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Abstract: This paper deals with the usage of an alternative tool for symbolic regression — analytic programming
which is able to solve various problems from the symbolic domain as well as genetic programming and
gramatical evolution. The main tasks of analytic programming in this paper, is setting an optimal trajectory for a
robot (artificial ant on Santa Fe trail). In this contribution main principles of analytic programming are described
and explained. In the second part of the article is in detail described how analytic programming was used for
setting an optimal trajectory for an artificial ant according the user requirements. An ability to create so called
programs, as well as genetic programming or grammatical evolution do, is shown in that part. In this
contribution three evolutionary algorithms were used — Self Organizing Migrating Algorithm, Differential
Evolution and Simulated Annealing. The total number of simulations was 150 and results show that the first two
used algorithms were more successful than not so robust Simulated Annealing.
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1. INTRODUCTION

The term “symbolic regression” represents a process
during which measured data is fitted and a suitable
mathematical formula is obtained in an analytical
way. This process is well known for
mathematicians. It is used when a mathematical
model of unknown data is needed. For long time
symbolic regression was a domain of humans but in
few last decades computers have gone to foreground
of interest in this field. Firstly, the idea of symbolic
regression done by means of computer has been
proposed in Genetic Programming (GP) by John
Koza [Koza 1998], [Koza 1999], [www.genetic-
programming.org]. The other two approaches are
Grammatical Evolution (GE) developed by Conor
Ryan [O’Neill, Ryan 2003], [O’Sullivan, Ryan
2002], [www.grammatical-evolution.org] and here
described Analytic Programming (AP) designed in
[Zelinka 2002], [Zelinka, Oplatkova 2003],
[Zelinka, Oplatkova, Nolle 2004], [Zelinka,
Oplatkova, Nolle 2005].

Genetic programming was the first tool for symbolic
synthesis of so called programs done by means of
computer instead of humans. The main idea comes
from genetic algorithms (GA) [Davis 1996] which
John Koza uses in his GP. The ability to solve very
difficult problems was proved many times, and
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hence, GP today can be applied, e.g. to synthesize
highly sophisticated electronic circuits, robot
trajectory, biochemistry problems, etc. [Koza 1999].

The other tool is GE which was developed in last
decade of 20th century by Conor Ryan. Gramatical
evolution has one advantage compared to GP and
this is ability to use arbitrary programming language
not only LISP as is in the case of the cannonical
version of GP. In contrast to other evolutionary
algorithms, GE was used with a few search
strategies with a binary representation of the
populations [O’Sullivan, Ryan 2002], as well as
with other algorithms like [O'Neill M., Brabazon A.
2006], [O'Neill, Leahy, Brabazon, 2006]. Other
interesting investigations using symbolic regression
were carried out by Johnson [Johnson 2003]
working on Artificial Immune Systems and
Probabilistic Incremental Program Evolution (PIPE)
[Salustowicz,  Schmidhuber, 1997] generates
functional programs from an adaptive probability
distribution over all possible programs. To
Grammatical Evolution foreruns GADS which
solves the approach to grammar [Paterson, 2003],
[Paterson, Livesey, 1996]. Other example is
artificial immune system programming which was
evolved for symbolic regression from an
evolutionary algorithm called artificial immune
systems [Johnson, 2003]. Approaches which differ
in representation and grammar are described in gene
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expression  programming [Ferreira, 2006],
multiexpression programming [Oltean, Grosan,
2003], meta-modelling by symbolic regression and
pareto Simulated Annealing [Stinstra, Rennen,
Teeuwen, 2006]. To the group of hybrid approaches,
belongs mainly numerical methods connected with
evolutionary systems, e.g. [Davidson, Savic,
Walters, 2003].

This contribution demonstrates use of a method
which is independent on computer platform,
programming language and can use any evolutionary
algorithm (as demonstrated by [Zelinka 2002],
[Zelinka, Oplatkova 2003], [Zelinka, Oplatkova,
Nolle 2004], [Zelinka, Oplatkova, Nolle 2005]) to
find an optimal solution of required task.

2. ANALYTIC PROGRAMMING

2.1.  Description

Basic principles of the AP were developed in the
2001. Until that time mainly GP and GE existed. GP
uses genetic algorithms while AP can be used with
any evolutionary algorithm, independently on
individual representation. To avoid any confusion
based on the use of names according to the used
algorithm, name - Analytic Programming was
chosen, because AP stands for synthesis of
analytical solution by means of evolutionary
algorithms [Zelinka 2002], [Zelinka, Oplatkova
2003], [Zelinka, Oplatkova, Nolle 2004], [Zelinka,
Oplatkova, Nolle 2005].

AP was inspired, in general, by numerical methods
in Hilbert spaces and by GP. Principles of AP
[Zelinka, Oplatkova, Nolle 2005] are somewhere
between these two philosophies. From GP an idea of
evolutionary creation of symbolic solutions is taken
into AP while from Hilbert spaces an idea of
synthesis of more complicated functions from
elementary functions is adopted into AP. Analytic
programming is based as well as GP on the set of
functions, operators and so-called terminals, which
are usually constants or independent variables like
for example:

« functions: sin, tan, And, Or ...
* operators: +,-, ¥/, dt,...
e terminals: 2.73, 3.14, t,...

