
S. MARTIN and I. MITRANI: DYNAMIC ROUTING BETWEEN TWO QUEUES

DYNAMIC ROUTING BETWEEN TWO QUEUES WITH
UNRELIABLE SERVERS

Simon Martin and Isi Mitrani
School of Computing Science, University of Newcastle, NE1 7RU, UK

[s.p.martin,isi.mitrani]@ncl.ac.uk

Abstract:
We examine the problem of how best to route jobs among two queues whose servers are subject to breakdowns and
repairs. The optimal routing policy is computed by modelling the system as a discrete-time, finite-state Markov
decision process and solving the resulting dynamic programming equations either iteratively or by applying the
‘policy improvement’ algorithm. In a series of numerical experiments, the performance of various heuristic
policies is compared with that of the optimal policy. A particular heuristic is shown to be close to optimal over a
wide range of parameters.
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1 Introduction

Recent developments in distributed processing,
and in particular the emergence of theComputing
Grid, enable users to submit jobs without speci-
fying where they will be executed. A grid-based
system might contain a number of (geographically
distributed) servers with different characteristics.
A dispatcher handles the submitted jobs and de-
cides where to send each one, taking into account
information about the current system state. That
information typically includes queue sizes, and
also the availability or otherwise of the servers. In
such an environment, one cannot assume that all
servers are available at all times to run submitted
jobs. A more realistic assumption is that each server
goes through alternating periods of being available
and unavailable, or ‘operative’ and ‘inoperative’
(in practice, an inoperative period is usually due
to the server being occupied with other tasks of
higher priority; however, as far as the user jobs are
concerned, it ‘breaks down’ and is later ‘repaired’).

Thus, it is important to design dispatching (routing)
policies that are (a) dynamic, i.e. react to changes
in system state, and (b) efficient, i.e. make optimal
or nearly optimal routing decisions with respect to
some Quality of Service (QoS) criterion. That is the
aim of this paper.

The above dynamic optimization problem has
not, as far as we know, been tackled before. In-
terest in single queues subject to breakdowns and
repairs goes back more than forty years (e.g., see
[Gaver, 1962]). [Fiems et al, 2004] evaluate a single
server experiencing interruptions in service, for the
cases of the interrupted job being resumed, partially
resumed or restarted.

However, there are very few studies involving
more than one queue. [Mitrani and Wright, 1994]
examined a model withN queues where a server
breakdown results in the loss of all jobs in the associ-
ated queue. [Thomas and Mitrani, 1995] considered
a similar system without job losses. In both those
systems the routing policies are semi-static: routing
decisions depend on the current operative state of the
servers, but not on the sizes of the queues, whereas
in the current work, the routing decisions can also
depend on the sizes of the queues.

[He and Neuts, 2002] deal with a model of two
servers with independent queues, where jobs are
transferred from the server with the longer queue
when the difference in queue lengths is greater than
some threshold.

Here we study a Markovian model where in-
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coming jobs can be directed to one of two queues,
with different, intermittently available servers.
Once dispatched, jobs remain in the appropriate
queue until eventually completed. A ‘holding cost’
(possibly different for the two queues) is incurred
by each job per unit time spent in the system. The
objective is to find a routing policy that minimizes
the total (possibly discounted) cost incurred over a
finite or infinite planning horizon. That means, in
essence, minimizing a weighted average number of
jobs present in the system.

The solution approach is to (i) ‘uniformize’ the
continuous time Markov decision process in order to
formulate the problem in discrete time, (ii) truncate
the state space in order to make it finite, and (iii)
solve the resulting set of dynamic programming
equations either by iteration or by employing a
‘policy improvement’ algorithm.

The optimal routing policy is difficult to imple-
ment because it does not lend itself to explicit
characterization. The routing decisions are some-
times counter-intuitive: e.g., it may be preferable
to send jobs to a longer queue, or to one where the
server is currently inoperative, in the expectation
that faster or more reliable service will be obtained
later. However, a numerical computation of the
optimal policy provides a standard of comparison by
means of which other, easily implementable heuristic
policies can be judged. Several such heuristics are
evaluated. One, in particular, is shown to be close to
optimal over a wide range of parameters.

The mathematical model is described in section
2. Its solution and the computation of the optimal
policy are discussed in section 3. The results of a
number of numerical experiments, including com-
parisons between the optimal and heuristic policies,
are presented in section 4.

