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Abstract: This paper deals with the usage of an alternative tool for symbolic regression – analytic programming 
which is able to solve various problems from the symbolic domain as well as genetic programming and 
gramatical evolution. The main tasks of analytic programming in this paper, is setting an optimal trajectory for a 
robot (artificial ant on Santa Fe trail). In this contribution main principles of analytic programming are described 
and explained. In the second part of the article is in detail described how analytic programming was used for 
setting an optimal trajectory for an artificial ant according the user requirements. An ability to create so called 
programs, as well as genetic programming or grammatical evolution do, is shown in that part. In this 
contribution three evolutionary algorithms were used – Self Organizing Migrating Algorithm, Differential 
Evolution and Simulated Annealing. The total number of simulations was 150 and results show that the first two 
used algorithms were more successful than not so robust Simulated Annealing. 
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1. INTRODUCTION 
 
The term “symbolic regression” represents a process 
during which measured data is fitted and a suitable 
mathematical formula is obtained in an analytical 
way. This process is well known for 
mathematicians. It is used when a mathematical 
model of unknown data is needed. For long time 
symbolic regression was a domain of humans but in 
few last decades computers have gone to foreground 
of interest in this field. Firstly, the idea of symbolic 
regression done by means of computer has been 
proposed in Genetic Programming (GP) by John 
Koza [Koza 1998], [Koza 1999],  [www.genetic-
programming.org]. The other two approaches are 
Grammatical Evolution (GE) developed by Conor 
Ryan [O’Neill, Ryan 2003], [O’Sullivan, Ryan 
2002], [www.grammatical-evolution.org] and here 
described Analytic Programming (AP) designed in 
[Zelinka 2002], [Zelinka, Oplatkova 2003], 
[Zelinka, Oplatkova, Nolle 2004], [Zelinka, 
Oplatkova, Nolle 2005]. 
  
Genetic programming was the first tool for symbolic 
synthesis of so called programs done by means of 
computer instead of humans. The main idea comes 
from genetic algorithms (GA) [Davis 1996] which 
John Koza uses in his GP. The ability to solve very 
difficult problems was proved many times, and 

hence, GP today can be applied, e.g. to synthesize 
highly sophisticated electronic circuits, robot 
trajectory, biochemistry problems, etc. [Koza 1999]. 
 
The other tool is GE which was developed in last 
decade of 20th century by Conor Ryan. Gramatical 
evolution has one advantage compared to GP and 
this is ability to use arbitrary programming language 
not only LISP as is in the case of the cannonical 
version of GP. In contrast to other evolutionary 
algorithms, GE was used with a few search 
strategies with a binary representation of the 
populations [O’Sullivan, Ryan 2002], as well as 
with other algorithms like [O'Neill M., Brabazon A. 
2006], [O'Neill, Leahy, Brabazon, 2006]. Other 
interesting investigations using symbolic regression 
were carried out by Johnson [Johnson 2003] 
working on Artificial Immune Systems and 
Probabilistic Incremental Program Evolution (PIPE) 
[Salustowicz, Schmidhuber, 1997] generates 
functional programs from an adaptive probability 
distribution over all possible programs. To 
Grammatical Evolution foreruns GADS which 
solves the approach to grammar [Paterson, 2003], 
[Paterson, Livesey, 1996]. Other example is 
artificial immune system programming which was 
evolved for symbolic regression from an 
evolutionary algorithm called artificial immune 
systems [Johnson, 2003]. Approaches which differ 
in representation and grammar are described in gene 
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expression programming [Ferreira, 2006], 
multiexpression programming [Oltean, Grosan, 
2003], meta-modelling by symbolic regression and 
pareto Simulated Annealing [Stinstra, Rennen, 
Teeuwen, 2006]. To the group of hybrid approaches, 
belongs mainly numerical methods connected with 
evolutionary systems, e.g. [Davidson, Savic, 
Walters, 2003]. 
 
This contribution demonstrates use of a method 
which is independent on computer platform, 
programming language and can use any evolutionary 
algorithm (as demonstrated by [Zelinka 2002], 
[Zelinka, Oplatkova 2003], [Zelinka, Oplatkova, 
Nolle 2004], [Zelinka, Oplatkova, Nolle 2005]) to 
find an optimal solution of required task. 
 

2. ANALYTIC PROGRAMMING 

2.1. Description 
Basic principles of the AP were developed in the 
2001. Until that time mainly GP and GE existed. GP 
uses genetic algorithms while AP can be used with 
any evolutionary algorithm, independently on 
individual representation. To avoid any confusion 
based on the use of names according to the used 
algorithm, name - Analytic Programming was 
chosen, because AP stands for synthesis of 
analytical solution by means of evolutionary 
algorithms [Zelinka 2002], [Zelinka, Oplatkova 
2003], [Zelinka, Oplatkova, Nolle 2004], [Zelinka, 
Oplatkova, Nolle 2005]. 
 
AP was inspired, in general, by numerical methods 
in Hilbert spaces and by GP. Principles of AP 
[Zelinka, Oplatkova, Nolle 2005] are somewhere 
between these two philosophies. From GP an idea of 
evolutionary creation of symbolic solutions is taken 
into AP while from Hilbert spaces an idea of 
synthesis of more complicated functions from 
elementary functions is adopted into AP. Analytic 
programming is based as well as GP on the set of 
functions, operators and so-called terminals, which 
are usually constants or independent variables like 
for example:   
 
• functions: sin, tan, And, Or … 
• operators: +, -, *, /, dt,…  
• terminals: 2.73, 3.14, t,…  
 
All these “mathematical” objects create a set which 
AP tries to synthesize the appropriate solution from. 
The set of mathematical objects are functions, 
operators and so-called terminals (usually constants 
or independent variables). All these objects are 
mixed together as is shown in Fig.  1 and consists of 
functions with different number of arguments. The 
set is called for article purposes “general functional 
set” – GFS because the content of this set is very 

variable. The structure of GFS is furcated i.e. it is 
created by subsets of functions according to the 
number of their arguments. The content of GFS is 
dependent only on a user. Various functions and 
terminals can be mixed together. For example GFSall 
is a set of all functions, operators and terminals, 
GFS3arg is a subset containing functions with only 
three arguments, GFS0arg  represents only terminals, 
etc. 

