
R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 66

MLIST: AN EFFICIENT PENDING EVENT SET STRUCTURE
FOR DISCRETE EVENT SIMULATION

RICK SIOW MONG GOH IAN LI-JIN THNG

Department of Electrical and Computer Engineering
National University of Singapore

4 Engineering Drive 3, Singapore 117576

Abstract: In discrete event simulation (DES), the priority queue structure for managing the pending event set
(PES) of the DES is known to account for as much as 40% of the simulation execution time. The priority queue
contains events where the minimum time-stamp event has the highest priority and the maximum time-stamp
event has the lowest priority. Current expected O(1) amortized time complexity priority queues are the Calendar
Queue (CQ), Dynamic CQ, SNOOPy CQ, the 2-tier Dynamic Lazy CQ, as well as the 3-tier Lazy Queue.
However, these priority queues require a costly resize operation that occurs when the number of events
fluctuates or when the priority queue’s operating parameters detect a skewed distribution and a resize operation
is subsequently triggered. Each resize operation copies events from the old priority queue to a newly-created
one. This article describes a novel and innovative approach using traditional linked lists with a multi-tier
structure to develop an efficient priority queue that offers near O(1) performance by uniquely eliminating the
resize operation. This new implementation, named Multi-tier Linked List (MList), is shown experimentally to
be, on the average, at least 100% faster than all the current priority queues.

Keywords: pending event set, calendar queue, data structures, priority queue

1. INTRODUCTION

Discrete event simulation (DES) is a type of
simulation that involves discrete models where a
system is modeled as a number of concurrent logical
processes interacting by a set of pending event
messages. The DES utilizes a mathematical or
logical model of a system which changes its state
only at irregular epochs with finite number of
precise points in time. Each point corresponds to an
instance when at least one event has occurred. An
event may change the state of the system and has an
associated time-stamp that corresponds to the
instance of its intended occurrence in the simulated
time.

The pending event set (PES) is defined as the set of
all events generated during a DES that have not
been simulated or evaluated yet. The PES is
essentially a priority queue controlling the flow of
simulation of events with the minimum time-stamp
having the highest priority and maximum time-
stamp having the least priority. These events should
be processed in non-decreasing time-order with
multiple events of equal time-stamp being processed
in the order that they are inserted into the PES. If
processed in this manner, casuality relations
between these events would not be violated,
ensuring the simulation results to be correct and
deterministic. Deterministic simulation results mean
that exact duplicate results will be obtained when

any two or more simulation runs with identical
parameter settings are made.

It has been shown that up to 40% of the
computational effort in a simulation may be devoted
on the management of the PES alone [Comfort,
1984]. Henriksen [1983] concurs that in models of
telecommunication systems, total run times easily
differs by as much as 5:1, depending on the choice
of the events list algorithm. Thus, as a demand for
high-performance simulators grow, the importance
of an efficient implementation of the PES becomes
progressively vital.

A sequential DES frequently operates in a three-step
cycle:

(1) Dequeue: Removal of an event with the
highest priority from the PES.

(2) Execute: To process this dequeued event.
(3) Enqueue: Insertion of new event/s resulting

from the execution into the PES.

Empirical study of actual DESs show that the
dequeue and enqueue operations account for as
much as 98% of all operations on the PES [Comfort
1984]. These two basic operations of maintaining
the PES has run-time complexity closely dependent
on the total number of events in the PES. Hence a
PES should be efficient especially for large-scale
simulations that involve large number of events
during the execution of simulation models.

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 67

The most important metric of interest is the time
required to perform the most common operations,
which are the enqueue and dequeue operation, and
this time is referred to as access time [Rönngren et
al., 1997]. In DES, the common measure of interest
is the amortized access time [Tarjan, 1985]. Tarjan
defines amortized computational complexity as “to
average the running times of operations in a
sequence over the sequence.” In other context such
as real-time systems, the worst-case access is also of
interest.

A common obstacle to an efficient implementation
of the PES is the size of the PES. In general, larger
PESs results in longer access time. Understandably,
as the systems become larger, the length of
simulation time may span from days to weeks.
Simulations of modest sized telecommunication
networks may take weeks on a modern workstation
[Roberts, 1992]. Fine-grain simulations such as
ATM (Asynchronous Transfer Mode) network
simulations are time-consuming due to the huge
number of events to process [Ahn et al., 1996].
Simulations of a 5-node high-speed ATM network
took about 1,500 minutes for a 3-minute simulated
time on a Sun4. Simulations of a wide-area gigabit
network would take more than one week over a Sun
Sparc 20 [Bahk et al., 1992]. It has also been
reported that experiments of a 500-node network
conducted in Tcpsim [Dupuy et al., 1990] for a 3-
minute simulated time over Sun Ultra 1 took more
than one day execution time on average [Oh et al.,
1998].

An ideal implementation of the PES should be able
to efficiently handle a widely varying PES size for
small to large-scale DESs. By choosing a PES
structure which is fast and efficient, it is possible to
reduce the total execution time of simulation jobs
significantly. To this end, many PES
implementations have been proposed over the past
decades, reminiscent of the selection of sorting
algorithms available, in attempts to design the most
efficient and time-saving priority queue for use in
simulators. At the same time, there is still ongoing
research in this area due to the reason that existing
priority queue structures have certain shortcomings
such as performing poorly under certain event
distributions.