2 The model

Jobs arrive into the system according to an inde-
pendent Poisson process with rateλ. A routing policy
sends the new arrivals to one of two servers, each
having its own unbounded FIFO queue. There is no
delay between arriving into the system and joining a
queue. Having joined, a job remains in its queue until
its service is completed. When serveri is operative,
its service times are distributed exponentially with
mean1/µi (i = 1, 2). The operative and inoperative
periods of serveri are distributed exponentially

with means1/ξi and 1/ηi, respectively. Any job
whose service is interrupted by a server breakdown
remains at the head of its queue; as soon as the server
is repaired, the service resumes from the point of
interruption. All interarrival, service, operative and
inoperative intervals are mutually independent. This
system is illustrated in figure 1.

While a job remains in queuei, it incurs a cost
ci per unit time. These ‘holding’ costs reflect
the possibly different importance attached to low
response times at the two queues. The average total
cost incurred over a given (finite or infinite) period
will be our QoS measure.

The system state,S, at a given time is described by a
quadruple of integers:S = (j1, j2, b1, b2), whereji

is the current number of jobs in queuei, andbi is the
current availability of serveri (i = 1, 2); the latter is
defined as

bi =
{

0 if server i is inoperative
1 if server i is operative .

The routing policy,a, is defined by specifying, for
every stateS, the action,aS , taken when a job arrives
and finds that state:aS = i if the job is directed to
queue i. The policy is assumed to be stationary; the
routing actions may depend on the current state but
not on past history.

The above assumptions imply that the system
state is a Markov process whose evolution depends
on the routing policy. The instantaneous transition
rate,ra(S, S′), from stateS to stateS′ under policy
a, is given by

ra(S, S′) =


λ if aS = i and S′ = S + ei;
µibi if ji > 0 and S′ = S − ei;
ξi if bi = 1 and S′ = S − ei+2;
ηi if bi = 0 and S′ = S + ei+2;
0 otherwise

,

(1)
wherei = 1, 2; ek is the 4-dimensional vector whose
kth element is 1 and the other three are 0.

The total instantaneous transition rate out of
stateS, r(S), is equal to:

r(S) = λ+b1[µ1δ(j1 > 0)+ξ1]+b2[µ2δ(j2 > 0)+ξ2]

+ (1− b1)η1 + (1− b2)η2 , (2)

whereδ(B) is the indicator of the BooleanB: it is
equal to 1 ifB is true, 0 ifB is false. Note thatr(S)
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Figure 1. Routing among two heterogeneous queues

does not depend on the routing policy.

If the routing policy makes reasonably efficient
use of the servers, i.e. does not allow one of the
queues to grow very large while the other remains
empty, then the system should be stable if the arrival
rate is lower than the total average available service
capacity:

λ <
η1

ξ1 + η1
µ1 +

η2

ξ2 + η2
µ2 . (3)

3 Computation of the optimal policy

For the purposes of optimization, it is
convenient to apply the technique of uni-
formization to the Markov process (e.g., see
[de Souza e Silva and Gail, 2001]). This involves
the introduction of ‘fictitious’ transitions which do
not change the system state, in such a way that the
average interval between consecutive transitions
does not depend on the state. The discrete-time
Markov chain embedded at transition instants is then
equivalent to the original process. First, we find a
constant,Λ, such thatr(S) ≤ Λ for all S. A suitable
value forΛ is

Λ = λ+max(µ1 +ξ1, η1)+max(µ2 +ξ2, η2) . (4)

Without loss of generality, the unit of time can be
scaled so that the right-hand side of (4) is equal to 1.
Then the transitions of the Markov process can be as-
sumed to occur at exponentially distributed intervals
with mean 1, according to a discrete-time Markov
chain whose one-step transition probabilities under
policy a, qa(S, S′), are equal to

qa(S, S′) =
{

ra(S, S′)/Λ if S′ 6= S
1− r(S)/Λ if S′ = S

, (5)

with ra(S, S′) andr(S) given by (1) and (2) respec-
tively.

For the purpose of accumulating costs, we con-
sider the states of the above Markov chainjust after

a transition instant if the latter is not associated with
an arrival andjust beforeif an arrival occurs at that
instant. Thus, if the chain is in stateS and there is
no arrival, then the cost of the current step,v0(S), is
equal to

v0(S) = c1j1 + c2j2 . (6)

If the state isS and an arrival occurs, then in addition
to v0(S), a holding cost equal toc1 if aS = 1, and to
c2 if aS = 2, is incurred.

