 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

cal,or remoteusingtheinterconnectingnetwork) and
selectinganotherthread for execution. Whenthe re-
sultof this request is received, thestatusof thethread
changesfrom ‘suspended’ to ‘ready’, andthe thread
joins thequeueof readythreads,waiting for another
execution phaseon theprocessor.

Theaveragenumberof instructionsexecutedbetween
context switchingis calledtherunlength of a thread,	�

, which is oneof main modelingparameters. It is
directly relatedto the probability that an instruction
requestsa long–latency memory operation.

Another important modeling parameter is the prob-
ability of long–latency accessesto local, ��
 , (or re-
mote,������������
) memory (in Fig.2 it corresponds
to the “decision point” betweenthe Processorand
theMemoryQueue); asthevalueof ��
 decreases(or
��� increases),theeffectsof communicationoverhead
andcongestionin theinterconnectingnetwork (andits
switches)becomemorepronounced;for �
 closeto 1,
thenodescanbepracticallyconsideredin isolation.

The(average) number of availablethreads, �
 , is yet
another basic modeling parameter. For very small
valuesof �
 , queueing effectscanbe practicallyne-
glected,so theperformancecanbepredictedby tak-
ing into account only the delays of system’s compo-
nents.On theotherhand, for largevaluesof �
 , the
systemcanbeconsideredin saturation,which means
that oneof its componentswill beutilized in almost
100%, limiting theutilizationof othercomponentsas
well asthewholesystem.Identification of suchlim-
iting components(calledthebottlenecks [9]) andim-
proving their performance is thekey to theimproved
performanceof theentiresystem.

Section2 introducesa timed Petri net model of a
multithreadedmultiprocessorsystem. Performance
equivalenceis definedin Section3, while Section4
presentsresultsillustratingthepractical useof perfor-
manceequivalence.Several concluding remarks are
givenin Section5.

2. MODEL OF A MULTIPROCESSOR SYSTEM

Petrinetshavebecomea popular formalismfor mod-
eling systemsthatexhibit parallelandconcurrentac-
tivities [13, 12]. In order to take the durations of
theseactivities into account, several types of Petri
netswith time have beenproposedby assigningfir-
ing times to the transitionsor placesof a net. In
timednets[18, 16], deterministic or stochastic(expo-

nentiallydistributed)firing timesareassociatedwith
transitions,andtransitionfirings occur in real–time,
i.e., tokens areremoved from input placesat the be-
ginning of thefiring period, andthey aredepositedto
theoutput placesat theendof thisperiod.

A timedPetrinetmodel of a multithreadedprocessor
at thelevel of instructionexecutionis shown in Fig.3
[19]. As usual,timed transitionsarerepresented by
“thick” bars,andimmediateones,by “thin” bars.

The execution of eachinstruction of the ‘running’
threadis modeledby transition ����� � , a timed tran-
sition with the firing time representingone proces-
sor cycle, "! . Place #$�&%&' represents the (available)
processor(if marked) and placeReady– the queue
of threads waiting for execution. Theinitial marking
of Readyrepresents the(average)numberof available
threads, �
 .
If theprocessoris available(i.e., #$�&%&' is marked)and(*)�+-,/.

is notempty, a threadis selectedfor execution
by firing theimmediatetransition�10)�2 . Execution of
consecutive instructionsof theselectedthreadis per-
formed in the loop # �43 , ����� � , #) � , and � �43 .
) � , is a free–choiceplacewith thechoiceprobabil-
itiesdeterminedby therunlength,

	

, of thethread. In

general, thefree–choiceprobability assignedto � �43
is equalto 5 	
 �6��798 	
 , soif

	

is equal to 10,theprob-

ability of � �43 is 0.9; if
	

is equal to 5, this proba-
bility is 0.8, andso on. The free–choiceprobability
of �) � , is just ��8 	
 .
If �) � , is chosenfor firing ratherthan� �43 , theexe-
cutionof thethreadends,arequestfor a long–latency
accessto (localor remote)memory isplacedin :)<; ,
andatokenis alsodepositedin Pcsw. Thetimedtran-
sition ��'=0?> representsthe context switchingand is
associatedwith thetime requiredfor theswitchingto
a new thread, A@"B . Whenits firing is finished,another
threadis selectedfor execution (if it is available).