All these “mathematical” objects create a set which
AP tries to synthesize the appropriate solution from.
The set of mathematical objects are functions,
operators and so-called terminals (usually constants
or independent variables). All these objects are
mixed together as is shown in Fig. 1 and consists of
functions with different number of arguments. The
set is called for article purposes “general functional
set” — GFS because the content of this set is very
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variable. The structure of GFS is furcated i.e. it is
created by subsets of functions according to the
number of their arguments. The content of GFS is
dependent only on a user. Various functions and
terminals can be mixed together. For example GFS,;
is a set of all functions, operators and terminals,
GFS;q, 18 a subset containing functions with only
three arguments, GFSy,,, represents only terminals,
etc.

GFS,; = {LerchPhi, BetaRegularized, +, -, /, *,
cos, tan, sin, logl" , x, ¢, 7}

GFSpars = {+, -, /, *, cos, tan, sin, logI" , x, ¢, w}
GFS, = {cos, tan, sin, logl" , x, ¢, w}
GFSpare = {x, 1, 7t}

Fig. 1: General Function Set — GFS

This furcated structure is necessary the main
principle of AP to be able to work without any
difficulties. The core of AP is based on discrete set
handling, proposed in [Zelinka 2004a], [Lampinen,
Zelinka 1999], see Fig. 2. Discrete set handling
(DSH) shows itself as universal interface between
EA and symbolically solved problem. That is why
AP can be used almost by any evolutionary
algorithm.

Briefly said, DSH works with integer indexes which
represent numerical or non-numerical expressions
(operators, functions,...) in a discrete set. This index
then serves like a pointer into a discrete set. Based
on that, appropriate objects are chosen for cost
function evaluation [Lampinen, Zelinka 1999].
During an evolutionary process only indexes are
used for all evolutionary operations. Objects from
the discrete set are used (by means of integer index)
only in cost function, where is according to integer
index a symbolic structure is synthesized and
consequently evaluated.

Discrete set of parameters

{AND, OR, XOR.....}
{1.1234, - 5.12, 9, 332.11,..... }

YES
Individual={1, 2, 3,.....}

Integer index
- alternative
parameter

CostValue=CostFunction(x1, x2, x3, x4)
NO r

Fig. 2: Discrete set handling

2.2.  Mapping method in AP

The nested structure presence in GFS is vitally
important for AP. It is used to avoid synthesis of
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pathological programs, i.e. programs containing
functions without arguments, etc. Performance of
AP is, of course, improved if functions of GFS are
expertly chosen based on experiencies with the
problem.

The important part of the AP is a sequence of
mathematical operations which are used for program
synthesis. These operations are used to transform an
individual of a population into a suitable program.
Mathematically said, it is mapping from an
individual domain into a program domain. This
mapping consists of two main parts. The first part is
called discrete set handling (DSH) and the second
one are security procedures which do not allow to
synthesize pathological programs.

Discrete set handling proposed in [Zelinka 2004a],
[Lampinen, Zelinka 1999] is used for creating
integer indeces which are used as values for the
evolutionary process. The method of DSH, when
used, allows to handle arbitrary objects including
nonnumerical objects like linguistic terms {hot,
cold, dark,...}, logic terms (True, False) or other user
defined functions. In the AP, DSH is used to map an
individual into GFS and together with security
procedures (SP) creates above mentioned mapping
which transforms arbitrary individual into a
program. Individuals in the population consist of
integer parameters, i.e. an individual is an integer
index pointing into GFS.

Analytic programming is basically a series of
function mapping. In Fig. 3 an artificial example is
demonstrated how a final function is created from an
integer individual.

[ Y A Y
GFS, ={+. -/, d/dt, Sin, C}os, Tan,ft, C1, Mod,...}
Mod(?)

GFSy,q ={1,2,C1, n, 1, C2}

Resulting Function by AP = Sin(Tan(t)) + Cos(t)
Fig. 3: Main principles of AP

Number 1 in the individual first position means that
the operator “+” from GFS, is used. Because the
operator “+” must have at least two arguments next
two index pointers 6 (sin from GFS,;) and 7 (cos
from GFS,;) are dedicated to this operator as its
arguments. Both functions, sin and cos, are one-
argument functions so the next unused pointers 8
(Tan from GFS,) and 9 (t from GFS,) are
dedicated to sin and cos function. Because variable t
is used as an argument of cos, this part of resulting
function is closed (t is zero-argument) in its AP
development. One-argument function tan remains
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and because there is one unused pointer 11 tan
should be mapped on “Mod (modulo)” which is on
11™ position in GFS,;. But Modulo needs other
arguments and individual has no other indexes.
Therefore subroutines are used which are described
better in next paragraph and instead of modulo is
used variable “t” from GFSg,g.

To avoid synthesis of pathological functions a few
security “tricks” is used in AP. The first one is that
GFS consists of subsets containing functions with
the same number of arguments. Existence of this
furcated structure is used in the special security
subroutine which is measuring how far the end of
individual is and according to these objects from
different subsets are selected to avoid pathological
function synthesis. Preciselly if more arguments are
desired than possible (the end of the individual is
near) function will be replaced by another function
with the same index pointer from subset with lower
number of arguments. For example, it may happen
that the last argument for one argument function will
not be a terminal (zero-argument function). If
pointer is bigger than length of subset, i.e. pointer is
5 and is used GFS,, then element is selected
according to element = pointer value mod
number_of elements_in_GFS). In this example case
selected element would be variable ¢ (see GFSy in
Fig. 1).

GFS need not to be constructed only from clear
mathematical functions as is demonstrated but also
other user-defined functions such as logical
functions, functions which represent elements of
electrical circuits or robot movement commands can
be used.

