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Abstract: In discrete event simulation (DES), the priority queue structure for managing the pending event set 
(PES) of the DES is known to account for as much as 40% of the simulation execution time. The priority queue 
contains events where the minimum time-stamp event has the highest priority and the maximum time-stamp 
event has the lowest priority. Current expected O(1) amortized time complexity priority queues are the Calendar 
Queue (CQ), Dynamic CQ, SNOOPy CQ, the 2-tier Dynamic Lazy CQ, as well as the 3-tier Lazy Queue. 
However, these priority queues require a costly resize operation that occurs when the number of events 
fluctuates or when the priority queue’s operating parameters detect a skewed distribution and a resize operation 
is subsequently triggered. Each resize operation copies events from the old priority queue to a newly-created 
one. This article describes a novel and innovative approach using traditional linked lists with a multi-tier 
structure to develop an efficient priority queue that offers near O(1) performance by uniquely eliminating the 
resize operation. This new implementation, named Multi-tier Linked List (MList), is shown experimentally to 
be, on the average, at least 100% faster than all the current priority queues. 
 
Keywords: pending event set, calendar queue, data structures, priority queue 
 
 
1. INTRODUCTION 
 
Discrete event simulation (DES) is a type of 
simulation that involves discrete models where a 
system is modeled as a number of concurrent logical 
processes interacting by a set of pending event 
messages. The DES utilizes a mathematical or 
logical model of a system which changes its state 
only at irregular epochs with finite number of 
precise points in time. Each point corresponds to an 
instance when at least one event has occurred. An 
event may change the state of the system and has an 
associated time-stamp that corresponds to the 
instance of its intended occurrence in the simulated 
time.  
 
The pending event set (PES) is defined as the set of 
all events generated during a DES that have not 
been simulated or evaluated yet. The PES is 
essentially a priority queue controlling the flow of 
simulation of events with the minimum time-stamp 
having the highest priority and maximum time-
stamp having the least priority.  These events should 
be processed in non-decreasing time-order with 
multiple events of equal time-stamp being processed 
in the order that they are inserted into the PES. If 
processed in this manner, casuality relations 
between these events would not be violated, 
ensuring the simulation results to be correct and 
deterministic. Deterministic simulation results mean 
that exact duplicate results will be obtained when 

any two or more simulation runs with identical 
parameter settings are made. 

 
It has been shown that up to 40% of the 
computational effort in a simulation may be devoted 
on the management of the PES alone [Comfort, 
1984]. Henriksen [1983] concurs that in models of 
telecommunication systems, total run times easily 
differs by as much as 5:1, depending on the choice 
of the events list algorithm. Thus, as a demand for 
high-performance simulators grow, the importance 
of an efficient implementation of the PES becomes 
progressively vital. 

 
A sequential DES frequently operates in a three-step 
cycle:  

(1) Dequeue: Removal of an event with the 
highest priority from the PES.  

(2) Execute: To process this dequeued event. 
(3) Enqueue: Insertion of new event/s resulting 

from the execution into the PES. 
 
Empirical study of actual DESs show that the 
dequeue and enqueue operations account for as 
much as 98% of all operations on the PES [Comfort 
1984]. These two basic operations of maintaining 
the PES has run-time complexity closely dependent 
on the total number of events in the PES. Hence a 
PES should be efficient especially for large-scale 
simulations that involve large number of events 
during the execution of simulation models.  
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The most important metric of interest is the time 
required to perform the most common operations, 
which are the enqueue and dequeue operation, and 
this time is referred to as access time [Rönngren et 
al., 1997]. In DES, the common measure of interest 
is the amortized access time [Tarjan, 1985]. Tarjan 
defines amortized computational complexity as “to 
average the running times of operations in a 
sequence over the sequence.” In other context such 
as real-time systems, the worst-case access is also of 
interest. 

 
A common obstacle to an efficient implementation 
of the PES is the size of the PES. In general, larger 
PESs results in longer access time. Understandably, 
as the systems become larger, the length of 
simulation time may span from days to weeks. 
Simulations of modest sized telecommunication 
networks may take weeks on a modern workstation 
[Roberts, 1992]. Fine-grain simulations such as 
ATM (Asynchronous Transfer Mode) network 
simulations are time-consuming due to the huge 
number of events to process [Ahn et al., 1996]. 
Simulations of a 5-node high-speed ATM network 
took about 1,500 minutes for a 3-minute simulated 
time on a Sun4. Simulations of a wide-area gigabit 
network would take more than one week over a Sun 
Sparc 20 [Bahk et al., 1992]. It has also been 
reported that experiments of a 500-node network 
conducted in Tcpsim [Dupuy et al., 1990] for a 3-
minute simulated time over Sun Ultra 1 took more 
than one day execution time on average [Oh et al., 
1998].  