In this article, a simple yet novel approach of using
multiple linked lists with a multi-tier structure is
proposed. This new implementation, named Multi-
tier Linked List (MList), is made up of a 3-tier
structure in which the 1st tier T1 is a sorted single
linked list, the 2nd tier T2 is a partially-sorted multi-
list, and the 3rd tier T3 is an unsorted single linked
list. The reason for using a multi-list structure is
that tree-based structures are known to be bounded
by O(log n) amortized time complexity whereas

multi-list based structures have an expected O(1)
performance under excellent operating conditions.
Thus said, current multi-list based structures have
not achieved such O(1) performance under practical
situations. Therefore there is still room to achieve
better performance as compared to a tree-based
structure.

Through studying the various multi-list based
structures (see Section 2), it is possible that the
weaknesses faced by those structures be minimized
or even eliminated. By incorporating deferred
sorting methodology and eliminating the costly
resize operations suffered by most O(1) priority
queues, MList achieves impressive performance.
Even though this structure bears semblance to the
Lazy Queue, the mechanisms, complexities and
performance of MList and Lazy Queue are entirely
different. The rest of this article is organized as
follows: Section 2, a brief discussion on current
priority queue structures; Section 3, on MList’s
algorithm; Section 4, on the measurement methods
and benchmarking used in the experiments; Section
5, the experimental results; finally in Section 6, the
conclusion.

2. PRIORITY QUEUE DATA STRUCTURES

Several priority queue structures for the PES
implementation are available in the literature. They
can be characterized mainly into two sub-groups,
tree-oriented and multi-list oriented priority queues.
The Splay Tree [Sleator and Tarjan, 1985] was
shown to be the most efficient tree-oriented
implementation in [Jones, 1986; Rönngren and
Ayani, 1997]. Multi-list oriented priority queue
algorithms are mainly Two-Level [Franta and Maly,
1977], Ulrich’s queue [Ulrich, 1978], Partitioned list
structure [Davey and Vaucher, 1980], Calendar
Queue [Brown, 1988], Lazy Queue [Rönngren et
al., 1991, 1993], Dynamic Lazy Calendar Queue
[Oh and Ahn, 1997], Dynamic Calendar Queue [Oh
and Ahn, 1998] and SNOOPy Calendar Queue [Tan
and Thng, 2000].

2.1. One-Tier Priority Queue
2.1.1. Splay Tree
The Splay Tree, developed by Sleator and Tarjan, is
a heuristically balanced binary search tree. It uses a
tree restructuring technique called splaying.
Splaying is essentially a sequence of tree rotations
that helps balance the tree by moving nodes on
highly accessed branches upwards and closer to the
root. The amortized time complexity of an enqueue
operation in an n-node Splay Tree is guaranteed to
be O(log n) while its dequeue operation is O(1).

2.1.2. Two-Level (TL)
The TL structure is an array of linked list with the
last array serving as an overflow list. TL was shown

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 68

to perform worse than a Heap [Gonnet, 1976] for
small events by McCormack and Sargent [1981].
However this is largely due to its large overhead as
shown in McCormack and Sargent’s experimental
results. They suggested that it was mainly due to its
large overhead and is not suitable for small scale
simulations.

2.1.3. Calendar Queue (CQ)

Bucket 0
bw0=[0 - 1)

Bucket 1
bw1=[1-2)

Bucket 2
bw2=[2-3)

Bucket 3
bw3=[3-4)

Bucket 4
bw4=[4-5)

1 Year = Num of buckets * bucketwidth = 5 * (1-0) = 5 seconds

0.5

5.41

1st Year

2nd Year

1.61 2.72

7.63

3.83

8.74

4.94

10.33rd Year

Events

Figure 1: Standard Calendar Queue by Brown

According to Brown, Ulrich and Davey’s
implementation should be O(1) except for the
presence of an overflow list. Their implementation
of the overflow list caused the poor performance of
the priority queues for skewed distributions, in
which a significant percentage of events are
enqueued in the overflow list. As such Brown’s
unique solution to this issue was to do away with an
overflow list by employing the concept of a circular-
year desk calendar; an array of linked lists without
an overflow list (Figure 1). There are however
problems associated with this O(1) priority queue.

Firstly, under highly-skewed distributions where
most events fall into some few lists. CQ’s ideal
scenario is one in which there is 1 event in each of
its array, which he called a “bucket”, and that all
events in CQ falls into the 1st year (i.e. shaded
events in Figure 1). However in highly-skewed
distributions, due to the poor sampling technique for
a new suitable bucket-width after a resize, the events
tend to fall only in a few buckets leaving most of the
others empty.

Secondly, when the number of events in the PES
fluctuates greatly. This occurs when there are many
successive enqueues or dequeues that lead to
frequent resizing of the number of buckets in CQ.
During a resize, CQ would calculate its new bucket-
width, re-initialize the multi-list to some number of
buckets and the new bucket-width, and then
recopies the old multi-list to the new one. This
resize operation is a very costly overhead.