2.3. Crossover, Mutations and Other
Evolutionary Operations

During evolution of a population a different
operators are used, such as crossover and mutation.
In comparison with GP or GE evolutionary
operators like mutation, crossover, tournament,
selection are fully in the competence of used
evolutionary algorithm. Analytic programming does
not contain them in any point of view of its internal
structure. Analytic programming is created like a
superstructure of EAs for symbolic regression
independent on their algorithmic structure.
Operations used in evolutionary algorithms are not
influenced by AP and vice versa. For example if
Differential Evolution (DE) is used for symbolic
regression in AP then all evolutionary operations
are done according to the DE rules.
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24. Versions of AP

Today, AP exists in three versions. In all three
versions the same sets of functions, terminals, etc. as
Koza use in GP Koza [Koza 1998], [Koza 1999],
[www.genetic-programming.org] are necessary for
the program synthesis. The second version (APeta,
lets call the first version APy,c) is modified in the
sense of constant estimation. For example, when
Koza uses in so called sextic problem [Koza 1999]
randomly generated constants, AP uses only one,
called “K”, which is inserted into the formula at
various places by evolutionary processing. The
function can look like as in (D).

x-K (1)

K
T

When the program is synthesized, then all “K” are
indexed so that K;, K,, ..., K,, are obtained in
formula (2), and then all K, are estimated by the
second evolutionary algorithm and result is in (3).

x-K,
s ()
x—-1.289
g2 (3)

Because EA “works under” EA (i.e. EApaser®™
programP K indexing P> EAg.. P> estimation of
K.,), this version is called AP with metaevolution -
AP o As this version was quite time consuming,
another modification of APy, was done extending
the second version by estimation of K. It is done by
suitable methods of nonlinear fitting (AP,). This
method has shown the most promising performance
when unknown constants are present.

2.5.  Security procedures

Security procedures (SP) are used in the AP to avoid
various critical situations as well as in GP. In the
case of AP security procedures were not developed
for AP purposes after all, but they are mostly
integrated part of AP. However sometimes they have
to be defined as a part of cost function, based on
kind of situation (for example situation 2, 3 and 4,
see below). Critical situations are like:

1. pathological function (without arguments, self-
looped...)

2. functions with imaginary or real part (if not
expected))

3. infinity in functions (dividing by O, ...)

4. ,frozen* functions (an extremely long time to get
a cost value - hrs...)

S5.etc...
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Simply as a SP can be regarded here mapping from
an integer individual to the program where is
checked how far the end of the individual is and
based on this information a sequence of mapping is
redirected into a subset with lower number of
arguments. This satisfies that no pathological
function will be generated. Other activities of SP are
integrated part of the cost function to satisfy items
2-4, etc.

2.6.  Similarities and Differences

Because AP was partly inspired by GP, then
between AP, GP and GE are some differences as
well as some logical similarities. A few of the most
important ones are:

Similarity

*  Synthesized programs: AP as well as GP
and GE is able to do symbolic regression
in a general point of view. It means that
output of AP is according to all important
simulations [Zelinka 2002], [Zelinka,
Oplatkova 2003], [Zelinka, Oplatkova,
Nolle 2004], [Zelinka, Oplatkova, Nolle
2005] similar to programs from GP and GE
(see www.fai.utb.cz/people/zelinka/ap).

* Functional set: APy, operates in principle
on the same set of terminals and functions
as GP or GE.

Differences

*  APnea Oor AP,r use universal constant K
(difference) which is indexed after program
synthesis.

¢ Individual coding: coding of an individual
is different. Analytic programming uses an
integer index  instead of  direct
representation as in canonical GP.
Grammatical evolution wuses binary
representation of an individual, which is
consequently converted into integers for
mapping into programs by means of BNF
[O’Neill, Ryan 2003].

¢ Individual mapping: AP uses discrete set
handling, [Zelinka, Oplatkova, Nolle 2005]
while GP in its fundamental form uses
direct representation in Lisp [Koza 1998]
and GE uses grammar - Backus-Naur form
(BNF) [O’Neill, Ryan 2003].

* Constant handling: GP uses a randomly
generated subset of numbers — constants,
GE utilizes user determined constants and
AP uses only one constant K for AP, and
AP, which is estimated by other EA or by
nonlinear fitting.

*  Security procedures: to guarantee synthesis
of non-pathological functions, procedures
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are used in AP which redirect the flow of
mapping into subsets of a whole set of
functions and terminals according to the
distance of the end of the individual. If a
pathological function is synthesized in GP,
then synthesis is repeated. In the case of
GE, when the end of an individual is
reached, then mapping continues from the
individual beginning, which is not the case
of AP. It is designed so that a non-
pathological program is syntesized before
the end of the individual is reached
(maximally when the end is reached).

2.7. Selected Solved Problems

During AP development and research simulations, a
lot of various kind of programs has been
synthesized. In (3) a mathematical formula is shown
to demonstrate complexity of synthesized formulas,
which were randomly generated amongst 1000
formulas to check if the final structure is free of
pathologies — i.e. if all functions has the right
number of arguments, etc. In this case no attention
was paid on mathematical reasonability of the
following test programs based on clear mathematical
functions. In the previous text, a different approach
to the symbolic regression called analytic
programming was described. Based on its results
and structure, it can be stated that AP seems to be a
universal candidate for symbolic regression by
means of different search strategies. Problems on
which AP was utilized were selected from test and
theory problems domain as well as from real life
problems. The selected issues are following:

* Random synthesis of function from GFS,
1000 times repeated. The aim of this
simulation was to check if pathological
function can be generated by AP. In this
simulation randomly generated individuals
were created and consequently transformed
into programs and checked for their internal
structure. No pathological program was
identified [Zelinka 2002].