 

 
 

 

 

Fig.  1: General Function Set – GFS 

This furcated structure is necessary the main 
principle of AP to be able to work without any 
difficulties. The core of AP is based on discrete set 
handling, proposed in [Zelinka 2004a], [Lampinen, 
Zelinka 1999], see Fig.  2. Discrete set handling 
(DSH) shows itself as universal interface between 
EA and symbolically solved problem.  That is why 
AP can be used almost by any evolutionary 
algorithm. 
 
Briefly said, DSH works with integer indexes which 
represent numerical or non-numerical expressions 
(operators, functions,…) in a discrete set. This index 
then serves like a pointer into a discrete set. Based 
on that, appropriate objects are chosen for cost 
function evaluation [Lampinen, Zelinka 1999]. 
During an evolutionary process only indexes are 
used for all evolutionary operations. Objects from 
the discrete set are used (by means of integer index) 
only in cost function, where is according to integer 
index a symbolic structure is synthesized and 
consequently evaluated. 
 

 

Fig.  2: Discrete set handling 

2.2. Mapping method in AP 
 
The nested structure presence in GFS is vitally 
important for AP. It is used to avoid synthesis of 

GFSall = {LerchPhi, BetaRegularized, +, -, /, *, 
cos, tan, sin, logΓ , x, t, π} 
 
GFS2arg = {+, -, /, *, cos, tan, sin, logΓ , x, t, π} 
GFS1arg = {cos, tan, sin, logΓ , x, t, π} 
GFS0arg = {x, t, π} 
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pathological programs, i.e. programs containing 
functions without arguments, etc. Performance of 
AP is, of course, improved if functions of GFS are 
expertly chosen based on experiencies with the 
problem.  
The important part of the AP is a sequence of 
mathematical operations which are used for program 
synthesis. These operations are used to transform an 
individual of a population into a suitable program. 
Mathematically said, it is mapping from an 
individual domain into a program domain. This 
mapping consists of  two main parts. The first part is 
called discrete set handling (DSH) and the second 
one are security procedures which do not allow to 
synthesize pathological programs.  
 
Discrete set handling proposed in [Zelinka 2004a], 
[Lampinen, Zelinka 1999] is used for creating 
integer indeces which are used as values for the 
evolutionary process. The method of DSH, when 
used, allows to handle arbitrary objects including 
nonnumerical objects like linguistic terms {hot, 
cold, dark,...}, logic terms (True, False) or other user 
defined functions. In the AP, DSH is used to map an 
individual into GFS and together with security 
procedures (SP) creates above mentioned mapping 
which transforms arbitrary individual into a 
program. Individuals in the population consist of 
integer parameters, i.e. an individual is an integer 
index pointing into GFS.  
 
Analytic programming is basically a series of 
function mapping. In Fig.  3 an artificial example  is 
demonstrated how a final function is created from an 
integer individual.  

Fig.  3: Main principles of AP 

Number 1 in the individual first position means that 
the operator “+” from GFSall is used. Because the 
operator “+” must have at least two arguments next 
two index pointers 6 (sin from GFSall) and 7 (cos 
from GFSall) are dedicated to this operator as its 
arguments. Both functions, sin and cos, are one-
argument functions so the next unused pointers 8 
(Tan from GFSall) and 9 (t from GFSall) are 
dedicated to  sin and cos function. Because variable t 
is used as an argument of cos, this part of resulting 
function is closed (t is zero-argument) in its AP 
development. One-argument function tan remains 

and because there is one unused pointer 11 tan 
should be mapped on “Mod (modulo)” which is on 
11th position in GFSall. But Modulo needs other 
arguments and individual has no other indexes. 
Therefore subroutines are used which are described 
better in next paragraph and instead of modulo is 
used variable “t” from GFS0arg. 
 
To avoid  synthesis of pathological functions a few 
security “tricks” is used in AP. The first one is that 
GFS consists of subsets containing functions with 
the same number of arguments. Existence of this 
furcated structure is used in the special security 
subroutine which is measuring how far the end of 
individual is and according to these objects from 
different subsets are selected to avoid pathological 
function synthesis. Preciselly if more arguments are 
desired than possible (the end of the individual is 
near) function will be replaced by another function 
with the same index pointer from subset with lower 
number of arguments. For example, it  may happen 
that the last argument for one argument function will 
not be a terminal (zero-argument function). If 
pointer is bigger than length of subset, i.e. pointer is 
5 and is used GFS0, then element is selected 
according to element = pointer_value mod 
number_of_elements_in_GFS0. In this example case 
selected element would be variable t (see GFS0 in 
Fig.  1).  
 
GFS need not to be constructed only from clear 
mathematical functions as is demonstrated but also 
other user-defined functions such as logical 
functions, functions which represent elements of 
electrical circuits or robot movement commands can 
be used. 
 

