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Abstract: Synthesis, identification and control of the complex dynamical systems are usually extremely 
complicated. When classics methods are used, some simplifications are required which tends to lead to idealized 
solutions that are far away to reality. In contrast, the class of methods based on evolutionary principles is 
successfully used to solve this kind of problems with a high level of precision. In this paper a novel method is 
discussed which has been successfully proven in many simulations like neural network synthesis and electrical 
circuit synthesis. Typical examples are discussed, alongside the use of evolutionary algorithms on dynamical 
system synthesis - identification.  
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1 INTRODUCTION 

The term symbolic regression (SR) represents a 
process, in which measured data is fitted by a 
suitable mathematical formula such as x2 + C, 
sin(x)+1/ex, etc., Mathematically, this process is 
quite well known and can be used when data of an 
unknown process is obtained. Historically SR has 
been in the preview of manual manipulation, 
however during the recent past, a large inroad has 
been made through the use of computers. Generally, 
there are two well-known methods, which can be 
used for SR by means of computers. The first one is 
called genetic programming or GP [Koza, 1998; 
Koza et al. , 1999] and the other is grammatical 
evolution [O'Neill and Ryan, 2002; Ryan et al . , 
1998]. 
 
The idea as to how to solve various problems using 
SR by means of evolutionary algorithms (EA) was 
introduced by John Koza who used genetic 
algorithms (GA) for GP. Genetic programming is 
basically a symbolic regression, which is done by 
using of evolutionary algorithms instead of a human 
brain. The ability to solve very difficult problems is 
now well established, and hence, GP today performs 
so well that it can be applied, e.g. to synthesize 
highly sophisticated electronic circuits [Koza et al. 
2003].  
 
In the last decade of the 20th century, C. Ryan 
developed a novel method for SR, called 
grammatical evolution (GE). Grammatical evolution 
can be regarded as an unfolding of GP because of 
some common principles, which are the same for 

both algorithms. One important characteristic of GE 
is that it can be implemented in any arbitrary 
computer language compared with GP, which is 
usually done (in its canonical form) in LISP. In 
contrast to other evolutionary algorithms, GE was 
used only with a few search strategies, with a binary 
representation of the populations [O'Sullivan and 
Ryan, 2002]. Another interesting investigation using 
symbolic regression was carried out by [Johnson 
2003] working on Artificial Immune Systems or/and 
systems which are not using tree structures like 
linear genetic programming (full text is at 
https://eldorado.uni-dortmund.de/bitstream/2003/ 
20098/2/Brameierunt.pdf) and another similar 
algorithm to AP, Multi Expression Programming 
(see http://www.mep.cs.ubbcluj.ro/). 
 
In this paper, a different method is presented which 
is called analytic programming (AP) [Zelinka 2002 
a], [Zelinka 2002 b], [Zelinka and Oplatkova, 2003], 
[Zelinka and Oplatkova, 2004], [Zelinka, Chen, 
Celikovski, 2008]. AP is also a tool for symbolic 
regression, based on different principles compared to 
GP and GE. The important principles of AP, 
together with tests and a comparison of its main 
principles with GP and GE, are presented. 
 
2 MOTIVATION 

The motivation to develop analytic programming 
was based on several facts. In the case of GP, 
individuals consist of various functions and 
terminals [Koza 1998]. For example, when an 
offspring is created, the principles of GA are used 
and two chromozomes are cut into two parts, which 
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are then exchanged. It means that the main 
principles of GA are a part of GP. When the same 
philosophy is followed in the case of different 
algorithms, for example in differential evolution 
(DE), [Price 1999], incorrect functional structures 
would be obtained. This is due to the fact that the 
offspring creation in DE is based on arithmetical 
operations. Their usage ensures that when a new 
individual (offspring - trial vector) is created via a 
noisy vector, then the nth parameter can look like 
“F*(cos()-tan()) + mod()” after direct application of 
DE rules. It is clear that there is no direct way to 
create a program based on such kinds of operations. 
 
A similar situation of GP exists for GE, because the 
individual is also represented in the binary string and 
a new offspring is created in a similar way as in GP 
(crossover, mutation). Despite this fact, there is one 
theoretical possibility as to how GE can be used by 
an arbitrary evolutionary algorithm and some 
investigations were made in [O'Sullivan and Ryan 
2002]. Because there is no possible use of GP and 
GE in their fundamental forms by arbitrary 
evolutionary algorithm, it would be suitable to 
develop some universal method for symbolic 
regression. A method, showing attributes of such 
universality was developed during 2000-2003 and it 
is called analytic programming (AP). The remaining 
part of this paper is focused on its brief description 
of existing methods and simulations on selected case 
examples.  
 