Memis a free–choiceplace,with a random choiceof
eitheraccessinglocalmemory (� 2 %&') or remotemem-
ory (���)<;); in the first case,the request is directed
to C ;6)<; whereit waits for availability of Memory,
andafteraccessingthememory (� 2D;E)<;), thethread
returnsto thequeueof waitingthreads,

(*)�+-,/.
. Mem-

ory is a sharedplacewith two conflicting transitions,
��� ;6)<; (for remoteaccesses)and � 2D;E)<; (for lo-
cal accesses);the resolution of this conflict (if both
requestsarewaiting) is basedon marking–dependent
(relative) frequenciesdetermined by the numbersof
tokensin C ;E)<; and

(*;6)<;
, respectively.

I.J.of SIMULATION Vol.3 No.1-2 82 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

Inp

Ready

Trun
F Lmem

Trmem
FTlmem

F

Rmem

Tloc
F

Trem
F

Proc

Memory

Sout
G Tsout

F Dec

Sinp
GTsinp

FTgo
F

Mem

to Inp
H

to Inp
H

to Inp
H

to Inp
H

Tret
F

Tsel
F

Tend
F

Tnxt
F

Pnxt Pend

Out
I

Rem

Tcsw
F

Pcsw

from Out
J

from Out
J

from Out
J

from Out
J

Tmem
F

Fig.3.Petrinetmodel of a multithreadedprocessorat theinstructionexecution level.

Thefree–choiceprobability of ���)?; , �K� , is theprob-
ability of long–latency accessesto remotememory;
thefree–choiceprobability of � 2 %&' is �L
M�N�O�P�Q� .
Requestsfor remoteaccessesare directedto

($)?;
,

and then, after a sequential delay (the outbound
switch modeledby RK%��Q and �10<%��Q), forwarded toS �Q , where a random selectionis madeof one of
the four (in this case)adjacentnodes(all nodesare
selectedwith equalprobabilities). Similarly, the in-
comingtraffic is collectedfrom all neighboringnodes
in T � � , and, after a sequential delay (the inbound
switch RVU � � and �10?U � �), forwarded to W) ' . W) ' is
a free–choice placewith threetransitionssharing it:
���) , which represents the satisfiedrequests reach-
ing their “home” nodes; �OXY% , which representsre-
questsaswell asresponsesforwardedto anothernode
(another ‘hop’ in the interconnectingnetwork); and
� ;E)<; , which representsremoterequestsaccessing
thememory at thedestinationnode; theseremotere-
questsarequeued in

(*;6)<;
andservedby ��� ;6)<;

when the memory module Memorybecomesavail-

able. The free–choice probabilities associatedwith
���) , �OXY% and � ;E)?; characterize theinterconnect-
ing network [6]. For a 16–processorsystem(as in
Fig.1), and for memoryaccessesuniformly distrib-
utedamongthenodesof thesystem,the free–choice
probabilities of � ;E)<; and ��X-% are0.5 for forward
moving requests,and0.5 for ���) and �OXY% for re-
turning requests.

Thetraffic outgoing from a node(place
S �Q) is com-

posedof requestsandresponsesforwardedto another
node (transition �OXY%), responses to requestsfrom
othernodes(transition ��� ;E)<;) andremotememory
requestsoriginatingin this node (transition���)<;).

3. PERFORMANCE EQUIVALENCE

The utilizations of components in complex systems
is directly relatedto servicedemands for thesecom-
ponents; a systemis called balancedif the service
demands for all componentsareequal[9]. The ser-
vicedemand,

,[Z
, of thecomponent U is theproductof

I.J.of SIMULATION Vol.3 No.1-2 83 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

the rateof requests(sometimes alsocalledthe ‘visit
rate’), \ Z , andthe(average)servicetime of this com-
ponent, 0 Z , i.e.,

, Z �]\ Z�^ 0 Z .
In themodelof themultithreadedmultiprocessorsys-
temdescribedin theprevioussection,thecomponents
are(_ is thenumberof processors):

` processors with service demands
, !&a b , cd�

�/e=fgfhfge9_ ;
` memories with service demands

,�i a b , cj�
�/e=fgfhfge9_ ;

` inboundnetwork switcheswith servicedemands, B Z a b , ck�l�me?fhfgfhen_ ;
` outbound network switches with service de-

mands
, Bpoqa b , cr�N�/e=fgfhfge9_ .