* sin(t) approximation was repeated 100
times. Here AP was used to synthesize the
program function sin(x) fitting [Zelinka
2002].

o ||cos(t)| + sin(t)| approximation was

repeated 100 times, the same like in the
previous example. Main aim was again
fitting of dataset generated by a given
formula [Zelinka 2002].

* Solving of ordinary differential equations
(ODE): u”’(t) = cos(t), u(0) = 1, u(n) = -1,
u’(0) = 0, v (r) = 0, was repeated 100
times, in that case AP was looking for
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suitable function, which would solve this
case of ODE [Zelinka 2002].

¢ Solving of ODE: (4 + xju”’(x))”’ +
600u(x) = 5000(x-x2), u(0)=0, u(1)=0,
u”’(0)=0, u”’(1)=0, was repeated 5 times
(due to longer time of simulation in the
Mathematica® environment). Again as in
the previous case, AP was used to
synthesize a suitable function — solution of
this kind of ODE. This ODE was used from
and represents a civil engineering problem
in reality [Zelinka 2002].

* Boolean even and symmetry problems
according to the [Koza 1999] for
comparative reasons [Zelinka, Oplatkova
2003], [Zelinka, Oplatkova, Nolle 2004].

¢ Sextic and Quintic problems [Zelinka,
Oplatkova 2003].

e Simple neural network synthesis by means
of AP — a simple few layered NN synthesis

was tested by AP [Zelinka, Varacha,
Oplatkova, 2006]
* Optimal robot trajectory estimation
[Oplatkova 2005], [Oplatkova, Zelinka
2006].
Such elementary objects are wusually simple
mathematical operators (+, -, *, ...), simple

functions (sin, cos, And, Nor, ...), user-defined
functions (simple commands for robots — MoveLeft,
TurnRight, ...), etc. Output of symbolic regression is
a more complex “object” (formula, function,
command,...), solving a given problem like data
fitting of so called Sextic and Quintic problem
described by Eq. (4), [Koza 1999], [Zelinka,
Oplatkova 2003], randomly synthesized function Eq.
(5) [Zelinka, Oplatkova 2003], Boolean problems of
parity and symmetry solution (basically logical
circuits synthesis) Eq. (6) [Koza 1999], [Zelinka,
Oplatkova, Nolle 2005] or synthesis of quite
complex robot control command Eq. (7) [Koza
1998], [Oplatkova 2005]. Equations (4) - (7)
mentioned here are just only a few samples
numerous repeated experiments done by AP and are
used to demonstrate how complex structures can be
produced by symbolic regression in general sense
for different problems.

x’K,
x K1+K4EK5-|;Z(6) #(-1+ K, +2x(-x-K;))  (4)
sec™ (1.28) B
Wﬁ(log(r)] log™* (1'28)(sinh(sec(cos(l)))) (5)
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Nor[(Nand[Nand[B || B, B && A], B]) && C

&& A && B, Nor[(!IC && B && A || 'A

&& C&&B || IC && 'B && 'A) && (!C

&& B&& A| 1A&& C&& B IC&& B

&& A) || A&& (IC&&B && A A && (6)
C&&B| IC && B && !A), (C| !C

&& B&& A| 1A&& C&& B IC && B

&& 'A) && A]]

Prog2[ Prog3[ Move, Right,

IfFoodAhead[ Left, Right]],

IfFoodAhead[ IfFoodAhead[ Left,

Right], Prog2[ IfFoodAhead[

IfFoodAhead[ IfFoodAhead[ Left,

Right], Right], Right], IfFoodAhead[ (7)
Prog2[ Move, Move], Right]]]]

Remaining text in this article is investigation on
evolutionary synthesis of robot commands, which is
well known in genetic programming like Santa Fe
trail of artificial ant.

3. PROBLEM DESIGN

3.1.  Santa Fe Description

The Santa Fe trail, demonstrated in Fig. 4, was
chosen from [Koza 1999] to make a comparative
study with the same problem which was solved by
Koza in Genetic Programming.

10

11
1
iy

Fig. 4: Santa Fe trail

The aim of the task is that an artificial ant should go
through defined trail and eat all food what is there.

The SantaFe trail is defined as a 32 x 31 fields
where food is set out. In Fig. 4 a black field is food
for the ant. The grey one is basically the same as a
white field but for clearness was used the grey
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colour. The grey fields represent obstacles (fields
without food on the road) for the ant. If there would
not be these holes the ant could go directly through
the way. It would be enough to go and see before ant
if there is food. If yes ant would go straight and eat
the bait. If not it would turn around and see where is
food and the cycle would repeat till the ant would
eat the last bait.

In the real world robots have obstacles in their
moving. Therefore also in this case such approach
was chosen. The first problem which ant has to
overcome is the simple hole (position {8, 27} in
[Koza 1999]). Second one is two holes in the line
(positions {13,16} and {13,17}), or three holes
({17,15}, {17,16}, {17,17}). Next problem is holes
in the corners — one (position {13,8}, two
({1,8},{2,8}) and three holes ({17,15}, {17,16},
{17,17}).