2.3. Crossover, Mutations and Other 
Evolutionary Operations 

 
During evolution of a population a different 
operators are used, such as crossover and mutation. 
In comparison with GP or GE evolutionary 
operators like mutation, crossover, tournament, 
selection are fully in the competence of used 
evolutionary algorithm. Analytic programming does 
not contain them in any point of view of its internal 
structure. Analytic programming is created like a 
superstructure of EAs for symbolic regression 
independent on their algorithmic structure. 
Operations used in evolutionary algorithms are not 
influenced by AP and vice versa. For example if 
Differential Evolution (DE) is used for symbolic 
regression in AP  then all evolutionary operations 
are done according to the DE rules. 
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2.4. Versions of AP 
 
Today, AP exists in three versions. In all three 
versions the same sets of functions, terminals, etc. as 
Koza use in GP Koza [Koza 1998], [Koza 1999],  
[www.genetic-programming.org] are necessary for 
the program synthesis. The second version (APmeta, 
lets call the first version APbasic) is modified in the 
sense of constant estimation. For example, when 
Koza uses in so called sextic problem [Koza 1999] 
randomly generated constants, AP uses only one, 
called “K”, which is inserted into the formula at 
various places by evolutionary processing. The 
function can look like as in  (1). 
 (1) 
 
 
When the program is synthesized, then all “K” are 
indexed so that K1, K2, …, Kn, are obtained in 
formula (2), and then all Kn are estimated by the 
second evolutionary algorithm and result is in (3). 
 
 
 (2) 
 
    
 
 
 (3) 
 
 
Because EA “works under” EA (i.e. EAmaster► 
program► K indexing ►EAslave ►estimation of 
Kn), this version is called AP with metaevolution - 
APmeta. As this version was quite time consuming, 
another modification of APmeta was done extending 
the second version by estimation of K. It is done by 
suitable methods of nonlinear fitting (APnf). This 
method has shown the most promising performance 
when unknown constants are present. 
 

2.5. Security procedures 
 
Security procedures (SP) are used in the AP to avoid 
various critical situations as well as in GP. In the 
case of AP security procedures were not developed 
for AP purposes after all, but they are mostly 
integrated part of AP. However sometimes they have 
to be defined as a part of cost function, based on 
kind of situation (for example situation 2, 3 and 4, 
see below). Critical situations are like:   
1. pathological function (without arguments, self-
looped...)  
2. functions with imaginary or real part (if not 
expected))  
3. infinity in functions (dividing by 0, ...)  
4. „frozen“ functions (an extremely long time to get 
a cost value - hrs...)  
5. etc...  

 
Simply as a SP can be regarded here mapping from 
an integer individual to the program where is 
checked how far the end of the individual is and 
based on this information a sequence of mapping is 
redirected into a subset with lower number of 
arguments. This satisfies that no pathological 
function will be generated. Other activities of SP are 
integrated part of the cost function to satisfy items  
2-4, etc. 
 

2.6. Similarities and Differences 
 
Because AP was partly inspired by GP, then 
between AP, GP and GE are some differences as 
well as some logical similarities. A few of the most 
important ones are:  
 

Similarity 
• Synthesized programs: AP as well as GP 

and GE is able to do symbolic  regression 
in a general point of view. It means that 
output of AP is according to all important 
simulations [Zelinka 2002], [Zelinka, 
Oplatkova 2003], [Zelinka, Oplatkova, 
Nolle 2004], [Zelinka, Oplatkova, Nolle 
2005] similar to programs from GP and GE 
(see www.fai.utb.cz/people/zelinka/ap).  

• Functional set: APbasic operates in principle 
on the same set of terminals and functions 
as GP or GE. 

•  
Differences 
• APmeta or APnf use universal constant K 

(difference) which is indexed after program 
synthesis. 

• Individual coding: coding of an individual 
is different. Analytic programming uses an 
integer index instead of direct 
representation as in canonical GP. 
Grammatical evolution uses binary 
representation of an individual, which is 
consequently converted into integers for 
mapping into programs by means of BNF 
[O’Neill, Ryan 2003]. 

• Individual mapping: AP uses discrete set 
handling, [Zelinka, Oplatkova, Nolle 2005] 
while GP in its fundamental form uses 
direct representation in Lisp [Koza 1998] 
and GE uses grammar - Backus-Naur form 
(BNF) [O’Neill, Ryan 2003]. 

• Constant handling: GP uses a  randomly 
generated subset of numbers – constants, 
GE utilizes user determined constants and 
AP uses only one constant K for APmeta and 
APnf, which is estimated by other EA or by 
nonlinear fitting.  

• Security procedures: to guarantee synthesis 
of non-pathological functions, procedures 

! 
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are used in AP which redirect the flow of 
mapping into subsets of a whole set of 
functions and terminals according to the 
distance of the end of the individual. If a 
pathological function is synthesized in GP, 
then synthesis is repeated. In the case of 
GE, when the end of an individual is 
reached, then mapping continues from the 
individual beginning, which is not the case 
of AP. It is designed so that a non-
pathological program is syntesized before 
the end of the individual is reached 
(maximally when the end is reached). 

 

2.7. Selected Solved Problems 
 
 
During AP development and research simulations, a 
lot of various kind of programs has been 
synthesized. In (3) a mathematical formula is shown 
to demonstrate complexity of synthesized formulas, 
which were randomly generated amongst 1000 
formulas to check if the final structure is free of 
pathologies – i.e. if all functions has the right 
number of arguments, etc. In this case no attention 
was paid on mathematical reasonability of the 
following test programs based on clear mathematical 
functions. In the previous text, a different approach 
to the symbolic regression called analytic 
programming was described. Based on its results 
and structure, it can be stated that AP seems to be a 
universal  candidate for symbolic regression by 
means of different search strategies. Problems on 
which AP was utilized were selected from test and 
theory problems domain as well as from real life 
problems. The selected issues are following: 
 

• Random synthesis of function from GFS, 
1000 times repeated. The aim of this 
simulation was to check if pathological 
function can be generated by AP. In this 
simulation randomly generated individuals 
were created and consequently transformed 
into programs and checked for their internal 
structure. No pathological program was 
identified [Zelinka 2002].  

• sin(t) approximation was repeated 100 
times. Here AP was used to synthesize the 
program function sin(x) fitting [Zelinka 
2002].  

• 

! 

cos(t) + sin(t)  approximation was 
repeated 100 times, the same like in the 
previous example. Main aim was again 
fitting of dataset generated by a given 
formula [Zelinka 2002]. 