Becauseof the symmetries of the system, in the
steady–statethe service demands at all nodesare
identical,sothesecondsubscriptcanbedropped.The
description of theservicedemandsusesthefollowing
parametersof themodel:

parameter symbol
threadrunlength

	&

processorcycle time !
memory cycle time i
switchdelay B
average numberof hops �s�
prob. to accesslocal memory ��

prob. to accessremotememory �����l�O�P��

For a singlecycle of statechangesof a thread(i.e., a
threadgoingthroughthephasesof execution,suspen-
sion,andthenwaiting for anotherexecution), theser-
vicedemand for theprocessoris theproductof thread
runlength,

	�

, andprocessorcycle time, ! .

The servicedemand for the memorysubsystemhas
two components, onedueto local memory requests
and the other due to requestscoming from remote
processors. The componentdue to local requestsis
the product of the visit rate (which is the probabil-
ity of local accesses),�Q
 , and memory cycle, i .
Likewise, the componentdue to remoteaccessesis
��� ^ i ; thisexpressionis obtainedby takinginto ac-
count thatfor eachnodetherequestsarecoming from
5t_u�v��7 remoteprocessors,and that remote mem-
ory requestsareuniformly distributedover 5t_w�x�<7

processors,so the servicedemanddueto remote re-
questsis �Q� ^ i ^ 5y_z�{�<7n8Y5y_z�{�<7|�}��� ^ i .

Theservicedemand for the inbound switch dueto a
single thread(in eachprocessor)canbe obtained as
follows. The visit rateto an inbound switch (dueto
asingleprocessor) is theproductof probability of re-
moteaccesses,� � , average number of hops(in both
directions), ~ ^ �V� , andtheswitchdelay, B . Remote
memory requestsfrom all _ processorsaredistrib-
utedacrossthe _ inbound switches,so the service
demand for aninbound switchdueto a singlethread
is ~ ^ ��� ^ � � ^ pB ^ _�8q_���~ ^ ��� ^ � � ^ pB . For
theoutboundswitch,theservicedemandis ~ ^ �B ^ ��� ;
the number of hops, � � , doesnot affect this service
demand.

Theservicedemandsarethus:

, ! =
	�
 ^ ![�,�i

= �[
 ^ i�� �Q� ^ i �] i �, B Z = ~ ^ ��� ^ � � ^ pB �, B�o = ~ ^ ��� ^ pB&f

Let W denote the maximum component servicede-
mand, W ��������5 , ! e , i e , B Z e , B�o 7 . Relative ser-
vice demandsaretheservicedemandsdivided by W ,, ! 8&W ,

, i 8&W , etc.

Two systemsare equivalent with respectto perfor-
mance(or performance equivalent)if therelativeser-
vice demandsfor all their corresponding components
arethesame.A straightforwardconsequenceof this
definition is that component utilizations in perfor-
manceequivalent systemsare the same;this is the
essenseof the concept of performanceequivalence.
A straightforward example of two systemswhich
areperformanceequivalentis a pair of systemswith
the samerateof all corresponding(average) service
times;a systemandits replacement in which theser-
vice timesof all componentsarereducedat thesame
ratecouldbeanillustrationof thisconcept. However,
many othersystemscanalsobeperformanceequiva-
lent.

Performanceequivalent systemscanbeusedto sim-
plify performance analysis of distributed–memory
multithreaded systems(as well as other systems
which have a similar structure). More specifically,
since the simulation time required for simulation–
basedperformance analysisof multiprocessorsys-
tems depends (superlinearly) upon the number of

I.J.of SIMULATION Vol.3 No.1-2 84 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

processors,insteadof simulatinga systemcontaining
_ processors,a muchsimplerperformanceequiva-
lentsystemcanbeused,significantlyreducingthere-
quiredsimulationtime,andproviding reasonably ac-
curateresults. For performance analysisof the 16–
processorsystem(Fig.1), a 4–processorsystemcan
beusedwith thesameparameters

	

and i , andwith

theswitchdelay AB adjustedto thevaluewhich com-
pensatesthe differencesin thevaluesof �s� between
the16–processorand4–processorsystems,i.e., such
that:

�V���p�9�� ^ ���p�9�B � �V���n�� ^ ���A�B f

Since �K���p�9�� canbeapproximatedreasonably well by

2 [6], and �s���A�� ���-8&� , performanceequivalenceis

obtained for ���A�B �l�mf�� ^ ���p�9�B .