 
An ideal implementation of the PES should be able 
to efficiently handle a widely varying PES size for 
small to large-scale DESs. By choosing a PES 
structure which is fast and efficient, it is possible to 
reduce the total execution time of simulation jobs 
significantly. To this end, many PES 
implementations have been proposed over the past 
decades, reminiscent of the selection of sorting 
algorithms available, in attempts to design the most 
efficient and time-saving priority queue for use in 
simulators. At the same time, there is still ongoing 
research in this area due to the reason that existing 
priority queue structures have certain shortcomings 
such as performing poorly under certain event 
distributions. 
 
In this article, a simple yet novel approach of using 
multiple linked lists with a multi-tier structure is 
proposed. This new implementation, named Multi-
tier Linked List (MList), is made up of a 3-tier 
structure in which the 1st tier T1 is a sorted single 
linked list, the 2nd tier T2 is a partially-sorted multi-
list, and the 3rd tier T3 is an unsorted single linked 
list. The reason for using a multi-list  structure is 
that tree-based structures are known to be bounded 
by O(log n) amortized time complexity whereas 

multi-list based structures have an expected O(1) 
performance under excellent operating conditions. 
Thus said, current multi-list based structures have 
not achieved such O(1) performance under practical 
situations. Therefore there is still room to achieve 
better performance as compared to a tree-based 
structure. 
 
Through studying the various multi-list based 
structures (see Section 2), it is possible that the 
weaknesses faced by those structures be minimized 
or even eliminated. By incorporating deferred 
sorting methodology and eliminating the costly 
resize operations suffered by most O(1) priority 
queues, MList achieves impressive performance. 
Even though this structure bears semblance to the 
Lazy Queue, the mechanisms, complexities and 
performance of MList and Lazy Queue are entirely 
different. The rest of this article is organized as 
follows: Section 2, a brief discussion on current 
priority queue structures; Section 3, on MList’s 
algorithm; Section 4, on the measurement methods 
and benchmarking used in the experiments; Section 
5, the experimental results; finally in Section 6, the 
conclusion. 
 
2. PRIORITY QUEUE DATA STRUCTURES 

Several priority queue structures for the PES 
implementation are available in the literature. They 
can be characterized mainly into two sub-groups, 
tree-oriented and multi-list oriented priority queues. 
The Splay Tree [Sleator and Tarjan, 1985] was 
shown to be the most efficient tree-oriented 
implementation in [Jones, 1986; Rönngren  and 
Ayani, 1997]. Multi-list oriented priority queue 
algorithms are mainly Two-Level [Franta and Maly, 
1977], Ulrich’s queue [Ulrich, 1978], Partitioned list 
structure [Davey and Vaucher, 1980], Calendar 
Queue [Brown, 1988], Lazy Queue [Rönngren  et 
al., 1991, 1993], Dynamic Lazy Calendar Queue 
[Oh and Ahn, 1997], Dynamic Calendar Queue [Oh 
and Ahn, 1998] and SNOOPy Calendar Queue [Tan 
and Thng, 2000]. 
 
2.1. One-Tier Priority Queue 
2.1.1. Splay Tree 
The Splay Tree, developed by Sleator and Tarjan, is 
a heuristically balanced binary search tree. It uses a 
tree restructuring technique called splaying. 
Splaying is essentially a sequence of tree rotations 
that helps balance the tree by moving nodes on 
highly accessed branches upwards and closer to the 
root. The amortized time complexity of an enqueue 
operation in an n-node Splay Tree is guaranteed to 
be O(log n) while its dequeue operation is O(1). 
 
2.1.2. Two-Level (TL) 
The TL structure is an array of linked list with the 
last array serving as an overflow list. TL was shown 
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to perform worse than a Heap [Gonnet, 1976] for 
small events by McCormack and Sargent [1981]. 
However this is largely due to its large overhead as 
shown in McCormack and Sargent’s experimental 
results. They suggested that it was mainly due to its 
large overhead and is not suitable for small scale 
simulations.  
 
2.1.3. Calendar Queue (CQ) 

Bucket 0
bw0=[0 - 1)

Bucket 1
bw1=[1-2)

Bucket 2
bw2=[2-3)

Bucket 3
bw3=[3-4)

Bucket 4
bw4=[4-5)

1 Year = Num of buckets * bucketwidth = 5 * (1-0) = 5 seconds

0.5

5.41

1st Year

2nd Year

1.61 2.72

7.63

3.83

8.74

4.94

10.33rd Year

Events

Figure 1: Standard Calendar Queue by Brown 
 

According to Brown, Ulrich and Davey’s 
implementation should be O(1) except for the 
presence of an overflow list. Their implementation 
of the overflow list caused the poor performance of 
the priority queues for skewed distributions, in 
which a significant percentage of events are 
enqueued in the overflow list. As such Brown’s 
unique solution to this issue was to do away with an 
overflow list by employing the concept of a circular-
year desk calendar; an array of linked lists without 
an overflow list (Figure 1). There are however 
problems associated with this O(1) priority queue.  
 