The CQ variants such as Dynamic CQ (DCQ) and
SNOOPy CQ (SNOOPy) use different approaches
of determining the optimum operating parameters of
CQ to attempt to solve some of these problems.
DCQ and SNOOPy are however experimentally

found to have performed worse than CQ in some
scenarios (see section 5).

2.2. Two-Tier Priority Queue
2.2.1. Dynamic Lazy CQ (DLCQ)
Oh and Ahn came up with DLCQ which is made up
of an enhanced CQ as its primary tier and a
secondary tier called Future EvenT list (FET). The
enhanced CQ part is Brown’s CQ with an additional
Dynamic Resize (DR) algorithm to detect skewed
distributions. Therefore in addition to CQ’s static
size-based resize, the DLCQ can also initiate a DR
to dynamically change the bucket-width, even
though the number of events remains the same. The
FET structure is made up of two arrays called a root
list and a leaf list. FET is partially-sorted and is used
to store far future events during transient periods.
Storing of far future events in FET helps to ease the
additional frequent costly resizes due to the DR
algorithm. However, DLCQ too was experimentally
found to have performed worse than CQ in some
scenarios, and performed better in others.

2.3. Three-Tier Priority Queue
2.3.1. Lazy Queue (LQ)
Rönngren et al. [1991, 1993] developed the 3-tier
structure LQ that includes a near future (NF) linked
list or binary heap (fully-sorted), a far future (FF)
multi-list (partially-sorted) and a very far future
(VFF) linked list (unsorted) that is used as an
overflow bucket. The fundamental design of the LQ
is to keep only a small portion of the events sorted
in NF while letting far future events being unsorted
in FF sub-lists and in VFF. There are 5 sets of
criteria to determine if a resize should be triggered.
After almost every dequeue or enqueue operation,
some of the 5 sets of criteria have to be checked to
determine if a resize should be made. The LQ will
also have to ensure that after each resize operation,
the rest of the other criteria are not violated. From a
DES user point-of-view, there are 7 parameters that
should to be set by the user before simulation
begins. If not, the default static values would be
used, at the expense of performance. Rönngren and
Ayani [1997] had also made improvements to the
LQ in which skew heaps were used as the NF and
VFF in place of single linked lists. The resize
operation was also modified to speed up small
queue sizes.

Due to the highly complex algorithm and the source
code being not obtainable from the authors, the LQ
is not being considered in this article. However, the
performance of LQ can be observed from the LQ
literatures [Rönngren et al., 1991, 1993, 1997] and
the conclusion drawn from these publications is that
its performance is comparable to the CQ for most
distributions. However the LQ is about twice better
than the CQ for skewed distribution such as the
Camel distribution. In highly skewed distributions

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 69

such as Change, which would be explained in later
sections, the LQ performs much poorer than the CQ
in some scenarios and in others, performs better.
The results show that it is inconclusive whether the
LQ is a superior priority queue as compared to the
CQ.

3. THE MULTI-TIER LINKED LIST (MLIST)

The design of MList incorporates several
improvements over CQ, DCQ, SNOOPy, DLCQ
and LQ. Currently the performance of these priority
queues is affected by the large overheads in the
resize operation. During a resize operation, most or
all the events are re-enqueued in a newly-created
queue with new operating parameters, for example a
new bucket-width. Note that the events in the CQ,
DCQ and SNOOPy are already sorted before they
are resized. To re-enqueue these sorted events may
be highly inefficient. The DLCQ reduces the cost of
the resize operation by reducing the number of
events in the multi-list by storing the far future event
in its FET. The LQ on the other hand utilizes the
“lazy” methodology to sort events only on demand,
leaving the far future events unsorted. Still the
costly resize operations due to sampling for more
accurate operating parameters and the frequent
transfers of events back and forth between the tiers
in both the DLCQ and LQ can be overwhelming.

A distinct feature of MList is that it does not resize.
It works on the principle of a 3-tier structure to
spread out events to handle skewed distributions.
Sampling is also not required to obtain the
appropriate bucket-width of its multi-list and this
further reduces the overhead. MList also utilizes a
deferred sorting methodology in which a small
number of early time-stamp events are sorted,
leaving the later events unsorted.

3.1. The MList Structure

1st Tier (T1) 2nd Tier (T2) 3rd Tier (T3)

T3_max

T3_min
T3_start

T2_start

T2_cur

Figure 2: The MList Structure

The main building blocks of MList (Figure 2) are:
(1) 1st Tier (T1). T1 is a sorted linked list. This is

the primary tier of MList in which the events
with the minimum time-stamps are sorted and
stored.

(2) 2nd Tier (T2). T2 is a partially-sorted multi-list
structure. T2 stores events similar to the CQ’s

principle in which events are bucket-sorted.
However, within each bucket which houses a
linked list, the events are not sorted. And unlike
the CQs which use a circular-year calendar
concept in which the far future events are
enqueued within the same bucket, MList
employs a 3rd tier to contain those far future
events. Hence T2 is strictly a one-year desk
calendar.

3rd Tier (T3). T3 is an unsorted linked list. Acting
as an overflow list to contain far future events, T3
buffers events that do not affect T1 and T2. This
reduces the number of events in both T1 and T2. In
addition, this last tier is the novelty behind the
dynamic mechanism of MList.