3 GENETIC PROGRAMMING AND 
GRAMMATICAL EVOLUTION 

The term genetic programming (GP) was coined by 
J.R. Koza (see for example [Koza 1998]). Main 
principle of  GP is based on genetic algorithm which 
is working with a population of individuals, 
represented in LISP programming language. 
Individuals, in its canonical form of GP, are not 
binary strings as is the case for GA, but consist of 
LISP symbolic objects like sin(), +, Exp(), 
MyFunction, etc. The origin of these objects are 
from LISP or they are simply user defined functions. 
Symbolic objects are usually divided into two 
classes: functions and terminals. Functions were just 
explained and terminals represent a set of 
independent variables like x, y, and constants like π, 
3.56, etc here. 
 
The main principle of GP is usually demonstrated by 
means of so-called trees (basically graphs with 
nodes and edges, Figures 1 and 2) representing 
individuals in LISP symbolic syntax. Individual in 
the shape of a tree, or formula like 0.234 z + x – 
0.789 are called programs. Because GP is based on 
GA, then evolutionary steps (mutation, crossover, 
…) in GP are in principle the same as in GA. As an 
example of GP, assume two artificial parents – trees 
in Figure 1 and 2 representing programs 0.234 z + x 

– 0.789 and z y (y+0.314 z). When a crossover is 
applied, then, for example, subset of trees are 
exchanged. The resulting offspring’s are given in 
Figure 2. 
 

 
Figure 1: Parental program in genetic programming  

 

 
Figure 2: Offspring program in genetic 

programming  

Subsequently, the offspring’s fitness is calculated so 
that behaviour of just synthesized and evaluated 
individual-tree should ideally be similar to the 
desired behavior. The term desired behaviour can be 
understood as a measured data set from some 
process (program should fit them as well as 
possible) or like optimal robot trajectory, i.e. 
program is a realization of a sequence of robot 
commands (Move_Left, Stop, Go_Forward,…) 
leading to the final position as ideally as possible. 
This is basically the same for GE and AP. Due to the 
complex and rich theory of GP, it is recommended 
for detailed description of GP to see [Koza 1998], 
[Koza 1999]. 
 
Another method doing the same procedure, from the 
point of view of the resulting program like GP was 
developed [O'Neill, Ryan 2002] and is called 
grammatical evolution.  
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Grammatical evolution is in its canonical form based 
on GA, however thanks to a few important changes 
it has a few advantages when compared to GP. The 
main difference is individual coding. Whereas GP 
manipulates in LISP symbolic expressions, GE uses 
individuals, based on binary strings. These are 
transformed into integer sequences and mapped into 
final program by means of so called Backus-Naur 
form (BNF) by the following artificial example. 
Assume that T = {+,-,*,/, X, Y} is a set of operators 
and terminals and F = {epr, op, var}, the so called 
nonterminals. In this case, grammar used for final 
programme synthesis is given by Table 1. Rules 
used for individual transforming into a program is 
based on (1). Grammatical evolution is based on 
binary chromosome with variable length, divided 
into so called codons (range of integer value 0-255), 
which is transformed into a integer domain 
according to Table 2. 
 
 

(1) 
 
 
Table 1: GE grammar in artificial example 

 
 
Table 2: Chromozome transformation 
Chromozome Binary Integer BNF index 
Codon 1 00101000 40 (0) 
Codon 2 11000011 162 (2’) 
Codon 3 00001100 67 (1) 
Codon 4 10100010 12 (0’’) 
Codon 5 01111101 125 (1) 
Codon 6 11100111 231 (1’’) 
Codon 7 10010010 146 Unused 
Codon 8 10001011 139 Unused 
 
Synthesis of actual programme is as follows: Start 
begins with nonterminal object expr. Because 
integer value of Codon 1 (see Table 2) is 40 then 
according to (1) is unfolding of expr = op expr expr 
(40 mod 2, 2 rules for expr, i.e. (0) and (1)). 
Consequently, Codon 2 is used for unfolding of op 
by * (162 mod 4) which is terminal and thus 
unfolding for this part of program is closed. Then it 
continues in unfolding of the remaining 
nonterminals (expr expr) till the final program is 
fully closed by terminals. If the program is closed 
before the end of the chromosome is reached, then 
the remaining codons are ignored. Otherwise it 

continues again from the beginning of the 
chromosome. The final program is based on the 
described example is in this case X*Y (see Figure 
3). For fully detailed description of GE principles, it 
is recommended to see [O'Neill, Ryan 2002]. 
 