3.2.  Set of functions

The set of functions used for movements of the ant
is following. As a set of variables GFS,, i. e. in the
case of this article functions, which provide moving
of an ant, without any argument which could be add
during the process of evolution.
The set consist of

*  GFS, = {Left, Right, Move},
where
GFSy — a set of variables and terminals, zero
argumented functions GFSpq,
Left — function for turning around in the
anticlockwise direction
Right — function for turning around in the clockwise
direction
Move — function for moving straight and if a bait is
in the field where the ant is moved, it is eaten.

This set of functions is not enough to make
successfully a desired task. More functions are
necessary. Then a GFS, and GFS; were set up.

* GFS; = {IfFoodAhead, Prog2}
¢  GFS; = {Prog3}

Where the number in GFS means the arity of the
functions inside, i.e. number of arguments which are
needed to be evaluated correctly. Arguments are
added to those functions during evolution process
see above — Description of AP.

IfFoodAhead is a decision function — the ant
controls the field in front of it and if there is food,
the function in the field for truth argument is
executed; otherwise function in false position is
performed.

Prog2 and Prog3 are the same function in the
principle. They do 2 or 3 functions in the same time.
These two functions were originally defined also in
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Koza’s approach but in AP it is necessary because of
structure of generating the program.

3.3.  Fitness function

The aim of the ant is to eat all food on the way.
There are 89 baits. This is so called raw fitness. And
the value of cost function (8) is calculated as a
difference between raw fitness and a number of baits
eaten by an ant [Koza 1999] which went through the
grid according to just generated way.

CV = 89— Number _of _Food  (8)

Number of Food - number of eaten baits by an ant
according to synthesized way

The aim is to find such formula whose cost value is
equal zero. To obtain an appropriate solution two
constraints should be set up into a cost function. One
is a limitation concerned to number of steps. It is not
desired ant to go field by field in the grid. A
requirement to the fastest way and the most effective
is desired. Then a limit of steps was equal to 600.
According to original assignment 400 steps should
be sufficient. But as [Marik et al. 2004] says Koza’s
optimal solution was as in (9). But as simple
solution showed 545 steps are necessary for an ant
to eat all food in the Santa Fe trail.

IfFoodAhead[Move, Prog3[Left,
Prog2[IfFoodAhead[Move, Right], 9)
Prog2[Right, Prog2[Left, Right]]],
Prog2[IfFoodAhead[Move, Left], Move]]]

Functionality of the equation (9) can be described by
following. If bait is in front of the ant it moves on
the field and eats the food. If there is nothing it does
following 3 commands. If food is in front of the ant
it moves and eats the food, if not it turns twice right.
Next Prog2(Left, Right) is not necessary there, this
is the reason why all program takes 545 steps
instead of 404 in the case of no Prog2(Left,Right).
Then next control of food in front of ant is again, if
yes ant moves and eats the food. If not it turns left to
the original direction as it was at the beginning of
the program. If the cycle is somewhere interrupt, e.g.
in the case of truth in the first function IfFoodAhead,
the cycle is repeated still from the beginning until all
food is not eaten or constrained steps are not
reached.

The second constraint could be concerned to the
length of the list of commands for an ant. The more
longer list could cause the more steps to reach all
food is eaten. In this preliminary study this
constraint was not set up. But in further studies a
penalization concerned to this constraint will be
surely used.
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4. USED EVOLUTIONARY ALGORITHMS

In this paper SelfOrganizing Migrating Algorithm
(SOMA), Differential Evolution (DE) and Simulated
Annealing (SA) were used as an evolutionary
algorithm. For detailed information see — [Zelinka
2004a], [Price, Storn, Lampinen 2005], [Kirkpatrick,
Gelatt, Vecchi 1983].

4.1.  Differential Evolution (DE)

Differential Evolution is a population-based
optimization method that works on real-number
coded individuals [Price, Storn, Lampinen 2005].

For each individual %iG in the current generation G,

!
DE generates a new trial individual Yig by adding
the weighted difference between two randomly

individuals *r1Gand *r2Gto  a  third

—

selected

randomly selected individual X136, The resulting
=

individual *iGis crossed-over with the original

individual *iG. The fitness of the res_?lting
individual, referred to as perturbated vector ui’G“,
is then coglpared with the fitness of *iG. If_}the
fitness of YiG+ is greater than the fitnEss of xi,G,
YiG is replaced with_}ui,GH, otherwise G remains
in the population as Xiga,

Differential Evolution is robust, fast, and effective
with global optimization ability. It does not require
that the objective function is differentiable , and it

works with noisy, epistatic and time-dependent
objective functions.

4.2.  Self-Organizing
(SOMA)

Migrating  Algorithm

SOMA is a stochastic optimization algorithm that is
modelled on the social behaviour of cooperating
individuals [Zelinka 2004a] It was chosen because it
has been proven that the algorithm has the ability to
converge towards the global optimum [Zelinka
2004a]. SOMA works on a population of candidate
solutions in loops called migration loops. The
population is initialized randomly distributed over
the search space at the beginning of the search. In
each loop, the population is evaluated and the
solution with the highest fitness becomes the leader
L. Apart from the leader, in one migration loop, all
individuals will traverse the input space in the
direction of the leader. Mutation, the random
perturbation of individuals, is an important operation
for evolutionary strategies (ES). It ensures the
diversity amongst the individuals and it also
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provides the means to restore lost information in a
population. Mutation is different in SOMA
compared with other ES strategies. SOMA uses a
parameter called PRT to achieve perturbation. This
parameter has the same effect for SOMA as
mutation has for GA.

The novelty of this approach is that the PRT Vector
is created before an individual starts its journey over
the search space. The PRT Vector defines the final
movement of an active individual in search space.