3.2. Dynamic Mechanism of the Multi-list T2
In the CQs, the number of buckets is dependent on
the number of events in their multi-list structure. If
enqueues or dequeues give rise to the events
exceeding or going below a certain threshold, their
multi-list structure resizes to twice or half the
number of buckets respectively. During each resize,
the new bucket-width of those buckets is calculated
using various sampling techniques or in the case of
the SNOOPy, a moving average of the enqueue or
dequeue cost. Besides adding complexity, this
method of sampling adds to the overhead of a resize
since a better sampling technique would mean that a
larger number of events would be involved. For the
case of the LQ, during a resize the number of
buckets and bucket-width are halved or doubled
according to the number of events in its T2 and T3.

MList marks the first departure from this heuristic
method of determining the number of buckets as
well as the bucket-width by making its multi-list T2
to be dependent on its T3. T2’s length of 1 year, the
number of buckets and the bucket-width are
dynamically assigned only when T3 transfers events
into T2. The MList keeps a set of variables to
function and they are defined in Table 1. At the
point of transfer of the events from T3 to T2, the
length of 1 year in T2 is calculated as,

 1 Year in T2 = T3_max – T3_min (1)

and the bucket-width of each bucket in T2 will be,

 T2_bw = Bucket-width =
numT

T2 inYear1
_3

 , (2)

where the number of buckets in T2 is equal to
T3_num, giving an average of one event per bucket.

Note that if T1 and T2 are both empty of events, the
occurrence of the first dequeue for this situation
would again dynamically create a new T2 with the
parameters calculated using equations (1) and (2).
Table 1 lists a number of important variables to
enable the reader to grasp a better understanding of
MList.

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 70

Table 1: Definition of MList Variables
Name Definition

T1_num Number of events in T1.
T2_start The minimum time-stamp of an event

that can be enqueued in T2. This value
is updated when events are being
transferred from T3 to T2, with its
value being set equal to T3_min at
each T3 to T2 transfer.

T2_cur The lower time-indexed of the earliest
bucket in T2. E.g. (Figure 3), T2_cur
is initially “0.1”. Upon transferring of
events from Bucket 0 to T1, T2_cur
will be set to “1.1”, and so on.

T2_num Number of events in T2.
T2_bw Bucket-width of T2.
T2_idx The index of bucket array in which its

events are to be transferred to T1.
T3_start The minimum time-stamp of an event

that can be enqueued in T3. This value
will be set equal to T3_max at each
transfer of events from T3 to T2.

T3_min The minimum time-stamp in T3.
T3_max The maximum time-stamp in T3.
T3_num Number of events in T3.

3.3. The MList Algorithm

Bucket 1
[1.1 - 2.1)

0.1 1.6 5.1

0.9

0.5

0.1 5.1 0.9 0.5

1st Tier (T1)

2nd Tier (T2)

3rd Tier (T3) 1.6

Bucket 4
[4.1 - 5.1)

Bucket 3
[3.1 - 4.1)

Bucket 2
[2.1 - 3.1)

Bucket 0
[0.1 - 1.1)

1 Year = 5.1 - 0.1 = 5.0

* Bucketwidth = 5.0 / 5 = 1.0

0.1 0.90.5

*

Figure 3: MList Queue Structure

3.3.1. Dequeue Operation
At the onset, all enqueued events are placed in T3
with no sorting required (Figure 3). On the first
dequeue operation, all the events are transferred
from T3 to T2 and the length of one year in T2,
number of buckets and the bucket-width of T2 are
dynamically assigned using Equations (1) and (2).
Thereafter, events in Bucket 0 will be sorted in
time-order using a standard sorting algorithm before
being transferred to T1.

Figure 3 illustrates an example of how MList would
function on its first dequeue or when there are no
other events in T1 and T2. It depicts how the three
smallest time-stamp events (shaded) are being
transferred from T3 -> T2 and then T2 -> T1.
Thereafter, the first dequeue would return “0.1”
time-stamp event from T1. This is followed by “0.5”
and then “0.9”, assuming no other events are
enqueued in T1.

Subsequently, events in Bucket 1 would be
transferred to T1 and sorted. And since Buckets 2
and 3 are empty, the T2_idx would be incremented
to Bucket 4. And so on until all the events in T2 are
dequeued. After which, the whole cycle repeats
itself with T3 treating the next dequeue alike the
first dequeue as mentioned above. Again, the three
parameters of T2 are dynamically assigned
according to the events in T3. The pseudo-code of
the dequeue operation is given in Figure 4.