Suppose that the objective is to minimize the average
total cost incurred over a finite period consisting of
n steps of the Markov chain. Denote byVn(S) the
minimum of that average, given that the current state
is S and there is no arrival. Similarly, letV a

n (S)
be the minimum average total cost, given that the
current state isS and an arrival occurs. These costs
satisfy a set of dynamic programming equations (for
the general theory, see [Ross, 1986, Whittle, 1982]).

If there is no arrival in the current state, we
have

Vn(S) = v0(S)+λV a
n−1(S)+

∑
S′

q(S, S′)Vn−1(S′) ,

(7)
where the first term in the right-hand side is the
cost of the current step. The second term expresses
the fact that the next transition is an arrival with
probabilityλ; if so, the incoming job sees stateS and
the consequent cost of the remainingn − 1 steps is
V a

n−1(S). The sum in the third term extends over the
transitionsS → S′ which do not involve an arrival:
the next state isS′ with probability q(S, S′); if so,
the consequent cost of the remainingn − 1 steps is
Vn−1(S′).

When there is an arrival in the current state,
one of the routing actions directing the incoming job
to queuei must be taken (i = 1, 2). The state then
immediately jumps toS + ei. The costV a

n (S) is
therefore obtained by adding to the current holding
cost, v0(S), the minimum of the consequences of
this action (on the current and subsequentn − 1
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steps), over the possible actions:

V a
n (S) = v0(S) + min

i=1,2

[
ci + λV a

n−1(S + ei)

+
∑
S′

q(S + ei, S
′)Vn−1(S′)

]
. (8)

Again, the sum in the right-hand side extends over
the transitionsS + ei → S′ which do not involve an
arrival.

The above recurrences can, in principle, be
solved by iteration, starting with the initial values
V0(S) = v0(S) andV a

0 (S) = v0(S) + min(c1, c2).
In practice, the state space must be made finite by
bounding the queue sizes:j1 ≤ J1 and j2 ≤ J2

for some J1 and J2. The consequences of such
a truncation are that ifj1 < J1 and j2 = J2,
then new arrivals must be routed to queue 1; if
j1 = J1 andj2 < J2, new arrivals must be routed to
queue 2; ifj1 = J1 andj2 = J2, new arrivals are lost.

The complexity of the iterative solution is of
the orderO(J1J2n), since the size of the state space
is 4J1J2 and there aren steps (the summations in (7)
and (8) have no more than 4 terms each).

Having solved the equations, the value ofi which
achieves the minimum in the right-hand side of (8)
is the optimal routing action in stateS, for the finite
horizonn.

More commonly, one is interested in an infinite-
horizon optimization. The objective is to minimize
the average total future cost, and in order that the
latter is finite, the cost of a step at distancen in
the future is discounted by a factorαn, for some
0 ≤ α < 1. Settingα = 0 implies that all future
costs are disregarded; only the current step is impor-
tant. Whenα → 1, the weight of a future step, no
matter how distant, approaches that of the current
one.

Denote by V (S) the minimum average total fu-
ture cost, given that the current state isS and there is
no arrival. Similarly,V a(S) is the minimum average
total future cost, given that the current state isS
and an arrival occurs. The corresponding dynamic
programming equations are

V (S) = v0(S) + αλV a(S) + α
∑
S′

q(S, S′)V (S′) ,

(9)

V a(S) = v0(S) + min
i=1,2

[ci + αλV a(S + ei)

+ α
∑
S′

q(S + ei, S
′)V (S′)

]
, (10)

with the same restrictions onS′ as for (7) and (8),
respectively.

Again, the optimal routing action in stateS is
specified by the value ofi which achieves the
minimum in the right-hand side of (10).

The infinite horizon optimization leads to fixed-point
equations, rather than recurrent ones. Moreover,
their solution, and the optimal policy, depend on
the discount factorα. The most important case,
but also the most difficult to solve, isα → 1.
Three methods for computing the optimal policy
numerically are described below. In all cases, the
state space is truncated by introducing the bounds
j1 ≤ J1 andj2 ≤ J2, and imposing the appropriate
policy restrictions on the boundariesj1 = J1 and
j2 = J2 (see above).

Cost Iteration

This algorithm applies whenα < 1. Then (a) the
total costs are finite and (b) the finite horizon costs
and policy converge to the infinite horizon costs and
policy asn→∞. The algorithm works as follows:

1. At iteration 0, setV0(S) to v0(S) andV a
0 (S) to

v0(S) + min(c1, c2), for all statesS.