Firstly, under highly-skewed distributions where 
most events fall into some few lists. CQ’s ideal 
scenario is one in which there is 1 event in each of 
its array, which he called a “bucket”, and that all 
events in CQ falls into the 1st year (i.e. shaded 
events in Figure 1). However in highly-skewed 
distributions, due to the poor sampling technique for 
a new suitable bucket-width after a resize, the events 
tend to fall only in a few buckets leaving most of the 
others empty. 
 
Secondly, when the number of events in the PES 
fluctuates greatly. This occurs when there are many 
successive enqueues or dequeues that lead to 
frequent resizing of the number of buckets in CQ. 
During a resize, CQ would calculate its new bucket-
width, re-initialize the multi-list to some number of 
buckets and the new bucket-width, and then 
recopies the old multi-list to the new one. This 
resize operation is a very costly overhead. 
 
The CQ variants such as Dynamic CQ (DCQ) and 
SNOOPy CQ (SNOOPy) use different approaches 
of determining the optimum operating parameters of 
CQ to attempt to solve some of these problems. 
DCQ and SNOOPy are however experimentally 

found to have performed worse than CQ in some 
scenarios (see section 5). 
 
2.2. Two-Tier Priority Queue 
2.2.1. Dynamic Lazy CQ (DLCQ) 
Oh and Ahn came up with DLCQ which is made up 
of an enhanced CQ as its primary tier and a 
secondary tier called Future EvenT list (FET). The 
enhanced CQ part is Brown’s CQ with an additional 
Dynamic Resize (DR) algorithm to detect skewed 
distributions. Therefore in addition to CQ’s static 
size-based resize, the DLCQ can also initiate a DR 
to dynamically change the bucket-width, even 
though the number of events remains the same. The 
FET structure is made up of two arrays called a root 
list and a leaf list. FET is partially-sorted and is used 
to store far future events during transient periods. 
Storing of far future events in FET helps to ease the 
additional frequent costly resizes due to the DR 
algorithm. However, DLCQ too was experimentally 
found to have performed worse than CQ in some 
scenarios, and performed better in others. 
 
2.3. Three-Tier Priority Queue 
2.3.1. Lazy Queue (LQ) 
Rönngren  et al. [1991, 1993] developed the 3-tier 
structure LQ that includes a near future (NF) linked 
list or binary heap (fully-sorted), a far future (FF) 
multi-list (partially-sorted) and a very far future 
(VFF) linked list (unsorted) that is used as an 
overflow bucket. The fundamental design of the LQ 
is to keep only a small portion of the events sorted 
in NF while letting far future events being unsorted 
in FF sub-lists and in VFF. There are 5 sets of 
criteria to determine if a resize should be triggered. 
After almost every dequeue or enqueue operation, 
some of the 5 sets of criteria have to be checked to 
determine if a resize should be made. The LQ will 
also have to ensure that after each resize operation, 
the rest of the other criteria are not violated. From a 
DES user point-of-view, there are 7 parameters that 
should to be set by the user before simulation 
begins. If not, the default static values would be 
used, at the expense of performance. Rönngren and 
Ayani [1997] had also made improvements to the 
LQ in which skew heaps were used as the NF and 
VFF in place of single linked lists. The resize 
operation was also modified to speed up small 
queue sizes. 
 
Due to the highly complex algorithm and the source 
code being not obtainable from the authors, the LQ 
is not being considered in this article. However, the 
performance of LQ can be observed from the LQ 
literatures [Rönngren  et al., 1991, 1993, 1997] and 
the conclusion drawn from these publications is that 
its performance is comparable to the CQ for most 
distributions. However the LQ is about twice better 
than the CQ for skewed distribution such as the 
Camel distribution. In highly skewed distributions 
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such as Change, which would be explained in later 
sections, the LQ performs much poorer than the CQ 
in some scenarios and in others, performs better. 
The results show that it is inconclusive whether the 
LQ is a superior priority queue as compared to the 
CQ. 
 
3. THE MULTI-TIER LINKED LIST (MLIST) 
 
The design of MList incorporates several 
improvements over CQ, DCQ, SNOOPy, DLCQ 
and LQ. Currently the performance of these priority 
queues is affected by the large overheads in the 
resize operation. During a resize operation, most or 
all the events are re-enqueued in a newly-created 
queue with new operating parameters, for example a 
new bucket-width. Note that the events in the CQ, 
DCQ and SNOOPy are already sorted before they 
are resized. To re-enqueue these sorted events may 
be highly inefficient. The DLCQ reduces the cost of 
the resize operation by reducing the number of 
events in the multi-list by storing the far future event 
in its FET. The LQ on the other hand utilizes the 
“lazy” methodology to sort events only on demand, 
leaving the far future events unsorted. Still the 
costly resize operations due to sampling for more 
accurate operating parameters and the frequent 
transfers of events back and forth between the tiers 
in both the DLCQ and LQ can be overwhelming. 
 