Figure 4: dequeue() Pseudo-code of MList

3.3.2. Enqueue Operation
For each enqueue operation, MList checks if that
event time-stamp is greater than T3_start. If so, the
event is simply placed at the end of the linked list in
T3. If the event is not inserted in T3, MList then
checks if the event time-stamp is greater than
T2_cur. If so, the event is enqueued in T2. On
enqueuing in T2, the index of the bucket
(bucket_idx) where this event is to be inserted in T2
is;

struct event *dequeue() {
Check_T1:

if(T1_num > 0)
Dequeue from T1; /*T1 is sorted*/

//End of T1 check
Check_T2: /*If T1 no event, check T2*/

if(T2_num > 0) {
T2_idx = 1st non-empty bucket; /*T2 has 1 year*/
/*Increment T2_cur to the start of this bucket*/
T2_cur=T2_start + T2_idx * T2_bw;
Sort and transfer T2[T2_idx] events to T1;

 Dequeue from T1;
//End of T2 check
Check T3: /*iff T1 & T2 have no events*/

if(T3_num > 0) {
/*Calculate T2 bucket-width using Eqn(2) */
T2_bw = (T3_max – T3_min) / T3_num;
/*Update important variables*/
T2_start=T3_min; T3_start=T3_max;
T2_idx=0; T2_num=T3_num;
Transfer all events from T3 into T2 buckets;
goto Check_T2;

//End of T3 check
} //Dequeue End

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 71

Bucket_idx =
T2_bw

T2_start-time_stamp , (3)

and the event is inserted at the back of the linked list
corresponding to the bucket with index bucket_idx.
Else, that event is enqueued in T1 via a linear
insertion. The pseudo-code of the enqueue operation
is given in Figure 5.

Figure 5: enqueue() Pseudo-code of MList

3.4. A Brief Time Complexity Analysis of MList
This section seeks to provide a brief performance
analysis of MList using the amortized time
complexity analysis [Tarjan, 1985].

Assume some events are enqueued into an empty
MList. Initially all the events would be enqueued
into T3. This enqueue of events into T3 is O(1)
since T3 is an unsorted linked list and the events are
simply inserted at the end of the linked list. On the
first dequeue, all the events from T3 would be
bucket-sorted into T2, where T2 is made up of
buckets with an equal time-interval (bucket-width).
Events would be distributed in T2 according to the
event distribution. For instance, for a uniform
distribution, each bucket would approximately hold
one event. If there is only one event in a T2 bucket,
the event would be dequeued immediately,
bypassing T1. If however there are more than one
event in T2, the events would be sorted and
transferred to T1. Since the overhead of sorting and
transferring of small number of events is small when
amortized over all dequeues, it can be concluded
that the dequeue operations in MList can be
approximated to be O(1).

Suppose during these dequeue operations, more
events are enqueued into MList, they would be
expected to fall into the three tiers of MList with
higher probability into T2 and T3. This is because
the time-interval of T1 is equivalent to just one
bucket in T2. Enqueuing of events into T2 or T3

gives O(1) complexity since T2 and T3 are made of
unsorted linked lists and that the events are inserted
at the end of the linked lists. However, enqueuing of
events into T1 gives O(n1) complexity since T1 is a
sorted linked list and thus each event requires a
sequential search for the correct position; n1 is the
number of events in T1. Table 2 summarizes the
theoretical performance of MList.

Table 2: Amortized Time Complexity of MList
Multi-tier Structure
 T1 T2 T3
Enqueue O(n1) O(1) O(1)
Dequeue O(1) - -
Note: n1 is the number of events in T1.

Specifically, under the uniform distribution, n1 << n,
where n is the total number of events enqueued into
MList. This is because the time-interval of T1 is
equal to the time-interval of only a bucket T2, i.e.
time-interval of T1 << time-interval of T2, which
translates to mean that the number of events in T1
<< than those in T2. Therefore, regardless of the
event distribution, if n1 << n, then the amortized
time complexity of enqueue operations in MList is
expected to be O(1).

Under general event distributions, we can consider
in terms of the probability of enqueuing an event in
the various tiers in MList. The performance of
MList is poor only in the scenario where many
enqueues occur in T1 and where at the same time, n1
is large. This poor performance is because T1 is
maintained as a sorted linked list and each enqueue
requires a linear search to place the event in the
correct position. Let the probability of enqueuing an
event in T1, bucket i in T2 and T3 be P1, P2,i and P3
respectively, where 0 ≤ i ≤ M-1 and the number of
buckets in T2 is M. P1 + ∑ P2,i + P3 = 1 and P1, P2,i
and P3 > 0 for all i. MList has poor performance
only if P1 1. However, for most distributions and
simulation scenarios, P1 does not tend to 1.
Therefore, we can conclude that the performance of
MList under general distributions is expected O(1).
Through simulation benchmarks, we have shown
empirically in Section 5 that MList has good
performance for all the distributions tested.

4. PERFORMANCE MEASUREMENTS

In this section, we describe the design of the
experiments which is essential in studying the
performance of the priority queue structures under a
wide variety of operating conditions.