2. At iteration n, compute Vn(S) and V a
n (S)

according to (7) and (8) respectively, using
Vn−1(S) andV a

n−1(S) from iterationn−1. Ter-
minate when

max
S

[|V a
n (S)− V a

n−1(S)|] < ε ,

for some smallε.

3. Return the policy specified by the values ofi
which achieve the minima in the right-hand side
of (8) on the last iteration.

The complexity of the Cost Iteration algorithm is of
the orderO(J1J2n), wheren is the number of itera-
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tion steps needed for convergence. That number de-
pends on the model parameters, on the discount fac-
tor, α, and on the desired accuracy,ε.

Policy Stability

This is similar to cost iteration, but is applied
with α = 1. Now Vn(S) andV a

n (S) keep growing
without bound, so a different termination criterion
must be used. This is based on convergence of policy,
rather than convergence of cost. At each iteration,
the current ‘optimal’ policy is compared to the one
from the previous iteration. The algorithm terminates
if the policy has not changed fork consecutive iter-
ations, for somek (e.g.,k = 100). Return that policy.

The complexity of this algorithm is of the order
O(J1J2n), wheren is the number of iteration steps
needed to achieve policy stability. That number
depends on the model parameters and on the desired
degree of stability,k.

Policy Improvement

Like cost iteration, this algorithm applies when
the total costs are finite (α < 1). However, it iterates
on policy rather than costs, and ensures that the
optimal policy is found.

1. Start by making an initial guess about the
optimal policy, i.e. construct an initial mapping,
f(S), from system states to routing actions.
This could be a simple heuristic such as
f(S) = 1 if j1 < j2, 2 otherwise (i.e., send new
arrivals to the shorter queue).

2. Treat this guess as the optimal stationary policy
and write the corresponding discounted cost
equations. The only change with respect to (9)
and (10) is that in the right-hand side of (10)
there is nomini; the routing actionf(S) is
used. This new version of (9) and (10) is a set
of simultaneous linear equations forV (S) and
V a(S). Solve them and determine the costs
associated with policyf .

3. Now try to ‘improve’ policyf . For every state
S, find the routing actioni which achieves the
minimum value in the original equation (10). In
other words, minimize the total cost in stateS,

assuming thatafter the current step, policy f
will be used.

4. If the new routing actions are the same asf(S)
for all S, then the policyf cannot be improved;
it is optimal. Returnf . Otherwise, replacef(S)
by the new policy and repeat from step 2.

In step 2, the simultaneous set of linear equations
is very sparse and is normally solved by iterations.
Therefore, the complexity of the Policy Improvement
algorithm is of the orderO(J1J2mn), where m
is the number of steps in the iterative solution of
the simultaneous equations, andn is the number of
policy improvement steps. The numberm depends
on the model parameters, on the discount factor, and
on the desired accuracy; in addition,n depends on
how close the initial guess is to the optimal policy.

Of the above three algorithms, only Policy Im-
provement is guaranteed to produce the optimal
routing policy in finite number of steps (assuming
that the simultaneous equations are solved accu-
rately).

Optimal routing policies can, in principle, be
computed off-line and stored in the form of decision
tables. A dispatcher could then implement the
policy by means of table look-up. A part of such a
decision table is illustrated in Table 1. For each state
where the queue sizes are in the range 0-20, server
1 is operative and server 2 is inoperative, the table
indicates whether an incoming job should be sent to
queue 1 or to queue 2. There are similar tables for
the other three operative states (broken-operative,
operative-operative and broken-broken). The param-
eters in this example areλ = 1, µ1 = 5, µ2 = 2.5,
ξ1 = 0.4, ξ2 = 0.2, η1 = η2 = 0.1, c1 = c2 = 1.
The optimal policy was computed by the Policy
Stability method.

This example shows that the optimal policy does not
lend itself to simple characterization. Jobs are not
always sent to the shorter queue. Sometimes they are
sent to a queue where the server is inoperative, even
though an operative sever is available. There might
be a rule of a ‘threshold’ type, i.e. ‘if the difference
between the two queues is greater than a certain
value, send the job to the shorter queue’. However,
what determines the value of that threshold, and how,
is unknown.
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Table 1. Optimal routing decisions: server 1 operative, server 2 broken

j2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

j1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 2. Run times of different solution methods

In the absence of a characterization, there are
clearly great practical difficulties in implementing
dispatchers based on table look-up. One would have
to pre-compute and store a large number of tables,

corresponding to different sets of parameters values,
and then decide which table to use, depending on the
currently observed conditions. A more practicable
approach would be to construct heuristic policies
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which, while not optimal, perform reasonably
well over a wide range of parameter values. Such
heuristics are introduced and evaluated in the next
section.