 
 

Figure 3: Tree structure of final program. 
 

 
3 ANALYTIC PROGRAMMING 

3.1 General Ideas 
 
Very similar introduction is in [Zelinka, Oplatkova, 
Nolle, 2005], however for readers comfort we have 
decided to partly repeat rewritten introduction of AP 
here.  
 
The term analytic programming was coined by the 
authors of this article as a matter of simplicity: Since 
it is possible to use almost any evolutionary 
algorithm (computationally verified) for AP, each 
EA used for the new approach would add its name to 
the emerging algorithm, e.g. SOMA [Zelinka 2004] 
programming, DE programming, SA programming 
etc. This clearly would be confusing and 
complicated. Analytic programming indicates the 
use of an EA for analytic solutions synthesis (i.e. 
symbolic regression), thus it was the main reason for 
choosing the term ‘analytic programming’.  
 
Analytic programming was inspired by the 
numerical methods in Hilbert functional spaces and 
by GP. The principles of AP lie somewhere between 
these two philosophies: From GP stems the idea of 
the evolutionary creation of symbolic solutions, 
whereas the general ideas of functional spaces and 
the building of resulting function by means of a 
search process (usually done by numerical methods 
such as the Ritz or Galerkin method) are adopted 
from Hilbert spaces. Like GP or GE, AP is based on 
a set of functions, operators and so-called terminals, 
which are usually constants or independent 
variables, for example: 
 
 

Nonterminals Unfolding  Index 
expr ::= op expr expr   (0) 
  var   (1) 
op  ::= +   (0’) 
  -   (1’) 
  *   (2’) 
  /   (3’) 
var ::= X   (0’’) 
  Y   (1’’) 

! 

unfolding =  codon  mod  rules 

where rules is number of rules for given nonterminal
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• functions: Sin, Tan, Tanh, And, Or 
• operators: +, -, *, /, dt,… 
• terminals: 2.73, 3.14, t,… 
 

All these ‘mathematical’ objects create a set from 
which AP tries to synthesize an appropriate solution. 
The main principle of AP is based on discrete set 
handling (DSH), proposed in [Zelinka 2004] (see 
Figure 4).  Discrete set handling itself can be seen as 
a universal interface between EA and the problem to 
be solved symbolically. That is why AP can be 
carried out using almost any evolutionary algorithm. 
Analytical programming, together with a few basic 
examples, is discussed in more detail in [Zelinka and 
Oplatkova, 2003]. 
 

 
Figure 4: Discrete set handling. 

 
The set of mathematical objects are functions, 
operators and so-called terminals (usually constants 
or independent variables). All these objects are 
mixed together as shown in Figure 5 and consists of 
functions with different number of arguments. 
Because of the variability of the content of this set, it 
is called for article purposes, “general functional 
set” – GFS. The structure of GFS is nested i.e. it is 
created by subsets of functions according to the 
number of their arguments. The content of GFS is 
dependent only on the user. Various functions and 
terminals can be mixed together. For example GFSall 
is a set of all functions, operators and terminals, 
GFS3arg is a subset containing functions with only 
three arguments, GFS0arg represents only terminals, 
etc.  
 

 
Figure 5: Principle of the general functional set 

 

Briefly, in AP, individuals consist of non-numerical 
expressions (operators, functions,…) as described 
above, which are in the evolutionary process 
represented by their integer indexes (Figure 6 and 7). 
This index then serves as a pointer into the set of 
expressions and AP uses it to synthesize the 
resulting function-program for cost function 
evaluation.  
 
AP was tested in three versions. All three versions 
used for program synthesis the same sets of 
functions, terminals, etc., as Koza applied in GP 
[Koza 1998], [Koza et al 1999]. The second version 
(APmeta, termed first version APbasic) is modified in 
the sense of constant estimation. For example, Koza 
used for the so-called sextic problem [Koza 1998] 
randomly generated constants, whereas AP here uses 
only one, called K which is inserted into the formula 
(2) at various places, by the evolutionary process. 
When a program is synthesized, then all K’s are 
indexed so that K1, K2, …, Kn, are obtained (3) in the 
formula, and then all Kn are estimated using a 
second evolutionary algorithm (4). Because EA 
(slave) “works under” EA (master, i.e. EAmaster ► 
program ► K indexing ► EAslave ► estimation of 
Kn) then this version is called AP with 
metaevolution - APmeta.  
 