4. PERFORMANCE RESULTS

Performanceresultsdiscussedin this sectionassume
thatall timing characteristicsareexpressedin proces-
sorcycles(which is assumedto be1 unit of time).

Fig.4 shows the utilization of the processors,in a
16–processorsystem,as a function of the number
of availablethreads,�
 , andtheprobability of long–
latency accessesto local memory, ��
 , for fixedvalues
of otherparameters.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (16 proc)

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.4.Processorutilization– 16processors;
 p@"BM�l� , 	
 ���<� , i �N�?� , pBM�l�?� .

The utilization of the processors in a performance
equivalent4–processorsystemis shown in Fig.5;per-
formanceequivalencein the 4–processorsystemis
obtained by using the samevaluesof parameters

	Y

and i , and increasing qB to 15 processorcycles to
compensatefor thedecreasedvalueof � � .

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (4 proc)

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 15 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.5.Processorutilization– 4 processors;
 @"B ��� , 	�
 �l�?� , i ���<� , B �l�<� .

It canbe observed that the resultsarefairly similar,
with differencesnotexceedinga few percent.

For smallervaluesof �
 (or larger valueof � �), i.e.,
when an increasing number of memory accessesis
to remote memory, the utilization of processorsde-
creasessignificantlyin Fig.4andFig.5.This is anin-
dicationthat the interconnectionnetwork, andmore
specifically, the switchesare the bottleneck in this
system(i.e., they are utilized in almost100%, lim-
iting the performanceof the entiresystem). Indeed,
Fig.6 shows the utilization of the (input) switchesin
the16–processorsystemasa functionof thenumber
of availablethreads, �
 , andtheprobability of long–
latency accessesto remote (not local)memory, � � (so
thefront partof Fig.6correspondsto thebackpartof
Fig.4). Fig.7 shows the sameswitch utilization in a
performanceequivalent 4–processorsystem.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Switch utilization (16 proc)

prob to access remote mem

sw
itc

h
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.6.Switchutilization– 16processors;

I.J.of SIMULATION Vol.3 No.1-2 85 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

 p@"BM�l� , 	
 ���<� , i �N�?� , pBM�l�?� .

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Switch utilization (4 proc)

prob to access remote mem

sw
itc

h
ut

ili
za

tio
n

Switch delay: 15 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.7.Switchutilization– 4 processors;
 p@"BM�l� , 	
 ���<� , i �N�?� , pBM�l�<� .

Fig.6andFig.7show thatwith theexception of small
valuesof ��� andsmallvaluesof �
 , theutilization of
the switchesin both systems,the 16–processorone
and its performanceequivalent 4–processorsystem,
is almost100%. This is a clear indication that the
switchesare simply to slow for thesesystems;any
reduction of theswitchdelaywill resultin improved
utilizationof theprocessors.

Fig.8 and Fig.9 show the utilization of the proces-
sorsin the16–processorsystemandin aperformance
equivalent4–processorsystem,for thecasewhenthe
switch delay is reducedto one half of its original
value.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.8.Processorutilization– 16processors;
 @"B �N� , 	�
 �N�<� , i ���?� , B ��� .

As before, the agreementof the resultsobtained for
theoriginal 16–processormodelandits performance

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (4 proc)

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 15 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.9.Processorutilization– 4 processors;
 @"B �l� , 	=
 ���<� , i �N�<� , B ���Yf � .

equivalent4-processorsystem,is quite good. More-
over, processorutilizationsin Fig.8andFig.9aresig-
nificantly betterthan in Fig.4 and Fig.5; the region
in which the switch is the bottleneck is substantially
reduced,asshown in Fig.10for the16–processorsys-
tem. Any further reduction of the switch delay (or
increasein theswitchthroughput thatcanbeobtained
by usingseveral parallel switches[21]), will further
improve theutilization of processors,but thesegains
will berestrictedto regions of smallvalues of �V� and�
 ; the overheadof context switching introducesan
upper bound on the utilization of processorsat the
level of

	
 8Y5 	
 � p@"Bq7 .