4.1. Measurement Models
In order to find out the performance of the priority
queues, the average access time for a queue under
different loads has to be determined. The access
time is referred to as the time taken for an enqueue

void enqueue(time_stamp, event) {
if(time_stamp >= T3_start) {

Insert at the back of T3;
T3_num++; }

else if(time_stamp >= T2_cur) { //Insert into T2
/*Calculate bucket_idx using Eqn (3)*/
bucket_idx = (time_stamp-T2_start) / T2_bw;
/*Insert into T1[bucket_idx] as last element*/
T2_num++; }

else { //Insert into T1 via linear insertion
Insert event in stable time-order
T1_num++;

}
} //Enqueue End

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 72

or dequeue operation. The parameters to be varied
for each queue are: the access pattern, the queue size
and the priority distribution. The access pattern
models used emulate the steady-state and the
transient phase. These two extreme cases are that
which a PES would probably encounter in most
DES. The two models to emulate the two scenarios
respectively are as follow:
(1) Classic Hold model [Jones, 1986]. The queue to

be benchmark is initially built up to the queue
size to be tested by a random series of enqueues
(higher probability) and dequeues. Thereafter a
series of hold operations ensue. A hold
operation is defined as a dequeue followed by
an enqueue which value is the priority (time-
stamp) of the event that was just dequeued and
adding the priority increment distribution to be
tested to this dequeued time-stamp. The average
access time to be calculated is the average time
taken for one hold operation. The number of
hold operations in the benchmarks are set to be
1000 times the queue size tested. This method
has advantages that:
(a) The problem of determining the transient

period is avoided, and
(b) The transient period will affect to the same

extent the different queue sizes tested
[Rönngren and Ayani, 1997].

(2) Up/Down model [Rönngren et al., 1993]. An
Up/Down is defined as the manner in which the
queue is built up to a tested queue size by a
sequence of enqueues. Thereafter followed an
equally long sequence of dequeues. The number
of Up/Down cycles is set to be 100. The
average access time to be calculated is the time
taken for all queue operations (enqueues and
dequeues), divided by the total number of queue
operations.

4.2. Priority Increment Distributions
The selections of typical distributions that occur in
real simulation models are being employed. These
distributions are commonly employed in [Rönngren
et al., 1991, 1993; Oh and Ahn, 1997, 1998; Tan and
Thng, 2000]. Four non-compound distributions,
Rectangle (i.e. Uniform), Triangle, Negative
Triangle and Camel(x,y) [Rönngren et al., 1991],
and one compound distribution known as
Change(A,B,x) [Rönngren et al., 1993]. The
Camel(x,y) distribution is used to model bursty
traffic in computer and communication networks
which represents a highly-skewed distribution. The
parameters used for Camel(x,y) results in two humps
with x% of the probability mass being concentrated
in the two humps. The duration of the humps makes
up y% of an interval. Change(A,B,x) combines
priority distribution A and B, with x priority
increments being alternately drawn by A and B.
Change(A,B,x) is to test a queue’s the worst case
behavior and its sensitivity to compound

distributions. The four non-compound distributions
are as shown in Figure 6.

Rectangle

Negative
Triangle

Triangle

Camel

Figure 6: Non-compound Distributions Used

4.3. Benchmarking Test-bed
The experiments were carried out on an AMD
Athlon MP 1.2GHz computer. This workstation has
dual-processors but as the algorithms are sequential,
did not made use of its true SMP capabilities.
However this workstation ensured that when each
benchmark was carried out, other background
processes that might affect the results were kept at a
minimum, thus obtaining more accurate
experimental results.

10 runs of each experiment were done and the
median value was obtained for each queue size
simulated in the experiment. The median value is a
measure of the central tendency and is chosen over
the mean value because some background processes
could have adversely affected a particular run of an
experiment and averaging this value could render
less accurate results.

Also, the experiments were performed with the
required memory for each priority queue being pre-
allocated. This was to eliminate the under-lying
memory management system which might affect the
results. This is a good practice in actual DES as it
prevents memory fragmentation when creating new
events and deleting the serviced events. This method
of pre-allocating memory would also enhance the
performance of the DES. The method of pre-
allocation could be made dynamic by an initial pre-
allocation and subsequently, an allocation of
memory on demand methodology could be
employed. A microsecond timer is used for all the
experiments. Loop overhead time and the time taken
for random numbers generated were removed using
a dummy loop. All the code was written in the C
programming language.

5. EXPERIMENTAL RESULTS

The objectives of this section are to present the
performance of MList as compared with the current
fastest multi-list priority queue data structures and to
determine MList’s generality and sensitivity in the
five priority increment distributions using the
Classic Hold and Up/Down models, as well as when
the queue size increases from 10 to 30,000. Note

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 73

that a logarithmic scale has been used for the queue-
size axis which leads to logarithmic complexity for
linear plots.

5.1. Steady State Experiments

Figure 7 shows the results obtained under the
Classic Hold model that is commonly employed to
test the steady state performance of the priority
queues. Table 3 summarizes with explicit figures of
the performance gain (%), in terms of the
distributions used in the experiments, of MList over
the other priority queues.

(a) Classic Hold and Rectangle

(b) Classic Hold and Triangle

(c) Classic Hold and Negative Triangle

(d) Classic Hold and Camel(98, 0.1)

(e) Classic Hold and

Change(Camel(98,0.1),Triangle,2000)

Figure 7: Performance for Classic Hold Model
Experiments

Figures 7(a) to 7(c) illustrate that the O(1) priority
queues such as CQ and its variants perform with
near O(1) performance and exemplify that the O(log
n) Splay Tree pales in comparison with these
distributions. MList shows better performance than
the CQ and its variants due to its lower overhead in
its management of the PES.

The obvious knee seen in the curves plotted is due
to the declining cache performance and occurs when
the queue size is about 10,000. This phenomenon is
also observed in the graphs found in [Rönngren and
Ayani, 1997] where the experiments were done on
SUN and Intel architectures.