(2) 
 
 
 

(3) 
 
 

(4) 
 
 
Because this version is quite time consuming, APmeta 
was modified to the third version, which differs from 
the second one in the estimation of K. This is done 
by using a suitable method for non-linear fitting 
(APnf). This method has shown the most promising 
performance when unknown constants are present. 
Results of some comparative simulations can be 
found in [Zelinka 2002 a], [Zelinka 2002 b], 
[Zelinka and Oplatkova 2003], [Zelinka and 
Oplatkova 2004], [Zelinka, Oplatkova and Nolle 
2004]. For the simulations described here, APnf was 
used. 
 
3.2 Data Set Structure and Mapping Method 

The subset structure presence in GFS is vitally 
important for AP. It is used to avoid synthesis of 
pathological programs, i.e. programs containing 
functions without arguments, etc. Performance of 
AP is, of course, improved if functions of GFS are 
expertly chosen based on experiences with solved 
problem. 
 

GFSall   = {+,-,/,^, Sin, Cos, Tan, t, x, Mod, …} 
GFS3arg = {User_Function, Beta, …} 
GFS2arg = {Log, Mod, Gamma, …} 
GFS1arg = {Sin, Cos, Tan, Abs, …} 
GFS0arg = {t, x, y, π, …} 

! 

x
2

+K

" K

! 

x
2

+K
1

" K2

! 

x
2

+ 3.56
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The important part of the AP is a sequence of 
mathematical operations, which are used for 
program synthesis. These operations are used to 
transform an individual of a population into a 
suitable program. Mathematically said, it is mapping 
from an individual domain into a program domain. 
This mapping consists of  two main parts. The first 
part is called discrete set handling (DSH) and the 
second one is security procedures, which do not 
allow to synthesize pathological programs. Discrete 
set handling proposed in [Lampinen, Zelinka 1999], 
[Zelinka 2004] is used to create an integer index, 
which is used in the evolutionary process like an 
alternate individual handled in EA by method of 
integer handling. The method of DSH, when used, 
allows to handle arbitrary objects including  
nonnumeric objects like linguistic terms {hot, cold, 
dark,…}, logic terms (True, False) or other user 
defined functions. In AP, DSH is used to map an 
individual into GFS and together with security 
procedures (SP) creates above mentioned mapping 
which transforms arbitrary individual into a 
program. Individuals in the population consist of 
integer parameters, i.e. an individual is an integer 
index pointing into GFS. 
 
Analytic programming is basically a series of 
function mapping. Presented in Figure 6 and 7, is a 
demonstrated example of how a final function is 
created from an integer individual. Number 1 in the 
position of the first parameter means that the 
operator “+” from GFSall is used (the end of the 
individual is far enough). Because the operator “+” 
has to have at least two arguments, the next two 
index pointers 6 (sin from GFS) and 7 (cos from 
GFS) are dedicated to this operator as its arguments. 
Both functions, sin and cos, are one-argument 
functions so the next unused pointers 8 (tan from 
GFS) and 9 (t from GFS) are dedicated to  sin and 
cos function. Because as an argument of cos is used, 
variable t on this part of resulting function is closed 
(t is zero-argument) in its AP development. One-
argument function tan remains and because there is 
one unused pointer 9, tan is mapped on “t” which is 
on 9th position in GFS. 
 
To avoid synthesis of pathological functions, a few 
security “tricks” are used in AP. The first one is that 
GFS consists of subsets containing functions with 
the same number of arguments. Existence of this 
nested structure is used in the special security 
subroutine which measures as to how far the end of 
individual is and according to this, objects from 
different subsets are selected to avoid pathological 
function synthesis. If more arguments are desired 
than it is possible (the end of the individual is near), 
the function will be replaced by another function 
with the same index pointer from subset with lower 
number of arguments. For example, it can occur if 
the last argument for one argument function will not 

be terminal (zero-argument function) as 
demonstrated in Figure 7. 
 
GFS need not be constructed only from clear 
mathematical functions as is demonstrated, but also 
other user-defined functions, which can be used, e.g. 
logical functions, functions which represent 
elements of electrical circuits or robot movement 
commands. 
 