• Solving of ordinary differential equations 
(ODE): u’’(t) = cos(t), u(0) = 1, u(π) = -1, 
u’(0) = 0, u’(π) = 0, was repeated 100 
times, in that case AP was looking for 

suitable function, which would solve this 
case of ODE [Zelinka 2002]. 

• Solving of ODE: ((4 + x)u’’(x))’’ + 
600u(x) = 5000(x-x2), u(0)=0, u(1)=0, 
u’’(0)=0, u’’(1)=0, was repeated 5 times 
(due to longer time of simulation in the 
Mathematica® environment). Again as in 
the previous case, AP was used to 
synthesize a suitable function – solution of 
this kind of ODE. This ODE was used from 
and represents a civil engineering problem 
in reality [Zelinka 2002]. 

• Boolean even and symmetry problems 
according to the [Koza 1999] for 
comparative  reasons [Zelinka, Oplatkova 
2003], [Zelinka, Oplatkova, Nolle 2004]. 

• Sextic and Quintic problems [Zelinka, 
Oplatkova 2003]. 

• Simple neural network synthesis by means 
of AP – a simple few layered NN synthesis 
was tested by AP [Zelinka, Varacha, 
Oplatkova, 2006] 

• Optimal robot trajectory estimation 
[Oplatkova 2005], [Oplatkova, Zelinka 
2006]. 

 
Such elementary objects are usually simple 
mathematical operators (+, -, *, …), simple 
functions (sin, cos, And, Nor, …), user-defined 
functions (simple commands for robots – MoveLeft, 
TurnRight, …), etc. Output of symbolic regression is 
a more complex “object” (formula, function, 
command,…), solving a given problem like data 
fitting of so called Sextic and Quintic problem 
described by Eq. (4), [Koza 1999], [Zelinka, 
Oplatkova 2003], randomly synthesized function Eq. 
(5) [Zelinka, Oplatkova 2003], Boolean problems of 
parity and symmetry solution (basically logical 
circuits synthesis) Eq. (6) [Koza 1999], [Zelinka, 
Oplatkova, Nolle 2005] or synthesis of quite 
complex robot control command Eq. (7) [Koza 
1998], [Oplatkova 2005]. Equations (4) - (7) 
mentioned here are just only a few samples 
numerous repeated experiments done by AP and are 
used to demonstrate how complex structures can be 
produced by symbolic regression in general sense 
for different problems. 
 
 

 (4) 
 

 
 
 (5) 
 
 
 
 
 
 

! 

x K
1

+
x
2
K
3( )

K
4
K
5

+ K
6( )

" 

# 
$ 
$ 

% 

& 
' 
' ( )1+ K

2
+ 2x )x )K

7( )( )

! 

t
1

log t( )

" 

# 
$ 

% 

& 
' 

sec(1 1.28( )

log
sec(1 1.28( ) sinh sec cos 1( )( )( )( )



Z. OPLATKOVA et al: SANTA FE TRAIL FOR ARTIFICIAL ANT BY MEANS OF ANALYTIC... 

IJSSST, Vol. 9, No. 3, September 2008          25          ISSN: 1473-804x online, 1473-8031 print 

 
 
 
 
 
 
 (6) 
 
 
 
 
 
 
 
 
 
 (7) 
 
 
 
Remaining text in this article is investigation on 
evolutionary synthesis of  robot commands, which is 
well known in genetic programming like Santa Fe 
trail of artificial ant. 
 

3. PROBLEM DESIGN 

3.1. Santa Fe Description 
 
The Santa Fe trail, demonstrated in Fig.  4, was 
chosen from [Koza 1999] to make a comparative 
study with the same problem which was solved by 
Koza in Genetic Programming. 
 

 
Fig.  4: Santa Fe trail 

The aim of the task is that an artificial ant should go 
through defined trail and eat all food what is there. 
 
The SantaFe trail is defined as a 32 x 31 fields 
where food is set out. In Fig.  4 a black field is food 
for the ant. The grey one is basically the same as a 
white field but for clearness was used the grey 

colour. The grey fields represent obstacles (fields 
without food on the road) for the ant. If there would 
not be these holes the ant could go directly through 
the way. It would be enough to go and see before ant 
if there is food. If yes ant would go straight and eat 
the bait. If not it would turn around and see where is 
food and the cycle would repeat till the ant would 
eat the last bait. 
 
In the real world robots have obstacles in their 
moving. Therefore also in this case such approach 
was chosen. The first problem which ant has to 
overcome is the simple hole (position {8, 27} in 
[Koza 1999]). Second one is two holes in the line 
(positions {13,16} and {13,17}), or three holes 
({17,15}, {17,16}, {17,17}). Next problem is holes 
in the corners – one (position {13,8}, two 
({1,8},{2,8}) and three holes ({17,15}, {17,16}, 
{17,17}). 
 

3.2. Set of functions 
 
The set of functions used for movements of the ant 
is following. As a set of variables GFS0, i. e. in the 
case of this article functions, which provide moving 
of an ant, without any argument which could be add 
during the process of evolution. 
The set consist of  

• GFS0 = {Left, Right, Move},  
where 
GFS0 – a set of variables and terminals, zero 
argumented functions GFS0arg  
Left – function for turning around in the 
anticlockwise direction 
Right – function for turning around in the clockwise 
direction 
Move – function for moving straight and if a bait is 
in the field where the ant is moved, it is eaten. 
 
This set of functions is not enough to make 
successfully a desired task. More functions are 
necessary. Then a GFS2 and GFS3 were set up.  
 