A distinct feature of MList is that it does not resize. 
It works on the principle of a 3-tier structure to 
spread out events to handle skewed distributions. 
Sampling is also not required to obtain the 
appropriate bucket-width of its multi-list and this 
further reduces the overhead. MList also utilizes a 
deferred sorting methodology in which a small 
number of early time-stamp events are sorted, 
leaving the later events unsorted.  

 
3.1. The MList Structure 

1st Tier (T1) 2nd Tier (T2) 3rd Tier (T3)

T3_max

T3_min
T3_start

T2_start

T2_cur

Figure 2: The MList Structure 
 

The main building blocks of MList (Figure 2) are: 
(1) 1st Tier (T1).  T1 is a sorted linked list. This is 

the primary tier of MList in which the events 
with the minimum time-stamps are sorted and 
stored.  

(2) 2nd Tier (T2).  T2 is a partially-sorted multi-list 
structure. T2 stores events similar to the CQ’s 

principle in which events are bucket-sorted. 
However, within each bucket which houses a 
linked list, the events are not sorted. And unlike 
the CQs which use a circular-year calendar 
concept in which the far future events are 
enqueued within the same bucket, MList 
employs a 3rd tier to contain those far future 
events. Hence T2 is strictly a one-year desk 
calendar.  

3rd Tier (T3).  T3 is an unsorted linked list. Acting 
as an overflow list to contain far future events, T3 
buffers events that do not affect T1 and T2. This 
reduces the number of events in both T1 and T2. In 
addition, this last tier is the novelty behind the 
dynamic mechanism of MList. 
 
3.2. Dynamic Mechanism of the Multi-list T2 
In the CQs, the number of buckets is dependent on 
the number of events in their multi-list structure. If 
enqueues or dequeues give rise to the events 
exceeding or going below a certain threshold, their 
multi-list structure resizes to twice or half the 
number of buckets respectively. During each resize, 
the new bucket-width of those buckets is calculated 
using various sampling techniques or in the case of 
the SNOOPy, a moving average of the enqueue or 
dequeue cost. Besides adding complexity, this 
method of sampling adds to the overhead of a resize 
since a better sampling technique would mean that a 
larger number of events would be involved. For the 
case of the LQ, during a resize the number of 
buckets and bucket-width are halved or doubled 
according to the number of events in its T2 and T3. 
 
MList marks the first departure from this heuristic 
method of determining the number of buckets as 
well as the bucket-width by making its multi-list T2 
to be dependent on its T3. T2’s length of 1 year, the 
number of buckets and the bucket-width are 
dynamically assigned only when T3 transfers events 
into T2. The MList keeps a set of variables to 
function and they are defined in Table 1. At the 
point of transfer of the events from T3 to T2, the 
length of 1 year in T2 is calculated as, 
 
 1 Year in T2 = T3_max – T3_min  (1) 
 
and the bucket-width of each bucket in T2 will be, 

 T2_bw = Bucket-width = 
numT

T2 inYear1
_3

 , (2) 

where the number of buckets in T2 is equal to 
T3_num, giving an average of one event per bucket.  
 
Note that if T1 and T2 are both empty of events, the 
occurrence of the first dequeue for this situation 
would again dynamically create a new T2 with the 
parameters calculated using equations (1) and (2). 
Table 1 lists a number of important variables to 
enable the reader to grasp a better understanding of 
MList. 
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Table 1: Definition of MList Variables 
Name Definition 

T1_num Number of events in T1. 
T2_start The minimum time-stamp of an event 

that can be enqueued in T2. This value 
is updated when events are being 
transferred from T3 to T2, with its 
value being set equal to T3_min at 
each T3 to T2 transfer. 

T2_cur The lower time-indexed of the earliest 
bucket in T2. E.g. (Figure 3), T2_cur 
is initially “0.1”. Upon transferring of 
events from Bucket 0 to T1, T2_cur 
will be set to “1.1”, and so on. 

T2_num Number of events in T2. 
T2_bw Bucket-width of T2. 
T2_idx The index of bucket array in which its 

events are to be transferred to T1. 
T3_start The minimum time-stamp of an event 

that can be enqueued in T3. This value 
will be set equal to T3_max at each 
transfer of events from T3 to T2. 

T3_min The minimum time-stamp in T3. 
T3_max The maximum time-stamp in T3. 
T3_num Number of events in T3. 

 
3.3. The MList Algorithm 

Bucket 1
[1.1 - 2.1)

0.1 1.6 5.1

0.9

0.5

0.1 5.1 0.9 0.5

1st Tier (T1)

2nd Tier (T2)

3rd Tier (T3) 1.6

Bucket 4
[4.1 - 5.1)

Bucket 3
[3.1 - 4.1)

Bucket 2
[2.1 - 3.1)

Bucket 0
[0.1 - 1.1)

1 Year = 5.1 - 0.1 = 5.0

* Bucketwidth = 5.0 / 5 = 1.0

0.1 0.90.5

 

 

 

 

 

*

Figure 3: MList Queue Structure 
 

3.3.1. Dequeue Operation 
At the onset, all enqueued events are placed in T3 
with no sorting required (Figure 3). On the first 
dequeue operation, all the events are transferred 
from T3 to T2 and the length of one year in T2, 
number of buckets and the bucket-width of T2 are 
dynamically assigned using Equations (1) and (2). 
Thereafter, events in Bucket 0 will be sorted in 
time-order using a standard sorting algorithm before 
being transferred to T1. 
 