3.3 Crossover, Mutations and Other Evolutionary 
Operations 

During the evolution of a population, different 
operators are used, such as crossover and mutation. 
In comparison with GP or GE, evolutionary 
operators like mutation, crossover, tournament, and 
selection are fully in the competence of the used 
evolutionary algorithm. Analytic programming does 
not contain them in any point of view in its internal 
structure. Analytic programming is created like 
superstructure of EAs for symbolic regression 
independent on their algorithmical structure. 
Operations used in evolutionary algorithms are not 
influenced by AP and vice versa. For example, if DE 
is used for symbolic regression in AP  then all 
evolutionary operations are done according to the 
DE rules. 
 

 
 

Figure 6: Main and simplified principle of AP 
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Figure 7: AP principle with security principles. 
According to the main idea of AP, a Mod function 
would be selected as an argument for Tan function. 
When security subroutine measure how far the end 
of individual is, then Mod is replaced by Ω from the 
terminal subset. 
 
3.4 Reinforced Evolution  

During evolution, less or more suitable individuals 
are synthesized. Some of these individuals are used 
to reinforce evolution towards better solution 
synthesis. The main idea of reinforcement is based 
on addition of just synthesized and partly successful 
program into initial set of terminals. Reinforcement 
is based on user-defined threshold (temporarily 
acceptable cost value or fitness) used in the decision 
as to which individual will be used for addition into 
the initial set of terminals.  
 
For example, if the threshold is set to 5, and fitness 
of all individuals - programs in the population is 
larger than 5, then the evolution is running on basic, 
i.e. initial GFS. When the best of all individuals in 
the actual population is less than 5, then it is 
completely added into the initial GFS and is marked 
like terminal. Henceforth, the evolution is running 
on enriched GFS containing partially successful 
program. Thanks to this fact, evolution is able to 
synthesize final solutions much faster than AP 
without reinforcement. This fact has be exhaustively 
verified through countless simulations on a number 
of different problems. When a program is added into 
GFS, then the threshold is also set to its fitness. If 
another individual with lower fitness is found, the 
threshold is synthesized and the older threshold is 
overwritten by the new value.  
 
It is quite similar to automatically defined functions 
(ADF) from GP, however the set of functions and 
terminals in GP can contain more than one ADF 
(which of course, theoretically increase complexity 
of searched space according to N!) including 
properly defined arguments of these ADF and  
critical situations checking (selfcalling,…). This is 
not a problem of AP reinforcement, because the 
added program into initial GFS is regarded like a 
terminal (or terminal structure), i.e. no function, no 
arguments, no selfcalling, etc. and cardinality of 
initial GFS set increase only by one.  
 
3.5 Security procedures 

Security procedures (SP) included in AP as well as 
in GP, are used to avoid various critical situations. In 
the case of AP security procedures were not 
developed for AP purposes after all, but they are 
mostly an integrated part of AP. However, 
sometimes they have to be defined as a part of cost 
function, based on the kind of situation arising (for 

example situation 2, 3 and 4, see below). Critical 
situations are like: 
 

1. pathological function (without arguments, 
self-looped...) 

2. functions with imaginary or real part (if not 
expected)) 

3. infinity in functions (dividing by 0, …) 
4. „frozen“ functions (an extremely long time 

to get a cost value - hrs...) 
5. etc… 

 
Simply, a SP can be regarded here as a mapping 
from an integer individual to the program where it is 
checked for how far the end of the individual is, and 
based on this information a sequence of mapping is 
redirected into a subset with lower number of 
arguments. This satisfies the condition that no 
pathological function will be generated. Other 
activities of SP are integrated parts of cost function 
to satisfy items 2-4, etc. 
 
3.6 Similarities and Differences 

Because AP was partly inspired by GP, then 
between AP, GP and GE some differences as well as 
some similarities logically are there. A few of these 
are:  
 

• Synthesized programs (similarity): AP as 
well as GP and GE is able to do symbolic 
regression in a general point of view. It 
means that output of AP is according to all-
important simulations [Zelinka 2002 a], 
[Zelinka 2002 b], [Zelinka and Oplatkova 
2003], [Zelinka and Oplatkova 2004] and 
[Zelinka, Oplatkova and Nolle 2004] 
similar to programs from GP and GE (see 
www.ft.utb.cz/people/zelinka/ap).  

• Functional set (similarity): APbasic operates 
in principle, on the same set of terminals 
and functions as GP or GE while APmeta or 
APnf use universal constant K (difference) 
which is indexed after program synthesis. 

• Individual coding (difference): coding of an 
individual is different. Analytic 
programming uses an integer index instead 
of direct representation as in canonical GP. 
GE uses the binary representation of an 
individual, which is consequently converted 
into integers for mapping into programs by 
means of BNF [O'Neill and Ryan 2002]. 