• GFS2 = {IfFoodAhead, Prog2} 
• GFS3 = {Prog3} 

 
Where the number in GFS means the arity of the 
functions inside, i.e. number of arguments which are 
needed to be evaluated correctly. Arguments are 
added to those functions during evolution process 
see above – Description of AP. 
IfFoodAhead is a decision function – the ant 
controls the field in front of it and if there is food, 
the function in the field for truth argument is 
executed; otherwise function in false position is 
performed. 
Prog2 and Prog3 are the same function in the 
principle. They do 2 or 3 functions in the same time. 
These two functions were originally defined also in 

Nor[(Nand[Nand[B || B, B && A], B]) && C 
&& A && B,   Nor[( !C && B && A ||  !A 
&& C && B ||  !C &&  !B &&  !A) &&  ( !C 
&& B && A ||  !A && C && B ||  !C &&  !B 
&&  !A) ||  A && ( !C && B && A ||  !A && 
C && B ||  !C &&  !B &&  !A),    (C ||  !C 
&& B && A ||  !A && C && B ||  !C &&  !B 
&&  !A) && A]] 
 
Prog2[ Prog3[ Move, Right,  
IfFoodAhead[ Left, Right]],    
IfFoodAhead[ IfFoodAhead[ Left, 
Right], Prog2[ IfFoodAhead[ 
IfFoodAhead[ IfFoodAhead[ Left, 
Right], Right], Right],  IfFoodAhead[ 
Prog2[ Move, Move], Right]]]] 
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Koza’s approach but in AP it is necessary because of 
structure of generating the program. 

3.3. Fitness function 
 
The aim of the ant is to eat all food on the way. 
There are 89 baits. This is so called raw fitness. And 
the value of cost function  (8) is calculated as a 
difference between raw fitness and a number of baits 
eaten by an ant [Koza 1999] which went through the 
grid according to just generated way. 
 
 (8) 
 
Number_of_Food - number of eaten baits by an ant 
according to synthesized way 
 
The aim is to find such formula whose cost value is 
equal zero. To obtain an appropriate solution two 
constraints should be set up into a cost function. One 
is a limitation concerned to number of steps. It is not 
desired ant to go field by field in the grid. A 
requirement to the fastest way and the most effective 
is desired. Then a limit of steps was equal to 600. 
According to original assignment 400 steps should 
be sufficient. But as [Marik et al. 2004] says Koza’s 
optimal solution was as in (9). But as simple 
solution showed 545 steps are necessary for an ant 
to eat all food in the Santa Fe trail.  
 

IfFoodAhead[Move, Prog3[Left, 
Prog2[IfFoodAhead[Move, Right], 
Prog2[Right, Prog2[Left, Right]]], 
Prog2[IfFoodAhead[Move, Left], Move]]] 

(9) 
 

 
Functionality of the equation (9) can be described by 
following. If bait is in front of the ant it moves on 
the field and eats the food. If there is nothing it does 
following 3 commands. If food is in front of the ant 
it moves and eats the food, if not it turns twice right. 
Next Prog2(Left, Right) is not necessary there, this 
is the reason why all program takes 545 steps 
instead of 404 in the case of no Prog2(Left,Right). 
Then next control of food in front of ant is again, if 
yes ant moves and eats the food. If not it turns left to 
the original direction as it was at the beginning of 
the program. If the cycle is somewhere interrupt, e.g. 
in the case of truth in the first function IfFoodAhead, 
the cycle is repeated still from the beginning until all 
food is not eaten or constrained steps are not 
reached. 
 
The second constraint could be concerned to the 
length of the list of commands for an ant. The more 
longer list could cause the more steps to reach all 
food is eaten. In this preliminary study this 
constraint was not set up. But in further studies a 
penalization concerned to this constraint will be 
surely used. 
 

4. USED EVOLUTIONARY ALGORITHMS 
 
In this paper SelfOrganizing Migrating Algorithm 
(SOMA), Differential Evolution (DE) and Simulated 
Annealing (SA) were used as an evolutionary 
algorithm. For detailed information see – [Zelinka 
2004a], [Price, Storn, Lampinen 2005], [Kirkpatrick, 
Gelatt, Vecchi 1983]. 

4.1. Differential Evolution (DE) 
 
Differential Evolution is a population-based 
optimization method that works on real-number 
coded individuals [Price, Storn, Lampinen 2005]. 

For each individual   

! 

r 
x 

i,G  in the current generation G, 

DE generates a new trial individual   

! 

r 
" x 
i,G  by adding 

the weighted difference between two randomly 

selected individuals  

! 

r 
x 

r1,G and  

! 

r 
x 

r2,G to a third 

randomly selected individual   

! 

r 
x 

r3,G . The resulting 

individual  

! 

r 
" x 
i,G is crossed-over with the original 

individual  

! 

r 
x 

i,G . The fitness of the resulting 

individual, referred to as perturbated vector   

! 

r 
u 

i,G +1, 

is then compared with the fitness of   

! 

r 
x 

i,G . If the 

fitness of   

! 

r 
u 

i,G +1 is greater than the fitness of   

! 

r 
x 

i,G , 

  

! 

r 
x 

i,G  is replaced with   

! 

r 
u 

i,G +1, otherwise   

! 

r 
x 

i,G  remains 

in the population as   

! 

r 
x 

i,G +1. 
 
Differential Evolution is robust, fast, and effective 
with global optimization ability. It does not require 
that the objective function is differentiable , and it 
works with noisy, epistatic and time-dependent 
objective functions. 
 

4.2. Self-Organizing Migrating Algorithm 
(SOMA) 

 
SOMA is a stochastic optimization algorithm that is 
modelled on the social behaviour of cooperating 
individuals [Zelinka 2004a] It was chosen because it 
has been proven that the algorithm has the ability to 
converge towards the global optimum [Zelinka 
2004a]. SOMA works on a population of candidate 
solutions in loops called migration loops. The 
population is initialized randomly distributed over 
the search space at the beginning of the search. In 
each loop, the population is evaluated and the 
solution with the highest fitness becomes the leader 
L. Apart from the leader, in one migration loop, all 
individuals will traverse the input space in the 
direction of the leader. Mutation, the random 
perturbation of individuals, is an important operation 
for evolutionary strategies (ES). It ensures the 
diversity amongst the individuals and it also 

! 