Figure 7(d) reveals some of the weaknesses found in
the CQ. The CQ’s performance is erratic due to its
static size-based resize and that its sampling
heuristics are unable to detect skewed distributions.
The CQ variants have shown better performance due
to their improved heuristics. The Splay Tree offers
good performance, almost as well as MList.

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 74

Table 3: Average Performance Gain (%) of MList Over Other Priority Queues for Classic Hold Model
Distribution CQ DCQ SNOOPy DLCQ Splay Tree
Rectangle 35.33 41.25 37.96 105.70 176.77
Triangle 36.06 41.78 34.27 102.72 157.77

Negative Triangle 36.67 44.01 43.92 111.30 187.57
Camel(98,0.1) 145.23 70.94 54.97 143.31 98.51

Change 1,264.67 169.08 140.83 292.78 62.87

Mean Value 303.59 73.41 62.39 151.16 136.70

Figure 7(e) which is based on a highly skewed
distribution uncovers weaknesses found in all the
CQ and its variants. Splay Tree, on the other hand,
performs only slightly poorer at 62.87% worse than
MList, as compared to over 100% for the CQ and its
variants. DLCQ performs worse than the CQ
variants due to the frequent transfers of events
between its 2-tier structure, since a transfer is
triggered according to the size of its primary tier.

For the Classic Hold model, on the average, MList
performs from 62% to 300% better than the other
priority queues.

5.2. Transient State Experiments

Figure 8 shows the results obtained under the
Up/Down model that is generally used to test the
transient state performance of priority queues. Table
4 summarizes with explicit figures of the
performance gain (%), in terms of the distributions
used in the experiments, of MList over the other
priority queues.

(a) Up/Down and Rectangle

(b) Up/Down and Triangle

(c) Up/Down and Negative Triangle

(d) Up/Down and Camel(98, 0.1)

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 75

Table 4: Average Performance Gain (%) of MList Over Other Priority Queues for Up/Down Model
Distribution CQ DCQ SNOOPy DLCQ Splay Tree
Rectangle 194.81 219.44 224.41 378.50 94.88
Triangle 261.14 271.67 283.51 441.34 96.47

Negative Triangle 190.90 215.93 221.28 374.08 94.45
Camel(98,0.1) 3,845.23 363.87 353.05 518.93 43.18

Change 284.33 1,671.89 7,681.86 1,427.47 25.24

Mean Value 955.28 548.56 1,752.82 628.06 70.84

(e) Up/Down and Change(Camel(98,0.1),Triangle,

2000)

Figure 8: Performance for Up/Down Model
Experiments

The Up/Down model which tests the performance of
priority queue structures during transient periods
when the queue size fluctuates frequently, uncovers
the weaknesses of the CQ and its variants. Figures
8(a) to 8(e) evidently shows that resize operations of
the CQ and its variants are indeed costly. Whenever
the queue size is just above (after an enqueue) or
just below (after a dequeue) the powers of 2 queue
sizes, i.e. 8 (23), 16 (24), …, 1024 (211), …, 16384
(214), and so on, the CQ and its variants would have
to perform the resize operation. This is due to their
static size-based algorithm being triggered.

The Splay Tree performs well and the plots clearly
show its O(log n) is guaranteed in all queue sizes
and distributions.

MList which does not have a resize operation,
performs well even in highly skewed distribution as
shown in Figures 8(d) and 8(e). The fact that the
combination of its deferred methodology and the
absent of resize operations by spreading out the
events in the buckets, make it an efficient priority
queue structure.

For the Up/Down model, on the average, Table 4
shows that MList performs from 70% to 1,700%
better than the other priority queues.

Table 5: Average Performance Gain (%) of MList

Priority Queue Average Gain (%)
CQ 629.44

DCQ 310.99
SNOOPy 907.61

DLCQ 389.61
Splay 103.77

Table 5 shows the combined average for both the
Classic Hold and Up/Down models to obtain an
overall average performance gain (%), in terms of
the queue size, priority increment distribution and
the access pattern models, of MList over the other
priority queue structures.

 On the average, MList performs at least 100%
better than the other priority queue structures.

5.3. Generality and Insensitivity of MList

Figures 9(a) and 9(b) shows MList generality and
insensitivity under the various distributions and
queue sizes. The figures show that MList is stable
and exhibits near O(1) amortized time complexity
for all scenarios. Under
Change(Camel(98,0.1),Triangle,2000), MList shows
signs of a slightly poorer performance because
under a highly skewed distribution, the events in its
1st tier gets enqueued back into the 1st tier via a
linear search for the correct position in the linked
list. However, its low management overheads as
well as the small number of events in its 1st tier due
to its deferred sorting methodology ensures that
MList performs more efficiently than the rest of the
other priority queues under all distributions and all
queue sizes.