The randomly generated binary perturbation vector
controls the allowed dimensions for an individual. If
an element of the perturbation vector is set to zero,
then the individual is not allowed to change its
position in the corresponding dimension.

An individual will travel a certain distance (called
the PathLength) towards the leader in n steps of
defined length. If the PathLength is chosen to be
greater than one, then the individual will overshoot
the leader. This path is perturbed randomly.

4.3.  Simulated Annealing (SA)

Simulated Annealing is one of older algorithms
compared to SOMA and DE. It was introduced by
Kirkpatrick et al. for the first time [Kirkpatrick,
Gelatt, Vecchi 1983]. An inspiration for developing
this algorithm was annealing of metal. In the process
metal is heated up to temperature near the melting
point and then it is cooled very slowly. The purpose
is to eliminate unstable particles. In other words,
particles are moved towards an optimum energy
state. Metal is then in more uniform crystalline
structure.

This approach was used in the case of simulated
annealing including terms. It start off from a
randomly selected point. Then a certain (depends on
user) number of points is generated in the
neighbourhood. The point with the best cost value is
selected to be the middle of new neighbourhood
(start point for a new loop). But it is possible to
accept also worse value of cost function. The
acceptance is based on a probability which decreases
with number of iterations. In the case that the best
cost value is in the start point this one is chosen for
the next loop.

5. EXPERIMENTAL RESULTS

The main idea is to show that SOMA, DE and SA
are able to solve such problems of symbolic
regression — setting a trajectory - under Analytic
Programming.

50 simulations were carried out for each algorithm,
ie. 150 simulations in total. SOMA and DE have
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almost all simulations with positive results; only one
case in both algorithms did not reach the extreme.
SA was not so successful, only 14 positive results.
To show that AP is able to work with arbitrary
evolutionary algorithms we suppose to carry
simulations out with Genetic Algorithms (GA) and
other algorithms and also parallel computing is
intended in this field. Data from all simulations were
processed and vizualized in [Oplatkova 2005],
[Oplatkova, Zelinka 2006].

In simulations done for purposes of this article
following setting was used to run SOMA, DE and
SA according to Tab. 1 - Tab. 3.

Tab. 1: Setting of SOMA

Parameter Value
PathLength 3

Step 0.22
PRT 0.21
PopSize 200
Migrations 50
MinDiv -0.1
Individual Length | 50

Tab. 2: Setting of DE

Parameter Value
NP 200

F 0.8
CR 0.2
Generations 700
Individual Length | 50

Tab. 3: Setting of SA

Parameter Value

T 10 000
Tonin 0.000 01
a 0.986
MaxIter 1500
MaxlIterTemp 93
Individual Length | 50

Firstly, the results show values of cost function
evaluations.  This  parameter shows  good
performance of Analytic Programming. As you can
see in Tab. 4 the lowest number of cost function
evaluations equals to 2 697 for SA and 3396 for
SOMA. DE was also not so far with its 4030 cost
function evaluations.
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The Fig. 5 uses data from Tab. 4 and shows it in a
graphical way where the diamond means the average
value. As can be seen, SA had the lowest average
value. But this might be caused by only 14 cases
which were included in the chart while SOMA and
DE had 49 positive cases.

Tab. 4: Cost function evaluation for SOMA, DE and
SA

Cost Function Evaluation
SOMA DE SA
Minimum 3396 4030 2697
Maximum 134 114 136 011 98 241
Average 61966 66 620 50 142
S0MA DE sa
120000
§ n 100000
£ 2 so0000
2 4
® soo00f ¢
p o
3 S 40000
20000
ot \ :
S0Ma DE 32
&l goxrithm

Fig.  5: Graphical representation of minimal,
maximal and average values of cost function
evaluation for SOMA, DE and SA

Second indicator depicts histogram of successful hits
and the number of cost function evaluations for each
hit — Fig. 6 - Fig. 8. Negative results are not
included.
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Fig. 6: Histogram of SOMA algorithm
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Fig. 7: Histogram of DE algorithm
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Fig. 8: Histogram of SA algorithm

Another creation of histograms can be made from
the point of view of number of cases (axe y) which
appeared in some interval of cost function values
(axe x). This approach can be seen in Fig. 9 - Fig.
11.
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Fig. 9: Histogram of SOMA algorithm — number of
cases in specific intervals of cost function values
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The following picture depicts that the ant went
through all the fields (Fig. 12); the white “X” shows
fields which were attended by the ant. The notation
(10) contains set of rules for the ant how to go
successfully through the trail. In the notation (11)
the whole description of the route can be seen where
Ea, So, We, No means east, south, west and north
(which cardinal point the ant is turned into). The
numbers in brackets are positions on the grid.

Fig.

10: Histogram of DE algorithm — number of

cases in specific intervals of cost function values

Fig.

Number of simulations

[
[}

]
o

—
o

-
o

(4}

o

S 10 15 20 25 30 35
Cost Function

Talue

11: Histogram of SA algorithm — number of

cases in specific intervals of cost function values

Next point, which we were interested in, was a
number of commands for the ant and number of
steps required to eat all baits (Tab. 5, Tab. 6). In the
Tab. 6 you can see that DE found a route which is
overcome in the least number of steps. Sorted lists of
pairs — commands and steps — are seen for all 3
algorithms in Tab. 5. As it is shown, it can be stated
that the smallest number of commands does not have
to cause the smallest number of steps. And vice
versa, that small number of steps does not mean the
small set of commands.

Tab. 5: Number of commands

£5

20

15

10

:

SEEA

o

[l
-

Busamman

Fig.