• Individual mapping (difference): AP uses 
discrete set handling, [Zelinka 2004] while 
GP in its fundamental form uses direct 
representation in Lisp [Koza 1998] and GE 
uses Backus-Naur form (BNF). 

• Constant handling (difference): GP uses a 
randomly generated subset of numbers – 
constants [Koza 1998], GE utilizes user 
determined constants and AP uses only one 
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constant K for APmeta and APnf, which is 
estimated by other EA or by nonlinear 
fitting. 

• Security procedures (difference): to 
guarantee synthesis of non-pathological 
functions, procedures are used in AP which 
redirect the flow of mapping into subsets of 
a whole set of functions and terminals 
according to the distance of the end of the 
individual. If pathological function is 
synthesized in GP, then synthesis is 
repeated. In the case of GE, when the end 
of an individual is reached, then mapping 
continues from the individual beginning, 
which is not the case of AP. It is designed 
so that a non-pathological program is 
synthesized before the end of the individual 
is reached (maximally when the end is 
reached).  

 
3.7 Some selected programs 

During AP’s development and research simulations, 
various kinds of programs have been synthesized 
(see www.fai.utb.cz/people/zelinka/ap). In (5), (6) 
two mathematical programs are shown for final 
program complexity demonstration, which were 
randomly generated amongst 1000 programs to 
check if the final structure is free of pathologies – 
i.e. if all functions has the right number of 
arguments, etc. In this case, there was no paid 
attention on mathematical reasonability of following 
test programs based on clear mathematical functions. 
 
 
 
 
 

(5) 
 
 
 
 
 
 
 

(6) 
 
 
 
 
 
Other examples come from real comparative 
simulations with GP. Example (7) demonstrates one 
concerning the Boolean problems solution, (8) 
synthesized formula for polynomial fitting problem 
in general form (see general constant K after 
indexing, i.e. K[[1]]…) and (9) its exact and final 
state after nonlinear constants K estimation. 

(7) 

Nand[Nand[Nor[A,B],C&&B],Nor[Nor[C,A],C&&
C&&A]]||Nand[Nand[Nand[C&&A,C&&A],C&&A
&&A],Nand[C&&A||C&&A,A]] 
 
 
 
 

(8) 
 
 
 

(9) 
 
Interested readers can find more at AP website 
www.fai.utb.cz/people/zelinka/ap. 
 
3.8 Analytic Programming - Summary 

Summarily a different approach to the symbolic 
regression called analytic programming is described. 
Based on its results and structure, it can be stated 
that AP appears to be a universal candidate for 
symbolic regression by means of different search 
strategies. Problems on which AP was applied were 
selected from test and theory problems domain as 
well as from real life problems. They were: 
 

• Random synthesis of function from GFS, 
1000 times repeated. The aim of this 
simulation was to check if AP could 
generate pathological function. In this 
simulation, randomly generated individuals 
were created and consequently transformed 
into programs and checked for their internal 
structure. No pathological program was 
identified.  

• sin(t) approximation, 100 times repeated. 
AP was used to synthesize program 
function sin(x) fitting.  

• 

! 

cos(t) + sin(t)  approximation, 100 times 
repeated, the same as in the previous 
example. The main aim was again the 
fitting of dataset generated by a given 
formula. 

• Solving of ordinary differential equations 
(ODE): u’’(t) = cos(t), u(0) = 1, u(π) = -1, 
u’(0) = 0, u’(π) = 0, 100 times repeated. AP 
was searching for suitable function, which 
would solve this case of ODE. 

• Solving of ODE: ((4 + x)u’’(x))’’ + 600u(x) 
= 5000(x-x2), u(0)=0, u(1)=0, u’’(0)=0, 
u’’(1)=0, 5 times repeated (due to longer 
time of simulation in the Mathematica® 
environment). Again as in the previous 
case, AP was used to synthesize a suitable 
function – solution of this kind of ODE. 
This ODE was used from and represents a 
civil engineering problem in reality. 
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• Boolean even and symmetry problems 
according to the [Koza 1998] for 
comparative  reasons. 

• Simple neural network synthesis by means 
of AP – a simple few layered NN synthesis 
was tested by AP. 

• Optimal robot trajectory estimation (56th 
kongres IAC2005, 17-21.10, Fukuoka 
Japan, see also www.iac2005.org ). 

• Controller synthesis – for a selected class of 
systems, a controller was synthesized.  