Figure 3 illustrates an example of how MList would 
function on its first dequeue or when there are no 
other events in T1 and T2. It depicts how the three 
smallest time-stamp events (shaded) are being 
transferred from T3 -> T2 and then T2 -> T1. 
Thereafter, the first dequeue would return “0.1” 
time-stamp event from T1. This is followed by “0.5” 
and then “0.9”, assuming no other events are 
enqueued in T1.  

 
Subsequently, events in Bucket 1 would be 
transferred to T1 and sorted. And since Buckets 2 
and 3 are empty, the T2_idx would be incremented 
to Bucket 4. And so on until all the events in T2 are 
dequeued. After which, the whole cycle repeats 
itself with T3 treating the next dequeue alike the 
first dequeue as mentioned above. Again, the three 
parameters of T2 are dynamically assigned 
according to the events in T3. The pseudo-code of 
the dequeue operation is given in Figure 4. 
 

 
Figure 4: dequeue() Pseudo-code of MList 

 
3.3.2. Enqueue Operation 
For each enqueue operation, MList checks if that 
event time-stamp is greater than T3_start. If so, the 
event is simply placed at the end of the linked list in 
T3. If the event is not inserted in T3, MList then 
checks if the event time-stamp is greater than 
T2_cur. If so, the event is enqueued in T2. On 
enqueuing in T2, the index of the bucket 
(bucket_idx) where this event is to be inserted in T2 
is; 

struct event *dequeue() { 
Check_T1:  

if(T1_num > 0) 
Dequeue from T1; /*T1 is sorted*/ 

//End of T1 check 
Check_T2: /*If T1 no event, check T2*/ 

if(T2_num > 0) { 
T2_idx = 1st non-empty bucket; /*T2 has 1 year*/ 
/*Increment T2_cur to the start of this bucket*/ 
T2_cur=T2_start + T2_idx * T2_bw; 
Sort and transfer T2[T2_idx] events to T1; 

  Dequeue from T1; 
//End of T2 check 
Check T3: /*iff T1 & T2 have no events*/ 

if(T3_num > 0) { 
/*Calculate T2 bucket-width using Eqn(2) */ 
T2_bw = (T3_max – T3_min) / T3_num; 
/*Update important variables*/ 
T2_start=T3_min; T3_start=T3_max; 
T2_idx=0; T2_num=T3_num; 
Transfer all events from T3 into T2 buckets; 
goto Check_T2;  

//End of T3 check 
} //Dequeue End 
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Bucket_idx = 
T2_bw

T2_start-time_stamp  , (3) 

 
and the event is inserted at the back of the linked list 
corresponding to the bucket with index bucket_idx. 
Else, that event is enqueued in T1 via a linear 
insertion. The pseudo-code of the enqueue operation 
is given in Figure 5.  
 

 
Figure 5: enqueue() Pseudo-code of MList 

 
3.4. A Brief Time Complexity Analysis of MList  
This section seeks to provide a brief performance 
analysis of MList using the amortized time 
complexity analysis [Tarjan, 1985]. 
 
Assume some events are enqueued into an empty 
MList. Initially all the events would be enqueued 
into T3. This enqueue of events into T3 is O(1) 
since T3 is an unsorted linked list and the events are 
simply inserted at the end of the linked list. On the 
first dequeue, all the events from T3 would be 
bucket-sorted into T2, where T2 is made up of 
buckets with an equal time-interval (bucket-width). 
Events would be distributed in T2 according to the 
event distribution. For instance, for a uniform 
distribution, each bucket would approximately hold 
one event. If there is only one event in a T2 bucket, 
the event would be dequeued immediately, 
bypassing T1. If however there are more than one 
event in T2, the events would be sorted and 
transferred to T1. Since the overhead of sorting and 
transferring of small number of events is small when 
amortized over all dequeues, it can be concluded 
that the dequeue operations in MList can be 
approximated to be O(1). 
 
Suppose during these dequeue operations, more 
events are enqueued into MList, they would be 
expected to fall into the three tiers of MList with 
higher probability into T2 and T3. This is because 
the time-interval of T1 is equivalent to just one 
bucket in T2. Enqueuing of events into T2 or T3 

gives O(1) complexity since T2 and T3 are made of 
unsorted linked lists and that the events are inserted 
at the end of the linked lists. However, enqueuing of 
events into T1 gives O(n1) complexity since T1 is a 
sorted linked list and thus each event requires a 
sequential search for the correct position; n1 is the 
number of events in T1. Table 2 summarizes the 
theoretical performance of MList. 
 