CV = 89" Number _ of _Food
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provides the means to restore lost information in a 
population. Mutation is different in SOMA 
compared with other ES strategies. SOMA uses a 
parameter called PRT to achieve perturbation. This 
parameter has the same effect for SOMA as 
mutation has for GA. 
The novelty of this approach is that the PRT Vector 
is created before an individual starts its journey over 
the search space. The PRT Vector defines the final 
movement of an active individual in search space. 
 
The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. If 
an element of the perturbation vector is set to zero, 
then the individual is not allowed to change its 
position in the corresponding dimension. 
 
An individual will travel a certain distance (called 
the PathLength) towards the leader in n steps of 
defined length. If the PathLength is chosen to be 
greater than one, then the individual will overshoot 
the leader. This path is perturbed randomly. 
 

4.3. Simulated Annealing (SA) 
 
Simulated Annealing is one of older algorithms 
compared to SOMA and DE. It was introduced by 
Kirkpatrick et al. for the first time [Kirkpatrick, 
Gelatt, Vecchi 1983]. An inspiration for developing 
this algorithm was annealing of metal. In the process 
metal is heated up to temperature near the melting 
point and then it is cooled very slowly. The purpose 
is to eliminate unstable particles. In other words, 
particles are moved towards an optimum energy 
state. Metal is then in more uniform crystalline 
structure. 
 
This approach was used in the case of simulated 
annealing including terms. It start off from a 
randomly selected point. Then a certain (depends on 
user) number of points is generated in the 
neighbourhood. The point with the best cost value is 
selected to be the middle of new neighbourhood 
(start point for a new loop). But it is possible to 
accept also worse value of cost function. The 
acceptance is based on a probability which decreases 
with number of iterations. In the case that the best 
cost value is in the start point this one is chosen for 
the next loop. 

5. EXPERIMENTAL RESULTS 
 
The main idea is to show that SOMA, DE and SA 
are able to solve such problems of symbolic 
regression – setting a trajectory - under Analytic 
Programming.  
 
50 simulations were carried out for each algorithm, 
i.e. 150 simulations in total. SOMA and DE have 

almost all simulations with positive results; only one 
case in both algorithms did not reach the extreme. 
SA was not so successful, only 14 positive results. 
To show that AP is able to work with arbitrary 
evolutionary algorithms we suppose to carry 
simulations out with Genetic Algorithms (GA) and 
other algorithms and also parallel computing is 
intended in this field. Data from all simulations were 
processed and vizualized in [Oplatkova 2005], 
[Oplatkova, Zelinka 2006].  
 
In simulations done for purposes of this article 
following setting was used to run SOMA, DE and 
SA according to Tab. 1 - Tab. 3.  
 
Tab. 1: Setting of SOMA 

Parameter Value 

PathLength  3  
Step  0.22  
PRT  0.21  
PopSize  200  
Migrations  50  
MinDiv  -0.1  
Individual Length  50  
 
Tab. 2: Setting of DE 

Parameter Value 

NP  200  
F  0.8  
CR  0.2  
Generations  700  
Individual Length  50  
 
Tab. 3: Setting of SA 

Parameter Value 

T  10 000  
Tmin  0.000 01  
α  0.986  
MaxIter  1 500 
MaxIterTemp  93 
Individual Length  50  
 
Firstly, the results show values of cost function 
evaluations. This parameter shows good 
performance of Analytic Programming. As you can 
see in Tab. 4 the lowest number of cost function 
evaluations equals to 2 697 for SA and 3396 for 
SOMA. DE was also not so far with its 4030 cost 
function evaluations. 
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The Fig.  5 uses data from Tab. 4 and shows it in a 
graphical way where the diamond means the average 
value. As can be seen, SA had the lowest average 
value. But this might be caused by only 14 cases 
which were included in the chart while SOMA and 
DE had 49 positive cases.  
 
Tab. 4: Cost function evaluation for SOMA, DE and 
SA 

Cost Function Evaluation  SOMA DE SA 
Minimum 3 396 4 030 2 697 
Maximum 134 114 136 011 98 241 

Average 61 966 66 620 50 142 
 
 
 

 
Fig.  5: Graphical representation of minimal, 
maximal and average values of cost function 
evaluation for SOMA, DE and SA 

 
Second indicator depicts histogram of successful hits 
and the number of cost function evaluations for each 
hit – Fig.  6 - Fig.  8. Negative results are not 
included. 

 
Fig.  6: Histogram of SOMA algorithm 

 

 
Fig.  7: Histogram of DE algorithm 

 
Fig.  8: Histogram of SA algorithm 

 
Another creation of histograms can be made from 
the point of view of number of cases (axe y) which 
appeared in some interval of cost function values 
(axe x). This approach can be seen in Fig.  9 - Fig.  
11. 
 

 
Fig.  9: Histogram of SOMA algorithm – number of 
cases in specific intervals of cost function values 
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Fig.  10: Histogram of DE algorithm – number of 
cases in specific intervals of cost function values 

 

 
Fig.  11: Histogram of SA algorithm – number of 
cases in specific intervals of cost function values 

 
Next point, which we were interested in, was a 
number of commands for the ant and number of 
steps required to eat all baits (Tab. 5, Tab. 6). In the 
Tab. 6 you can see that DE found a route which is 
overcome in the least number of steps. Sorted lists of 
pairs – commands and steps – are seen for all 3 
algorithms in Tab. 5. As it is shown, it can be stated 
that the smallest number of commands does not have 
to cause the smallest number of steps. And vice 
versa, that small number of steps does not mean the 
small set of commands. 
 