• Deterministic chaos synthesis [Zelinka, 
Chen, Celikovsky, 2008] 

 
Remaining text in this article is focused on 
dynamical system synthesis. 
 
4 Dynamical System Identification 

4.1 Problem selection 

The class of selected dynamical systems has been 
selected for this case study: 
 

 (10) 

 
 

 

(11) 

 
 

 
(12) 

 
 
 

(13) 
 
 
 
Systems (10) – (13) are stable, excluding system 
(12) which is unstable. This system has been added 
here to check whether EAs are able identify also 
unstable systems and has been selected from a 
representative class of dynamical systems. Systems 
like those above selected are used in the control 
engineering for testing of identification algorithms. 
Due to this fact were selected for simulations in this 
paper. 
 
4.2 The Fitness Function 

The fitness (cost function) has been calculated using 
the distance between the behavior of the original 
system and the synthesized candidate program (14). 
The minimal value (the best solution) is 0 for all 
problems. The aim of all the simulations was to find 
the best solution, i.e. a solution that returns the cost 
value 0.  
 

! 

fcos t = OSi " SSi
i=1

10

#

OSi -  output in the i
th

 iteration 

of the original system

SSi -  output in the ith  iteration 

of the synthesized system

     (14) 

 

4.3 Optimisation Algorithm Used and Parameter 
Setting 

For the experiments described here, stochastic 
optimisation algorithms, such as Differential 
Evolution, version DERand1Bin (DE) [Price 1999] 
and SelfOrganizing Migrating Algorithm, strategy 
All-To-One (SOMA) [Zelinka 2004], had been used.  
 
Differential Evolution [Price, 1999] is a population-
based optimization method that works on real-
number coded individuals. For each individual xi,G in 
the current generation G, DE generates a new trial 
individual x’i,G by adding the weighted difference 
between two randomly selected individuals xr1,G and 
xr2,G to a third randomly selected individual xr3,G. 
The resulting individual x’i,G is crossed-over with 
the original individual xi,G. The fitness of the 
resulting individual, referred to as a perturbated 
vector ui,G+1, is then compared with the fitness of 
xi,G. If the fitness of ui,G+1 is greater than the fitness 
of xi,G, xi,G is replaced with ui,G+1, otherwise xi,G 
remains in the population as xi,G+1. Differential 
Evolution is robust, fast, and effective with global 
optimization ability. It does not require that the 
objective function is differentiable, and it works 
with noisy, epistatic and time-dependent objective 
functions. 
 
SOMA is a stochastic optimization algorithm that is 
modelled on the social behaviour of co-operating 
individuals [Zelinka, 2004]. It was chosen because it 
has been proved that the algorithm has the ability to 
converge towards the global optimum [Zelinka, 
2004]. SOMA works on a population of candidate 
solutions in loops called migration loops. The 
population is initialized randomly distributed over 
the search space at the beginning of the search. In 
each loop, the population is evaluated and the 
solution with the highest fitness becomes the leader 
L. Apart from the leader, in one migration loop, all 
individuals will traverse the input space in the 
direction of the leader. Mutation, the random 
perturbation of individuals, is an important operation 
for evolutionary strategies (ES). It ensures the 
diversity amongst the individuals and it also 
provides the means to restore lost information in a 
population. Mutation is different in SOMA 
compared with other ES strategies. SOMA uses a 
parameter called PRT to achieve perturbation. This 
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parameter has the same effect for SOMA as 
mutation has for GA. 
 
The novelty of this approach is that the PRT Vector 
is created before an individual starts its journey over 
the search space. The PRT Vector defines the final 
movement of an active individual in search space. 
 
The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. If 
an element of the perturbation vector is set to zero, 
then the individual is not allowed to change its 
position in the corresponding dimension. An 
individual will travel a certain distance (called the 
path length) towards the leader in n steps of defined 
length. If the path length is chosen to be greater than 
one, then the individual will overshoot the leader.  
This path is perturbed randomly.  
 
The control parameter settings have been found 
empirically and are given in Table 5 (SOMA) and 
Table 6 (DE). The main criterion for this setting was 
to keep the same setting of parameters as much as 
possible and of course the same number of cost 
function evaluations as well as population size 
(parameter PopSize for SOMA, NP for DE). 
Individual length represents number of optimized 
parameters. For an exact description of the 
algorithms see [Price 1999] for DE and [Zelinka 
2004] for SOMA. 
 