Table 2: Amortized Time Complexity of MList 
Multi-tier Structure 
 T1 T2 T3 
Enqueue O(n1) O(1) O(1) 
Dequeue O(1) - - 
Note: n1 is the number of events in T1. 
 
Specifically, under the uniform distribution, n1 << n, 
where n is the total number of events enqueued into 
MList. This is because the time-interval of T1 is 
equal to the time-interval of only a bucket T2, i.e. 
time-interval of T1 << time-interval of T2, which 
translates to mean that the number of events in T1 
<< than those in T2. Therefore, regardless of the 
event distribution, if n1 << n, then the amortized 
time complexity of enqueue operations in MList is 
expected to be O(1).  

 
Under general event distributions, we can consider 
in terms of the probability of enqueuing an event in 
the various tiers in MList. The performance of 
MList is poor only in the scenario where many 
enqueues occur in T1 and where at the same time, n1 
is large. This poor performance is because T1 is 
maintained as a sorted linked list and each enqueue 
requires a linear search to place the event in the 
correct position. Let the probability of enqueuing an 
event in T1, bucket i in T2 and T3 be P1, P2,i and P3 
respectively, where 0 ≤ i ≤ M-1 and the number of 
buckets in T2 is M. P1 + ∑ P2,i + P3 = 1 and P1, P2,i 
and P3 > 0 for all i. MList has poor performance 
only if P1  1. However, for most distributions and 
simulation scenarios, P1 does not tend to 1. 
Therefore, we can conclude that the performance of 
MList under general distributions is expected O(1). 
Through simulation benchmarks, we have shown 
empirically in Section 5 that MList has good 
performance for all the distributions tested. 
  
4. PERFORMANCE MEASUREMENTS 
 
In this section, we describe the design of the 
experiments which is essential in studying the 
performance of the priority queue structures under a 
wide variety of operating conditions. 
 
4.1. Measurement Models 
In order to find out the performance of the priority 
queues, the average access time for a queue under 
different loads has to be determined. The access 
time is referred to as the time taken for an enqueue 

void enqueue(time_stamp, event) { 
if(time_stamp >= T3_start) { 

Insert at the back of T3; 
T3_num++; } 

else if(time_stamp >= T2_cur) { //Insert into T2 
/*Calculate bucket_idx using Eqn (3)*/ 
bucket_idx = (time_stamp-T2_start) / T2_bw; 
/*Insert into T1[bucket_idx] as last element*/ 
T2_num++; } 

else { //Insert into T1 via linear insertion 
Insert event in stable time-order 
T1_num++; 

}  
} //Enqueue End 
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or dequeue operation. The parameters to be varied 
for each queue are: the access pattern, the queue size 
and the priority distribution. The access pattern 
models used emulate the steady-state and the 
transient phase. These two extreme cases are that 
which a PES would probably encounter in most 
DES. The two models to emulate the two scenarios 
respectively are as follow: 
(1) Classic Hold model [Jones, 1986]. The queue to 

be benchmark is initially built up to the queue 
size to be tested by a random series of enqueues 
(higher probability) and dequeues. Thereafter a 
series of hold operations ensue. A hold 
operation is defined as a dequeue followed by 
an enqueue which value is the priority (time-
stamp) of the event that was just dequeued and 
adding the priority increment distribution to be 
tested to this dequeued time-stamp. The average 
access time to be calculated is the average time 
taken for one hold operation. The number of 
hold operations in the benchmarks are set to be 
1000 times the queue size tested. This method 
has advantages that: 
(a) The problem of determining the transient 

period is avoided, and 
(b) The transient period will affect to the same 

extent the different queue sizes tested 
[Rönngren  and Ayani, 1997]. 

(2) Up/Down model [Rönngren  et al., 1993].  An 
Up/Down is defined as the manner in which the 
queue is built up to a tested queue size by a 
sequence of enqueues. Thereafter followed an 
equally long sequence of dequeues. The number 
of Up/Down cycles is set to be 100. The 
average access time to be calculated is the time 
taken for all queue operations (enqueues and 
dequeues), divided by the total number of queue 
operations. 

 
4.2. Priority Increment Distributions 
The selections of typical distributions that occur in 
real simulation models are being employed. These 
distributions are commonly employed in [Rönngren  
et al., 1991, 1993; Oh and Ahn, 1997, 1998; Tan and 
Thng, 2000]. Four non-compound distributions, 
Rectangle (i.e. Uniform), Triangle, Negative 
Triangle and Camel(x,y) [Rönngren  et al., 1991], 
and one compound distribution known as 
Change(A,B,x) [Rönngren  et al., 1993]. The 
Camel(x,y) distribution is used to model bursty 
traffic in computer and communication networks 
which represents a highly-skewed distribution. The 
parameters used for Camel(x,y) results in two humps 
with x% of the probability mass being concentrated 
in the two humps. The duration of the humps makes 
up y% of an interval. Change(A,B,x) combines 
priority distribution A and B, with x priority 
increments being alternately drawn by A and B. 
Change(A,B,x) is to test a queue’s the worst case 
behavior and its sensitivity to compound 

distributions. The four non-compound distributions 
are as shown in Figure 6. 