4 Experimental results

Athough the terms ‘breakdown rate’ and ‘repair
rate’ are used forξ and η in the discussion which
follows, it should be remembered that in practice
those are rates at which servers become ‘unavailable’
and ‘unavailable’, respectively. The actual reasons
for unavailability are not important here.

A number of numerical experiments were car-
ried out, with the following aims:

(a) Compare the different methods for determin-
ing the optimal policy, with respect to both
efficiency (measured by the run time) and
behaviour asα → 1.

(b) Compare the performance of several heuristic
routing policies with that of the optimal policy,
for different parameter values.

In all cases, the state space was truncated at
J1 = J2 = 100 (leading to a state space of size
40000). The arrival, service, breakdown and repair
parameters were chosen so that, without the trun-
cation, the probabilities of the queues reaching or
exceeding those bounds would be small.

The run times of the Cost Iteration, Policy Sta-
bility and Policy Improvement solution algorithms,
for different values of the discount factorα, are
illustrated in figure 2.

In this model, the two queues differ only in the
unit holding costs. The parameters are:λ = 4,
µi = 5, ξi = ηi = 0.1 (i = 1, 2), c1 = 1, c2 = 5;
i.e., each server is available for half of the time on
the average, and the total service capacity is 5. These
parameters are normalized so that the uniformization
constant becomesΛ = 1. The termination criterion
for Cost Iteration isε = 0.000001, while Policy
Stability terminates when the policy does not change
for 100 consecutive iterations. Since that algorithm
does not depend onα, it is run only once; the
resulting run time is shown as a horizontal line.

Cost Iteration and Policy Improvement are very

fast forα < 0.97, but start slowing down thereafter.
The number of iterations performed by Cost Iteration
varies from 273 to 3637. Policy Stability performs
4291 iterations before the policy stabilizes. Policy
Improvement carries out between 3 and 7 improve-
ment steps, each including the solution of a large
set of simultaneous linear equations; that solution is
obtained by iterations, withε = 0.000001. However,
the coefficient matrix becomes ill-conditioned when
α → 1. That explains the steep increase in the run
times of Policy Improvement whenα is very close to
1.

To evaluate the performance of any routing pol-
icy, a, we use a single average cost metric,Ca, which
is computed as follows. First, find the steady-state
distribution,πa(S), of the system state under policy
a. This is obtained by solving numerically the
balance equations,

πa(S) =
∑
S′

πa(S′)qa(S′, S) , (11)

(where the one-step transition probabilitiesqa(S′, S)
are given by (5)), together with the normalizing equa-
tion, ∑

S

πa(S) = 1 . (12)

The state space is truncated as before.

The average cost incurred under policya per
unit time,Ca, is then given by

Ca =
∑
S

πa(S)(c1j1 + c2j2) = c1La,1 + c2La,2 ,

(13)
whereLa,i is the average number of jobs in queuei
under policya.

Figure 3 compares the average costs of the op-
timal policies returned by the three solution methods,
for different values ofα. The parameter values are
the same as in figure 2.

The remarkable feature of the figure is the strong
dependence betweenα and the performance of the
optimal policy. The optimal policy forα = 1,
returned by the Policy Stability algorithm, performs
significantly better than the ones forα < 1 (the
policies returned by Cost Iteration and Policy Im-
provement are very similar). The differences in
performance betweenα = 1 and α < 1 become
small only whenα > 0.99.
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Figure 3. Effect of α on optimal policy

The remaining experiments compare the aver-
age cost of the optimal policy forα = 1, obtained
by the Policy Stability algorithm, with that of four
simple heuristics. These are:

1. Randomrouting. Send new jobs to queuei
with probability 0.5 (i = 1, 2), regardless of the
system state.

2. Selectiverouting. If server 1 is operative and
server 2 is not, send jobs to queue 1; if server
2 is operative and server 1 is not, send jobs
to queue 2; otherwise send jobs to queuei
with probability 0.5 (i = 1, 2). This is one
of a class of selective policies introduced in
[Thomas and Mitrani, 1995].

3. Shortest Queuerouting. Send jobs to queue 1 if
j1 < j2; otherwise to queue 2.

4. Lowest Expected Costrouting. If a job finds
stateS on arrival, evaluate the expected non-
discounted cost,d(S, i), it would incur if sent
to queuei:

d(S, i) = ci

[
(ji + 1)

1
µi

ξi + ηi

ηi
+

1− bi

ηi

]
.