1] 5 10 15 Z0o Z5 20

12: Santa Fe Trail overcome by ant found by

Number of leaves (commands)

SOMA DE SA
Minimum 11 11 15
Maximum 50 50 50
Average 32 32 26

Tab. 6: Number of steps

Number of steps

SOMA DE SA
Minimum 396 367 406
Maximum 606 604 605
Average 547 540 535

IJSSST, Vol. 9, No. 3, September 2008

DE

IfFoodAhead[ Move, IfFoodAhead|
Move, Prog2[ Prog?2[ Right,
IfFoodAhead[ Prog2[ IfFood Ahead[
IfFoodAhead[ Move, Move], Move],
Move], Prog3[ IfFoodAhead[ Move,
IfFoodAhead[ Prog3[ Right, Right, Prog2[
Left, Prog2[ IfFoodAhead[ Prog2[ Prog2[  (10)
Left, Move], Right], IfFoodAhead[ Move,
Left]], Prog2[ IfFoodAhead[ Move,
Move], Prog2[ IfFoodAhead[ Move,
Right], Right]]]1], Left]], Left,
IfFoodAhead[ Move, Right]]]], Move]]]

{{32, 1}, {32, 2}, {32, 3}, {32, 4}, {So},
{31, 4}, {30, 4}, {29, 4}, {28, 4}, {27,
4}, {We}, {So}, {Ea}, {27, 5}, {27, 6},
{27, 7}, {So}, { Ea}, {No}, {Ea}, {27,
8}, {27, 9}, {27, 10}, {27, 11}, {27,
12}, {27, 13}, {So}, {26, 13}, {25, 13},
{24, 13}, {23, 13}, {We}, {So},
{Ea}, {So}, {22, 13}, {21, 13}, {20,
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13}, {19, 13}, {18, 13}, {We}, {So},
{Ea}, {So}, {17, 13}, { We}, {So},
{Ea}, {So}, {16, 13}, {15, 13}, {14,
13}, {13, 13}, {12, 13}, {11, 13}, {10,
13}, {9, 13}, {We}, {So}, {Ea}, { So},
{8, 13}, {We}, {8, 12}, {8, 11}, {8,10},
8, 9}, 18, 8}, {Noj, {Wej, {Soj,
{Wej, {8, 7}, iNoj, {Wej, { Soj,
{Wej, {8, 6}, 8, 5}, 18, 4}, {Noj,
{Wej, {Soj, {Wej, {8, 3}, iNoj, {Wej,
iSoj, {Wej, {8, 2}, {Noj, {Wej, {Soj,
{7, 2, 16, 2}, 15, 2}, {4, 2}, {Wej,
{80}, {Eaj, {Soj, {3, 2}, {Wej, {Soj,
{ Eaj, {80}, 12, 2}, {Wej, {Soj}, {Eaj,
12, 3}, 12, 45, 12, 5}, {2, 6}, {Soj,
{Eaj, {Noj, {Eaj, {2, 7}, {So}, {Eaj,
iNoj, {Eaj, {2, 8}, {Soj, {Eaj, {Noj,
13, 8}, 14, 8}, {Eaj}, {Noj, {Wej, {Noj,
{ 5, 8}, {Ea}, {5, 9}, {5, 10}, {5,11},
{5, 12}, {5, 13}, {5, 14}, {5, 15}, {So},
{Ea}, {No}, {Ea}, { 5, 16}, {So}, {Ea},
{No}, {Ea}, {5,17}, {So}, {Ea}, {No},
{6, 17}, {7, 17}, {8, 17}, {Ea}, {No},
{We}, {No}, {9, 17}, {Ea}, {No},
{We}, {No}, {10, 17}, {11, 17}, {12,
17}, {13, 17}, {14, 17}, {Ea}, {No},
{We}, {No}, {1517}, {Ea}, {No},
{We}, {No}, {16,17}, {Ea}, {No},
{We}, {No}, {17,17}, {Ea}, {17, 18},
{17, 19}, {17, 20}, {So}, {Ea}, {No},
{Ea}, { 17, 21}, {So}, {Ea}, {No}, {18,
21}, {19, 21}, {Ea}, {No}, {We}, {No},
{20, 21}, {Ea}, {No}, {We}, {No}, {21,
21}, {22, 21}, {23, 21}, {24, 21}, {25,
21}, {Ea}, {No}, {We}, {No}, {26, 21},
{Ea}, {No}, {We}, {No}, {27,21},
{Ea}, {27, 22}, {27, 23}, {27, 24},
{So}, {Ea}, {No}, {Ea}, {27, 25}, {So},
{Ea}, {No}, {28, 25}, {29,25}, {Ea},
{No}, {We}, {No}, {30, 25}, {Ea},
{30, 26}, {30, 27}, {30, 28}, {So},
{Ea}, {No}, {Ea}, {30, 29}, {So}, {Ea},
{No}, {Ea}, {30, 30}, {So}, {29, 30},
(28,30}, {27, 30}, {26, 30}, {We},
{So}, {Ea}, {So}, {25, 30}, {We},
{So}, {Ea}, {So}, {24, 30}, {23, 30},
{We}, {So}, {Ea}, {So}, {22, 30},
{We}, { So}, {Ea}, {So}, {21, 30}, {20,
30}, {We}, {So}, {Ea}, {So}, {19,
30},{We}, {So}, {Ea}, {So}, {18, 30},
{We}, {18, 29}, {18, 28}, {18, 27},
{No}, {We}, {So}, {We}, {18, 26},
{No}, {We}, {So}, {We}, {18,25},
{No}, {We}, {So}, {We}, {I8,24},
{No}, {We}, {So}, {17, 24}, {16, 24},
{We}, {So}, {Ea}, {So}, {15, 24},
{We}, {So}, {Ea}, {So}, {14,24},
{We}, {So}, {Ea}, {14, 25}, {14, 26},
{So}, {Ea}, {No}, {Ea}, {14, 27},
{So}, {Ea}, { No}, {Ea}, {14, 28},
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(11)