Rectangle

Negative
Triangle

Triangle

Camel

 
Figure 6: Non-compound Distributions Used 

 
4.3. Benchmarking Test-bed 
The experiments were carried out on an AMD 
Athlon MP 1.2GHz computer. This workstation has 
dual-processors but as the algorithms are sequential, 
did not made use of its true SMP capabilities. 
However this workstation ensured that when each 
benchmark was carried out, other background 
processes that might affect the results were kept at a 
minimum, thus obtaining more accurate 
experimental results.  
 
10 runs of each experiment were done and the 
median value was obtained for each queue size 
simulated in the experiment. The median value is a 
measure of the central tendency and is chosen over 
the mean value because some background processes 
could have adversely affected a particular run of an 
experiment and averaging this value could render 
less accurate results. 

 
Also, the experiments were performed with the 
required memory for each priority queue being pre-
allocated. This was to eliminate the under-lying 
memory management system which might affect the 
results. This is a good practice in actual DES as it 
prevents memory fragmentation when creating new 
events and deleting the serviced events. This method 
of pre-allocating memory would also enhance the 
performance of the DES. The method of pre-
allocation could be made dynamic by an initial pre-
allocation and subsequently, an allocation of 
memory on demand methodology could be 
employed. A microsecond timer is used for all the 
experiments. Loop overhead time and the time taken 
for random numbers generated were removed using 
a dummy loop. All the code was written in the C 
programming language. 
 
5. EXPERIMENTAL RESULTS 
 
The objectives of this section are to present the 
performance of MList as compared with the current 
fastest multi-list priority queue data structures and to 
determine MList’s generality and sensitivity in the 
five priority increment distributions using the 
Classic Hold and Up/Down models, as well as when 
the queue size increases from 10 to 30,000. Note 
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that a logarithmic scale has been used for the queue-
size axis which leads to logarithmic complexity for 
linear plots. 
 
5.1. Steady State Experiments 
 
Figure 7 shows the results obtained under the 
Classic Hold model that is commonly employed to 
test the steady state performance of the priority 
queues. Table 3 summarizes with explicit figures of 
the performance gain (%), in terms of the 
distributions used in the experiments, of MList over 
the other priority queues. 

 
(a) Classic Hold and Rectangle 

 
(b) Classic Hold and Triangle 

 

(c) Classic Hold and Negative Triangle 

 
(d) Classic Hold and Camel(98, 0.1) 

 
(e) Classic Hold and 

Change(Camel(98,0.1),Triangle,2000) 
 

Figure 7: Performance for Classic Hold Model 
Experiments 

 
Figures 7(a) to 7(c) illustrate that the O(1) priority 
queues such as CQ and its variants perform with 
near O(1) performance and exemplify that the O(log 
n) Splay Tree pales in comparison with these 
distributions. MList shows better performance than 
the CQ and its variants due to its lower overhead in 
its management of the PES. 
 
The obvious knee seen in the curves plotted is due 
to the declining cache performance and occurs when 
the queue size is about 10,000. This phenomenon is 
also observed in the graphs found in [Rönngren  and 
Ayani, 1997] where the experiments were done on 
SUN and Intel architectures. 
 
Figure 7(d) reveals some of the weaknesses found in 
the CQ. The CQ’s performance is erratic due to its 
static size-based resize and that its sampling 
heuristics are unable to detect skewed distributions. 
The CQ variants have shown better performance due 
to their improved heuristics. The Splay Tree offers 
good performance, almost as well as MList.  
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Table 3: Average Performance Gain (%) of MList Over Other Priority Queues for Classic Hold Model 
Distribution CQ DCQ SNOOPy DLCQ Splay Tree 
Rectangle 35.33 41.25 37.96 105.70 176.77 
Triangle 36.06 41.78 34.27 102.72 157.77 

Negative Triangle 36.67 44.01 43.92 111.30 187.57 
Camel(98,0.1) 145.23 70.94 54.97 143.31 98.51 

Change 1,264.67 169.08 140.83 292.78 62.87 

Mean Value 303.59 73.41 62.39 151.16 136.70 

 
Figure 7(e) which is based on a highly skewed 
distribution uncovers weaknesses found in all the 
CQ and its variants. Splay Tree, on the other hand, 
performs only slightly poorer at 62.87% worse than 
MList, as compared to over 100% for the CQ and its 
variants. DLCQ performs worse than the CQ 
variants due to the frequent transfers of events 
between its 2-tier structure, since a transfer is 
triggered according to the size of its primary tier. 
 