Tab. 5: Number of commands 

Number of leaves (commands)  SOMA DE SA 
Minimum 11 11 15 
Maximum 50 50 50 
Average 32 32 26 
 
Tab. 6: Number of steps 

Number of steps  SOMA DE SA 
Minimum 396 367 406 
Maximum 606 604 605 
Average 547 540 535 
 
 

The following picture depicts that the ant went 
through all the fields (Fig.  12); the white “X” shows 
fields which were attended by the ant. The notation  
(10) contains set of rules for the ant how to go 
successfully through the trail. In the notation (11) 
the whole description of the route can be seen where 
Ea, So, We, No means east, south, west and north 
(which cardinal point the ant is turned into).  The 
numbers in brackets are positions on the grid.  
 
 

 

 
Fig.  12: Santa Fe Trail overcome by ant found by 
DE 

 
 
 

{{32, 1}, {32, 2}, {32, 3}, {32, 4}, {So}, 
{31, 4}, {30, 4}, {29, 4}, {28,    4}, {27, 
4}, {We}, {So}, {Ea}, {27, 5}, {27, 6}, 
{27, 7}, {So}, {   Ea}, {No}, {Ea}, {27, 
8}, {27, 9}, {27, 10}, {27, 11}, {27, 
 12}, {27, 13}, {So}, {26, 13}, {25, 13}, 
{24, 13}, {23,      13}, {We}, {So}, 
{Ea}, {So}, {22, 13}, {21, 13}, {20, 

 
 
 
 
 
 
 
 

IfFoodAhead[ Move, IfFoodAhead[ 

Move, Prog2[ Prog2[ Right,  

IfFoodAhead[ Prog2[ IfFoodAhead[ 

IfFoodAhead[ Move, Move], Move], 

Move], Prog3[ IfFoodAhead[ Move, 

IfFoodAhead[ Prog3[ Right, Right, Prog2[ 

Left, Prog2[ IfFoodAhead[ Prog2[ Prog2[ 

Left, Move], Right], IfFoodAhead[ Move,            

Left]], Prog2[ IfFoodAhead[ Move, 

Move], Prog2[ IfFoodAhead[ Move, 

Right], Right]]]]], Left]], Left,
 

IfFoodAhead[ Move, Right]]]], Move]]] 

 

(10) 
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13}, {19, 13}, {18, 13}, {We}, {So}, 
{Ea}, {So}, {17, 13}, { We}, {So}, 
{Ea}, {So}, {16, 13}, {15, 13}, {14, 
 13}, {13, 13}, {12, 13}, {11, 13}, {10, 
13}, {9, 13}, {We}, {So}, {Ea}, { So}, 
{8, 13}, {We}, {8, 12}, {8, 11}, {8,10}, 
{8, 9}, {8, 8}, {No}, {We}, {So}, 
{We}, {8, 7}, {No}, {We}, { So}, 
{We}, {8, 6}, {8, 5}, {8,  4}, {No}, 
{We}, {So}, {We}, {8, 3}, {No}, {We}, 
{So}, {We}, {8, 2}, {No}, {We}, {So}, 
{7, 2}, {6, 2}, {5, 2}, {4, 2}, {We}, 
{So}, {Ea}, {So}, {3, 2}, {We}, {So}, 
{ Ea}, {So}, {2, 2}, {We}, {So}, {Ea}, 
{2, 3}, {2, 4}, {2, 5}, { 2, 6}, {So}, 
{Ea}, {No}, {Ea}, {2, 7}, {So}, {Ea}, 
{No}, {Ea}, {2, 8}, {So}, {Ea}, {No}, 
{3, 8}, {4, 8}, {Ea}, {No}, {We}, {No}, 
{ 5, 8}, {Ea}, {5, 9}, {5, 10}, {5,11}, 
{5, 12}, {5, 13}, {5, 14}, {5, 15}, {So}, 
{Ea}, {No}, {Ea}, { 5, 16}, {So}, {Ea}, 
{No}, {Ea}, {5, 17}, {So}, {Ea}, {No}, 
{6, 17}, {7, 17}, {8, 17}, {Ea}, {No}, 
{We}, {No},  {9, 17}, {Ea}, {No}, 
{We}, {No}, {10, 17}, {11, 17}, {12, 
17}, {13,    17}, {14, 17}, {Ea}, {No}, 
{We}, {No}, {15,17}, {Ea}, {No}, 
{We}, {No}, {16, 17}, {Ea}, {No}, 
{We}, {No}, {17, 17}, {Ea}, {17, 18}, 
{17, 19}, {17, 20}, {So}, {Ea}, {No}, 
{Ea}, { 17, 21}, {So}, {Ea}, {No}, {18, 
21}, {19, 21}, {Ea}, {No}, {We}, {No}, 
{20, 21}, {Ea}, {No}, {We}, {No}, {21, 
21}, {22, 21}, {23,  21}, {24, 21}, {25, 
21}, {Ea}, {No}, {We}, {No}, {26, 21}, 
{Ea}, {No}, {We}, {No}, {27, 21}, 
{Ea}, {27, 22}, {27, 23}, {27, 24}, 
{So}, {Ea}, {No}, {Ea}, {27, 25}, {So}, 
{Ea}, {No}, {28, 25}, {29, 25}, {Ea}, 
{No}, {We}, {No}, { 30, 25}, {Ea}, 
{30, 26}, {30, 27}, {30, 28}, {So}, 
{Ea}, {No}, {Ea}, {30, 29}, {So}, {Ea}, 
{No}, {Ea}, {30, 30}, {So}, {29, 30}, 
{28, 30}, {27, 30}, {26, 30}, {We}, 
{So}, {Ea}, {So}, {25, 30}, {We}, 
{So}, {Ea}, {So}, {24, 30}, {23, 30}, 
{We}, {So}, {Ea}, {So}, {22, 30}, 
{We}, { So}, {Ea}, {So}, {21, 30}, {20, 
30}, {We}, {So}, {Ea}, {So}, {19, 
30},{We}, {So}, {Ea}, {So}, {18, 30}, 
{We}, {18, 29}, {18, 28}, {18,    27}, 
{No}, {We}, {So}, {We}, {18, 26}, 
{No}, {We}, {So}, {We}, {18, 25}, 
{No}, {We}, {So}, {We}, {18, 24}, 
{No}, {We}, {So}, {17, 24}, {16, 24}, 
{We}, {So}, {Ea}, {So}, {15, 24}, 
{We}, {So}, {Ea}, {So}, {14, 24}, 
{We}, {So}, {Ea}, {14, 25}, {14, 26}, 
{So}, {Ea}, {No}, {Ea}, {14,  27}, 
{So}, {Ea}, { No}, {Ea}, {14, 28}, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(11) 
 