Send the job to queue 1 ifd(S, 1) < d(S, 2),
otherwise to queue 2.

These are merely example heuristics, and any policy
can in fact be used, provided that, for a given stateS,
it decides which server to route incoming jobs to.

The expression ford(S, i) is explained by re-
marking that each service in queuei, of average
length 1/µi, is interruptedξi/µi times on the av-
erage, for an average interval1/ηi per interrupt; in
addition, if a job is sent to queuei when its server is
inoperative, there is an average delay of1/ηi.

Figure 4 illustrates the comparisons for a model
where µ1 = 5, µ2 = 2.5, η1 = η2 = 0.1,
ξ1 = 0.4, ξ2 = 0.2; server 1 is faster but less reliable
than server 2. The unit holding costs are equal:
c1 = c2 = 1. The arrival rateλ is varied; the system
is stable whenλ < 1.83.

We observe that the two dynamic heuristics –
Shortest Queue and Lowest Expected Cost – are
almost optimal. The static (Random), and semi-static
(Selective) policies are less efficient, particularly
as the offered load increases. In this model, the
Random policy becomes better than the Selective
one at heavier loads.

The next experiment compares the performance
of the optimal and heuristic policies when the
asymmetry between the servers increases. The
arrival rate is fixed atλ = 4, as is the service rate
of server 1,µ1 = 5, and the breakdown and repair
rates,ξ1 = ξ2 = 0.3, η1 = η2 = 0.1. What varies
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Figure 4. Performance of optimal and heuristic policies; different arrival rates

is the service rate at server 2,µ2. Both unit holding
costs are equal to 1. The results are shown in figure 5.

As expected, the average costs decrease when a
service rate increases. The Lowest Expected Cost
heuristic is again almost optimal, but now the
Shortest Queue policy is noticeably poorer, while the
Random and Selective policies are much worse.

Another way to increase the asymmetry between
the nodes is to increase the difference between the
average lengths of their operative and inoperative
periods. This is done in the experiment illustrated
in figure 6. The arrival and service parameters are
fixed,λ = 4, µ1 = 5, µ2 = 25, as are the breakdown
and repair rates of server 1,ξ1 = 0.3, η1 = 0.1. The
average operative and inoperative intervals of server
2 increase (ξ2 and η2 decrease), while their ratio
remains fixed,ξ2 = 3η2. Again,c1 = c2 = 1.

Note that, although the average service capacity
does not change when the operative and inoperative
intervals increase in a fixed ratio, the average queue
sizes, and hence costs, nevertheless increase. This
is a known phenomenon. In the present case, that
increase slows down because server 1 can absorb
some of the load during the long inoperative periods
of server 2.

Both the Lowest Expected Cost and the Short-
est Queue policies perform well. The former starts
off being considerably better, and ends up being

very slightly worse, than the latter. The Random and
Selective policies perform significantly worse over
the entire range.

It should be pointed out that Figures 4, 5 and 6
are not entirely fair to the Random and Selective
policies. Rather than sending jobs to the two queues
with equal probabilities, one could choose the routing
probabilities more intelligently (e.g., in proportion
to their service rates if operative, or in proportion
to their service and repair rates, if broken). Some
limited experimentation has demonstrated that such
choices do indeed improve the performance of the
non-dynamic policies. However, even with those
improvements, they are still significantly worse than
the dynamic policies.

5 Conclusions

The numerical computation of the optimal routing
policy can be a memory-consuming and time-
consuming task. It is probably impractical to design
dispatchers that either perform the optimization on-
line, or use table look-up with pre-computed optimal
policies. In practice, one would use some simple and
easily implementable heuristic. However, being able
to compute the optimal policy off-line is a useful
means of evaluating the quality of different heuris-
tics. The best candidates appear to be the Lowest
Expected Cost and the Shortest Queue policies. We
have shown that the first of these is nearly optimal
over a wide range of parameter values. That policy
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Figure 5. Performance comparison: changing service rate at server 2

is easily implementable, but requires knowledge of
all parameters. The latter would have to be estimated
by monitoring the system and collecting statistics
about traffic, service times, operative and inoperative
periods. On the other hand, the Shortest Queue
policy tends to have a worse performance, but needs
to know only the current queue sizes, not the values
of parameters.

The obvious next stage in the investigation is to
extend the methodology and results described here to
systems with arbitrary number of queues. That will
be the aim of future work.
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