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 76

(a) Classic Hold Model

(c) Up/Down Model

Figure 9: Generality and Insensitivity of MList

6. CONCLUSION

The current O(1) priority queues do not exhibit O(1)
amortized time complexity in some of the scenarios
tested under the commonly used models and
distributions. A new priority queue implementation
for the pending event set has been illustrated and
tested with results showing performance surpassing
current structures and consistently exhibits near
O(1) performance in all distributions and queue
sizes tested. MList’s performance improvement of at
least 100% better than all the current priority queues
is owed to the fact it does not have the costly resize
operations that severely affect the current priority
queues. To handle skewed distributions, MList
employs its multi-tier structure with deferred sorting
methodology. These mechanisms contribute to the
low management overheads and consequently
ensure MList’s superiority over the current O(1)
priority queues, as well as the O(log n) Splay Tree.
In addition, its simple algorithm, its generality to
widely diverse queue sizes and its practically
insensitivity to different distributions, adds to its
potentiality in successfully and widely

implementing this priority queue as the pending
event set in discrete event simulations.

REFERENCES

Bahk, S. and Zarki M. E. 1992, “Dynamic multi-
path routing and how it compares with other
dynamic routing algorithms for high speed wide
area network”. In Proceedings of ACM SIGCOMM
’92 on Communications Architecture & Protocols,
53-64.

Brown, R. 1988, “Calendar queues: A fast O(1)
priority queue implementation for the simulation
event set problem”. Commun. ACM 24, 12 (Dec.),
825-829.

Comfort, J. C. 1984, “The simulation of a master-
slave event set processor”. Simulation 42, 117-124.

Davey, D. and Vaucher, J. 1980, “Self-optimizing
partition sequencing sets for discrete event
simulation”. INFOR 18: 41-61.

Dupuy, A., Schwartz, J., Yemini, Y. and Bacon, D.
1990, “NEST: a network simulation and prototyping
testbed”, Commun. ACM 33, 10 (Oct.), 63-74.

Franta, W.R. and Maly, K. 1977, “An efficient data
structure for the simulation event set”. Commun.
ACM 20, 8: 596-602.

Gonnet, G.H. 1976, “Heaps applied to event driven
mechanisms”. Commun. ACM 19, 7: 417-418.

Jones, D. W. 1986, “An empirical comparison of
priority-queue and event-set implementations”.
Commun.ACM 29: 300-311.

McCormack, W.M. and Sargent, R.G. 1981,
“Analysis of future event-set algorithms for discrete
event simulation”. Commun. ACM 24, 12, 801-812.

Oh, S., and Ahn, J. 1997, “Dynamic Lazy Calendar
Queue: An Event List for Network Simulation”. In
Proceedings of HPC Asia ’97, 254-259.

Oh, S., and Ahn, J. 1998, “Dynamic Calendar
Queue”. In Proceedings of the 32nd Annual
Simulation Symposium.

Roberts, J. W. 1992, “Performance evaluation and
design of multiservice networks”. Commission of
the European Communities, Luxembourg.

Rönngren, R., Riboe, J. and Ayani, R. 1991, “Lazy
queue: An efficient implementation of the pending
event set”. In Proceeding of the 24th Annual
Simulation Symposium, 194-204.

R. S. M. GOH and I. L-J THNG: MLIST

I.J. of SIMULATION Vol. 4 No. 5-6 ISSN 1473-803x online, 1473-8031 print 77

Rönngren, R., Riboe, J., and Ayani, R. 1993, “Lazy
Queue: New approach to implementing the pending
event set”. Int. J. Computer Simulation 3, 303-332.

Rönngren, R., and Ayani, R. 1997, “A Comparative
Study of Parallel and Sequential Priority Queue
Algorithms”. ACM Trans. Modeling and Computer
Simulation 7, 2(Apr) 157-209.

Sleator, D. and Tarjan, R. 1985, “Self adjusting
binary search trees”. Journal of the ACM 32: 652-
686.

Tan, K.L., and Thng L-J., 2000, “SNOOPy Calendar
Queue”. In Proceedings of the 2000 Winter
Simulation Conference, 487-495.

Tarjan, R.E. 1985, “Amortized computational
complexity”. SIAM Journal on Algebraic and
Discrete Methods, 6(2), 306-318.

Ulrich, E.G. 1978, “Event manipulation for discrete
simulations requiring large numbers of events”.
Commun. ACM 21, 9: 777-785.

BIOGRAPHY

RICK SIOW MONG GOH
received his B.Eng. (Hons)
from the Department of
Electrical and Computer
Engineering, National
University of Singapore and
is currently a research scholar
pursuing his Ph.D. in the area
of high performance
sequential and parallel

discrete event simulation. His research interests
include distributed computing and object-oriented
network simulators. He can be contacted at
<engp1815@nus.edu.sg>

IAN LI-JIN THNG received
his B.Eng. (with first class
honours) from the University
of Western Australia,
Nedlands, in 1992 and the
Ph.D. degree from the Curtin
University of Technology,
Bentley, Australia, in 1996.
He is currently an Assistant
Professor in the Department

of Electrical and Computer Engineering at the
National University of Singapore. Prior to that, he
was a Postdoctoral Research Fellow in the
Australian Telecommunications Research Institute,
Australia. His research interests include very high-
speed digital communications, array signal

processing, provision of quality of service for
handoffs in wireless cellular networks, optical burst
switching and the development of high speed
network simulators. He can be contacted at
<eletlj@nus.edu.sg>