 

{So}, {13, 28}, {12, 28}, {11, 28}, 
{We}, {So}, {Ea}, {So}, {10, 28}, 
{We}, {10,  27}, {10, 26}, {10, 25}, 
{No}, {We}, {So}, {We}, {10, 24}, 
{No}, {We}, {So}, {9, 24}, {8, 24}} 

 
 
 
 
 

6. CONCLUSIONS 
 
This contribution deals with an alternative algorithm 
for symbolic regression. This study shows that this 
algorithm is suitable not only for mathematical 
regression but also for setting of optimal trajectory 
for artificial ant which can be replaced by robots in 
real world, in industry. 
 
To compare with standard GP it can be stated on the 
basic results above that AP can solve this kind of 
problems in shorter times as cost function 
evaluations are counted. 
 
The aim of this study was not to show that AP is 
better or worse than GP (or GE when compared) but 
that AP is also a powerful tool for symbolic 
regression with support of different evolutionary 
algorithms. 
 
The main object of the paper was to show that 
symbolic regression done by AP is able to solve also 
cases where linguistic terms as for example 
commands for movement of artificial ant or robots 
in real world are. Here simulations for 3 algorithms 
– SOMA, DE and SA were carried out. As figures 
showed SOMA and DE were more successful in 
positive results than SA was. This proved that a 
good performance of AP depends on a choice of 
suitable robust and powerful evolutionary 
algorithms. 
 
During simulations carried in this problem were 
reached following results: 

• 50 simulations for each algorithm means 150 
in total for all 3 algorithms. 

• Positive results   
- 49 from 50 simulations for SOMA 
- 49 from 50 for DE  
- and 14 from 50 for SA 

which accomplished the required tasks thus Analytic 
Programming is able to solve such kind of problems 
in symbolic regression. This result also says that 
Simulated Annealing is not so powerful tool as other 
two evolutionary algorithms are. It is supposed that 
the cost function is very complicated with quite a lot 
of local optima and therefore the Simulated 
Annealing was not so successful as SOMA or DE 
were. 
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• Solutions which fulfil conditions which were 
laid down by John Koza [Koza 1998] 
concerned to number of steps, were found (2 
by SOMA and 3 by DE). It means 5 solutions 
were successful under the 400 steps. 
Moreover, 17 (SOMA) + 20 (DE) + 6 (SA), 
in total 43 from 150 were successful under 
the 545 steps which was introduced by John 
Koza [Koza 1998], [Marik et al., 2004] as an 
optimal one.   

 
Future research is key activity in this field. The 
following steps are to finished simulations with GA 
and other evolutionary algorithms and to try some 
other class of problems to show that Analytic 
Programming is powerful tool as Genetic 
Programming or Grammatical Evolution are. 
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Tab. 7: Sorted numbers of steps and commands for all algorithms 

SOMA DE SA 
sorted by steps sorted by 

commands 
sorted by steps sorted by steps sorted by 

commands 
sorted by steps 

396 49 594 11 367 49 599 11 406 25 577 15 
399 36 596 11 387 49 592 12 406 25 592 16 
409 21 568 14 390 50 564 13 409 23 605 16 
409 22 594 14 409 18 542 14 503 22 592 17 
409 23 594 14 409 18 568 14 503 22 537 19 
421 37 577 15 409 50 577 14 537 19 503 22 
456 50 544 16 421 50 581 14 577 15 503 22 
489 17 590 16 475 16 581 14 577 49 409 23 
521 50 594 16 496 50 583 15 592 16 406 25 
532 50 606 16 509 21 594 15 592 17 406 25 
533 20 489 17 516 46 475 16 592 50 594 34 
533 27 544 17 517 49 533 16 594 34 594 34 
537 34 583 17 519 49 409 18 594 34 577 49 
540 27 576 18 525 38 409 18 605 16 592 50 
542 27 533 20 533 16 533 18         
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544 16 550 20 533 18 568 18         
544 17 409 21 533 20 584 19         
548 30 589 21 533 32 604 19         
548 50 409 22 541 49 533 20         
550 20 409 23 542 14 550 20         
551 43 559 24 550 20 509 21         
551 50 584 24 551 50 581 22         
559 24 583 26 557 31 596 23         
562 50 533 27 562 29 562 29         
568 14 540 27 564 13 557 31         
572 34 542 27 568 14 533 32         
574 27 574 27 568 18 525 38         
576 18 548 30 572 50 599 42         
577 15 537 34 573 49 516 46         
581 49 572 34 577 14 581 47         
581 50 399 36 581 14 367 49         
583 17 421 37 581 14 387 49         
583 26 551 43 581 22 517 49         
584 24 603 47 581 47 519 49         
589 21 396 49 583 15 541 49         
590 16 581 49 584 19 573 49         
592 50 596 49 588 50 589 49         
594 11 604 49 589 49 591 49         
594 14 606 49 591 49 595 49         
594 14 456 50 592 12 597 49         
594 16 521 50 594 15 601 49         
594 50 532 50 595 49 390 50         
596 11 548 50 595 50 409 50         
596 49 551 50 596 23 421 50         
601 50 562 50 597 49 496 50         
603 47 581 50 599 11 551 50         
604 49 592 50 599 42 572 50         
606 16 594 50 601 49 588 50         
606 49 601 50 604 19 595 50         

 