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Switch utilization (16 proc)

prob to access remote mem

sw
itc

h
ut

ili
za

tio
n

Switch delay: 5 units

Memory cycle: 10 units

Runlength: 10 units

Context swch: 1 unit

Fig.10.Switchutilization– 16processors;
 p@"BO��� , 	
 �l�?� , i �l�?� , 9BM��� .

5. CONCLUDING REMARKS

The presentedperformance results for distributed–
memory multithreadedmultiprocessorsystemsindi-
cate that significantsimulation–time reductions can

I.J.of SIMULATION Vol.3 No.1-2 86 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

beachievedbyusingsimplermodelswhichareequiv-
alentwith respectto performanceto theoriginal sys-
tems. Since the simulation time of complex mod-
els usually increasessuperlinearly with the size of
the model, the gains in the simulationtime also in-
creasemore thanlinearly with the sizeof the (origi-
nal)model.

A slightly differentapproachto performanceequiva-
lenceis presented in [20] whereinsteadof changind
the delaysof switches, the net model is modified
in sucha way that the value of ��� is preserved at
the level of theoriginal system,independentlyof the
numberof processors,so,again, muchsimplermodel
canbesimulatedto reduce thesimulationtime.

The resultsobtained for a 2–dimensional torus–like
network arealsovalid for otherinterconnectingnet-
workswith thesameconnectivity characteristics.For
example,Fig.11showsahypercubenetwork for a16–
processorsystemthatis composedof two8–processor
subsystems.Sincetheaveragenumber of hops in this
network is the sameas in the two–dimensionalnet-
work shown in Fig.1, theperformancecharacteristics
of bothnetworksarealsothesame(althoughthetwo
interconningnetworksscalein differentways).

Fig.11.Outlineof a 16–processorsystem.

Thederivedmodelsassumethataccessesto memory
areuniformly distributedover the nodesof the sys-
tem. If this assumption is not realisticandsomesort
of ‘locality’ is present,theonly changethatneeds to
be doneis an adjustment of the valueof ��� ; for ex-
ample,if theprobability of accessingnodesdecreases
with thedistance(i.e.,nodeswhichareclosearemore
likely to beaccessedthat thedistantones), thevalue
of �L� will besmallerthanthatdeterminedfor theuni-
form distribution of accesses,andwill result in im-
provedperformance.

It should be notedthat the presented resultsprovide
only someinsight into thebehavior of multithreaded
systemsas someof the assumptions are not satis-
fied in therealsystems– for example, thenumber of
threads is rarelyconstant,theprobabilitiesof access-
ing local or remotememory may changeduring the

executionsof programs,andsoon.

ACKNOWLEDGMENT

The Natural Sciencesand Engineering Research
Council of Canadapartially supported this research
throughgrant RGPIN–8222.

REFERENCES

[1] Agarwal, A., “Performancetradeoffs in multi-
threaded processors”;IEEE Trans.on Parallel
and Distributed Systems, vol.3, no.5, pp.525-
539, 1992.

[2] Boothe, B. and Ranade,A., “Improved mul-
tithreading techniques for hiding communica-
tion latency in multiprocessors”;Proc.19-thAn-
nual Int. Symp. onComputer Architecture, Gold
Coast,Australia,pp.214-223, 1992.

[3] Burger, D., Goodman,J.R.,Kaegi, A., “Memory
bandwidth limitations of future microproces-
sors”; Proc. 23-rd Annual Int. Symp.on Com-
puter Architecture, Philadelphia, PA, pp.78-89,
1996.

[4] Byrd, G.T. andHolliday, M.A., “Multithreaded
processorarchitecture”; IEEESpectrum, vol.32,
no.8, pp.38-46, 1995.