30
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{So}, {13, 28}, {12, 28}, {11, 28},
{We}, {So}, {Ea}, {So}, {10, 28},
{We}, {10, 27}, {10, 26}, {10, 25},
{No}, {We}, {So}, {We}, {10, 24},
{No}, {We}, {So}, {9, 24}, {8,24}}

6. CONCLUSIONS

This contribution deals with an alternative algorithm
for symbolic regression. This study shows that this
algorithm is suitable not only for mathematical
regression but also for setting of optimal trajectory
for artificial ant which can be replaced by robots in
real world, in industry.

To compare with standard GP it can be stated on the
basic results above that AP can solve this kind of
problems in shorter times as cost function
evaluations are counted.

The aim of this study was not to show that AP is
better or worse than GP (or GE when compared) but
that AP is also a powerful tool for symbolic
regression with support of different evolutionary
algorithms.

The main object of the paper was to show that
symbolic regression done by AP is able to solve also
cases where linguistic terms as for example
commands for movement of artificial ant or robots
in real world are. Here simulations for 3 algorithms
— SOMA, DE and SA were carried out. As figures
showed SOMA and DE were more successful in
positive results than SA was. This proved that a
good performance of AP depends on a choice of
suitable robust and powerful evolutionary
algorithms.

During simulations carried in this problem were
reached following results:
* 50 simulations for each algorithm means 150
in total for all 3 algorithms.
* Positive results
- 49 from 50 simulations for SOMA
- 49 from 50 for DE
- and 14 from 50 for SA
which accomplished the required tasks thus Analytic
Programming is able to solve such kind of problems
in symbolic regression. This result also says that
Simulated Annealing is not so powerful tool as other
two evolutionary algorithms are. It is supposed that
the cost function is very complicated with quite a lot
of local optima and therefore the Simulated
Annealing was not so successful as SOMA or DE
were.
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¢ Solutions which fulfil conditions which were
laid down by John Koza [Koza 1998]
concerned to number of steps, were found (2
by SOMA and 3 by DE). It means 5 solutions
were successful under the 400 steps.
Moreover, 17 (SOMA) + 20 (DE) + 6 (SA),
in total 43 from 150 were successful under
the 545 steps which was introduced by John
Koza [Koza 1998], [Marik et al., 2004] as an
optimal one.

Future research is key activity in this field. The
following steps are to finished simulations with GA
and other evolutionary algorithms and to try some
other class of problems to show that Analytic
Programming is powerful tool as Genetic
Programming or Grammatical Evolution are.
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Tab. 7: Sorted numbers of steps and commands for all algorithms

SOMA DE SA
sorted by steps sorted by sorted by steps sorted by steps sorted by sorted by steps
commands commands
396 49 594 11 367 49 599 11 406 25 577 15
399 36 596 11 387 49 592 12 406 25 592 16
409 21 568 14 390 50 564 13 409 23 605 16
409 22 594 14 409 18 542 14 503 22 592 17
409 23 594 14 409 18 568 14 503 22 537 19
421 37 577 15 409 50 577 14 537 19 503 22
456 50 544 16 421 50 581 14 577 15 503 22
489 17 590 16 475 16 581 14 577 49 409 23
521 50 594 16 496 50 583 15 592 16 406 25
532 50 606 16 509 21 594 15 592 17 406 25
533 20 489 17 516 46 475 16 592 50 594 34
533 27 544 17 517 49 533 16 594 34 594 34
537 34 583 17 519 49 409 18 594 34 577 49
540 27 576 18 525 38 409 18 605 16 592 50
542 27 533 20 533 16 533 18
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544 16 550 20 533 18 568 18
544 17 409 21 533 20 584 19
548 30 589 21 533 32 604 19
548 50 409 22 541 49 533 20
550 20 409 23 542 14 550 20
551 43 559 24 550 20 509 21
551 50 584 24 551 50 581 22
559 24 583 26 557 31 596 23
562 50 533 27 562 29 562 29
568 14 540 27 564 13 557 31
572 34 542 27 568 14 533 32
574 27 574 27 568 18 525 38
576 18 548 30 572 50 599 42
577 15 537 34 573 49 516 46
581 49 572 34 577 14 581 47
581 50 399 36 581 14 367 49
583 17 421 37 581 14 387 49
583 26 551 43 581 22 517 49
584 24 603 47 581 47 519 49
589 21 396 49 583 15 541 49
590 16 581 49 584 19 573 49
592 50 596 49 588 50 589 49
594 11 604 49 589 49 591 49
594 14 606 49 591 49 595 49
594 14 456 50 592 12 597 49
594 16 521 50 594 15 601 49
594 50 532 50 595 49 390 50
596 11 548 50 595 50 409 50
596 49 551 50 596 23 421 50
601 50 562 50 597 49 496 50
603 47 581 50 599 11 551 50
604 49 592 50 599 42 572 50
606 16 594 50 601 49 588 50
606 49 601 50 604 19 595 50
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