For the Classic Hold model, on the average, MList 
performs from 62% to 300% better than the other 
priority queues. 
 
5.2. Transient State Experiments 
 
Figure 8 shows the results obtained under the 
Up/Down model that is generally used to test the 
transient state performance of priority queues. Table 
4 summarizes with explicit figures of the 
performance gain (%), in terms of the distributions 
used in the experiments, of MList over the other 
priority queues. 
 

 
(a) Up/Down and Rectangle 

 
(b) Up/Down and Triangle 

 
(c) Up/Down and Negative Triangle 

 
(d) Up/Down and Camel(98, 0.1)
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Table 4: Average Performance Gain (%) of MList Over Other Priority Queues for Up/Down Model 
Distribution CQ DCQ SNOOPy DLCQ Splay Tree 
Rectangle 194.81 219.44 224.41 378.50 94.88 
Triangle 261.14 271.67 283.51 441.34 96.47 

Negative Triangle 190.90 215.93 221.28 374.08 94.45 
Camel(98,0.1) 3,845.23 363.87 353.05 518.93 43.18 

Change 284.33 1,671.89 7,681.86 1,427.47 25.24 

Mean Value 955.28 548.56 1,752.82 628.06 70.84 

 

 
(e) Up/Down and Change(Camel(98,0.1),Triangle, 

2000) 
 

Figure 8: Performance for Up/Down Model 
Experiments 

 
The Up/Down model which tests the performance of 
priority queue structures during transient periods 
when the queue size fluctuates frequently, uncovers 
the weaknesses of the CQ and its variants. Figures 
8(a) to 8(e) evidently shows that resize operations of 
the CQ and its variants are indeed costly. Whenever 
the queue size is just above (after an enqueue) or 
just below (after a dequeue) the powers of 2 queue 
sizes, i.e. 8 (23), 16 (24), …, 1024 (211), …, 16384 
(214), and so on, the CQ and its variants would have 
to perform the resize operation. This is due to their 
static size-based algorithm being triggered. 
 
The Splay Tree performs well and the plots clearly 
show its O(log n) is guaranteed in all queue sizes 
and distributions. 
 
MList which does not have a resize operation, 
performs well even in highly skewed distribution as 
shown in Figures 8(d) and 8(e). The fact that the 
combination of its deferred methodology and the 
absent of resize operations by spreading out the 
events in the buckets, make it an efficient priority 
queue structure.  
 
For the Up/Down model, on the average, Table 4 
shows that MList performs from 70% to 1,700% 
better than the other priority queues. 

 
Table 5: Average Performance Gain (%) of MList 

Priority Queue Average Gain (%) 
CQ 629.44 

DCQ 310.99 
SNOOPy 907.61 

DLCQ 389.61 
Splay 103.77 

 
Table 5 shows the combined average for both the 
Classic Hold and Up/Down models to obtain an 
overall average performance gain (%), in terms of 
the queue size, priority increment distribution and 
the access pattern models, of MList over the other 
priority queue structures.  
 
 On the average, MList performs at least 100% 
better than the other priority queue structures. 
 
5.3. Generality and Insensitivity of MList 
 
Figures 9(a) and 9(b) shows MList generality and 
insensitivity under the various distributions and 
queue sizes. The figures show that MList is stable 
and exhibits near O(1) amortized time complexity 
for all scenarios. Under 
Change(Camel(98,0.1),Triangle,2000), MList shows 
signs of a slightly poorer performance because 
under a highly skewed distribution, the events in its 
1st tier gets enqueued back into the 1st tier via a 
linear search for the correct position in the linked 
list. However, its low management overheads as 
well as the small number of events in its 1st tier due 
to its deferred sorting methodology ensures that 
MList performs more efficiently than the rest of the 
other priority queues under all distributions and all 
queue sizes. 
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(a) Classic Hold Model 

 
(c) Up/Down Model 

 
Figure 9: Generality and Insensitivity of MList 

 
6. CONCLUSION 
 
The current O(1) priority queues do not exhibit O(1) 
amortized time complexity in some of the scenarios 
tested under the commonly used models and 
distributions. A new priority queue implementation 
for the pending event set has been illustrated and 
tested with results showing performance surpassing 
current structures and consistently exhibits near 
O(1) performance in all distributions and queue 
sizes tested. MList’s performance improvement of at 
least 100% better than all the current priority queues 
is owed to the fact it does not have the costly resize 
operations that severely affect the current priority 
queues. To handle skewed distributions, MList 
employs its multi-tier structure with deferred sorting 
methodology. These mechanisms contribute to the 
low management overheads and consequently 
ensure MList’s superiority over the current O(1) 
priority queues, as well as the O(log n) Splay Tree. 
In addition, its simple algorithm, its generality to 
widely diverse queue sizes and its practically 
insensitivity to different distributions, adds to its 
potentiality in successfully and widely 

implementing this priority queue as the pending 
event set in discrete event simulations. 
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