[5] Chen, T-F. and Baer, J-L., “A performance
study of software and hardware dataprefetch-
ing scheme”;Proc. 21-stAnnual Int. Symp.on
Computer Architecture, Chicago, IL, pp.223-
232, 1994.

[6] Govindarajan, R., Suciu,F. andZuberek,W.M.,
“TimedPetri net models of multithreadedmul-
tiprocessorarchitectures”; Proc.7-th Int. Work-
shoponPetri NetsandPerformanceModels, St.
Malo, France,pp.153-162,1997.

[7] Hamilton, S.,“TakingMoore’s law into thenext
century”; IEEE Computer Magazine, vol.32,
no.1, pp.43-48, 1999.

[8] Hwang, K., Advanced computer architecture
– parallelism, scalability, programmability;
McGraw-Hill 1993.

[9] Jain, R., The art of computersystemsperfor-
manceanalysis; J.Wiley & Sons1991.

[10] Klaiber, A.C. andLevy, H.M., “An architecture
for software-controlleddataprefetching”;Proc.
18-th Annual Int. Symp. on ComputerArchitec-
ture, Toronto, Canada,pp.43-53, 1991.

I.J.of SIMULATION Vol.3 No.1-2 87 ISSN1473-804x online,1473-8031 print

W.M. ZUBEREK:PERFORMANCEEQUIVALENCEIN THE SIMULATION

[11] Loh, K.S. and Wong, W.F., “Multip le context
multithreaded superscalar processor architec-
ture”; Journal of SystemsArchitecture, vol.46,
pp.243-258,2000.

[12] Murata, T., “Petri nets: properties, analysis
andapplications”; Proceedings of IEEE, vol.77,
no.4, pp.541–580,1989.

[13] Reisig, W., “Petri nets - an introduction”
(EATCSMonographson TheoreticalComputer
Science4); Springer–Verlag1985.

[14] Rixner, S., Dally, W.J., Kapasi,U.J., Mattson,
P. and Ovens, J.D., “Memory accessschedul-
ing”; Proc. 27-th Annual Int. Symp.on Com-
puterArchitecture, Vancouver, Canada,pp.128-
138, 2000.

[15] Rogers,A. and Li, K., “Software support for
speculative loads”; Proc. 5-th Symp.on Archi-
tectural Support for Programming Languages
andOperatingSystems, pp.38-50,1992.

[16] Wang,J.,TimedPetri nets– theoryandapplica-
tion; Kluwer Academic Publ.1998.

[17] Wilkinson, B., Computerarchitecture – design
andperformance; PrenticeHall 1996.

[18] Zuberek,W.M., “TimedPetrinets– definitions,
propertiesand applications”; Microelectronics
andReliability (SpecialIssueon PetriNetsand
RelatedGraphModels), vol.31, no.4, pp.627–
644, 1991.

[19] Zuberek,W.M., “Performancemodelingof mul-
tithreaded distributed memory architectures”,
Proc. 2-ndWorkshopon Hardware Designand
Petri Nets, Williamsburg, VA, pp.63–82, 1999.

[20] Zuberek, W.M., “Approximate simulation of
distributed-memory multithreaded multiproces-
sors”; Proc. 35-th Annual SimulationSympo-
sium, SanDiego,CA, pp.107–114, 2002.

[21] Zuberek, W.M., “Analysisof performancebot-
tlenecksin multithreadedmultiprocessorsys-
tems”; FundamentaInformaticae, vol.50, no.2,
pp.223–241,2002.

BIOGRAPHY

W.M. ZUBEREK received M.Sc. degree in Elec-
tronic Engineering and Ph.D. and D.Sc. degrees
in Computer Science,all from Warsaw University
of Technology. Currently he is a Professorin the
Department of ComputerScienceof Memorial Uni-
versity in St.John’s, Canada,and the Chair of a

new Interdisciplinary Computational SciencePro-
gram. His researchinterestsinclude modeling and
performanceanalysisof concurrent systems,and in
particular applications of timedPetri nets,hierarchi-
cal modelinganddiscrete–eventsimulationto analy-
sis of complex systems. His home Web page is
www.cs.mun.ca/ wlodek.

I.J.of SIMULATION Vol.3 No.1-2 88 ISSN1473-804x online,1473-8031 print