Table 5: SOMA setting  
PathLength 3 
Step 0.11 
PRT 0.1 
PopSize 400 
Migrations 100 
MinDiv -0.1 
Individual Length 100 

 
Table 6: DE setting  

NP 400 
F 0.8 
CR 0.2 
Generations 2000 
Individual Length 100 

 
 
5 EXPERIMENTAL RESULTS 

Both algorithms (SOMA, DE) have been applied 20 
times in order to find the optimal structure of the 
identified dynamical system. The primary aim of 
this comparative study is not to show which 
algorithm is better and worse, but to show that AP 
can be actually used for different problems of 
symbolic regression by different EAs also based on 
previous comparative studies and case studies 
[Zelinka 2002 a], [Zelinka 2002 b], [Zelinka and 
Oplatkova, 2003], [Zelinka and Oplatkova, 2004],  

[Zelinka, Oplatkova and Nolle 2004], and [Zelinka, 
Chen, Celikovsky, 2008]. Outputs of all simulations 
are depicted in Figures 8 - 13 and numerically 
reported in Tables 7.  Histograms 8 – 11 report 
frequency of fitness based on successful simulations. 
It is important to note that system (13) at Figure. 11 
has been successfully synthesized only 3 times. This 
is probably due to the structure of the cost function 
and is open for future research. Simulation for the 
remaining systems has been successful for all 20 
simulations. In Figure 12 and 13 is a typical example 
of synthesized system response.  
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Figure 8  Histogram of system (10), randomly 
selected results are reported in (Table 7)  
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Figure 9. Histogram of system (11), randomly 
selected results are reported in (Table 7) 
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Figure 10. Histogram of system (12), randomly 
selected results are reported in (Table 7) 
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Figure 11. Histogram of system (13), randomly 
selected results are reported in (Table 7) 
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Figure 12. Typical synthesized system response for 
system (11). 
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Figure 13. Zoom from Figure 12. Small bars with 
squares in the middle represents minimal, maximal 
and average values calculated from all simulations 
for studied system. Two lines are response of the 
original system and the best approximation by 
synthesized system.  

 
The structure of the synthesized systems was found 
to be quite rich. As an example, reported here is the 
selected results for systems (11) by (15) (in general 
structure with nonestimated constants) and (16) 
(final form, estimated constants and converted to 
time domain). 
  

 
 
 

(15) 
 
 
 
 
 
 
 
 

(16) 
 
 
6 CONCLUSIONS 

The method of analytic programming described here 
is relatively simple, easy to implement and easy to 
use. Based on its principles and its universality (it 
was tested with 4 evolutionary algorithms – SA, GA, 
SOMA and DE in the past, see for example [Zelinka, 
Oplatkova, Nolle 2004] or [Zelinka, Chen, 
Celikovski, 2008] it can be stated that AP is a 
superstructure of an algorithm rather than an 
algorithm itself. 
 
The main aim of this paper was to show how the 
structure of the various dynamical systems can be 
identified by means of evolutionary algorithms 
applied in AP. Analytic programming was used here 
in basic comparative simulations. Each comparative 
simulation was repeated 100 times and all results 
were used to create graphs and tables for AP 
performance evaluation.  
 
For the comparative study here two algorithms were 
used - DE [Price 1999] and SOMA [Zelinka 2004]. 
A wide variety of optimisation algorithms, i.e. with 
different structures and their different abilities to 
locate the global extreme, were chosen to prove that 
AP can be regarded as an equivalent to GP (at least 
in the domain of used problems), and that it can be 
implemented using arbitrary evolutionary 
algorithms. As a conclusion, the following 
statements are presented: 
 

1. Results reached. Based on results reported 
in Tables and Figures it can be stated that 
all simulations give satisfactory results and 
thus AP is capable of solving these classes 
of problems. 

2. Mutual comparison. When comparing 
both algorithms, it is apparent that both 
algorithms give good results. Parameter 
settings for both algorithms were based on 
a heuristical approach and thus there is a 
possibility that better settings can be found. 

3. Universality. AP was used to solve 
differential equations [Zelinka 2002 b], 
trigonometrically data fitting [Zelinka 2002 
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a], four polynomial problems from [Koza 
1998] (Sextic, Quintic, Sinus Three, Sinus 
Four) by four EAs in [Zelinka and 
Oplatkova, 2003] and Boolean even - k - 
parity and k - symmetry functions synthesis 
[Zelinka and Oplatkova, 2004], [Zelinka, 
Oplatkova and Nolle 2004] and [Zelinka, 
Chen, Celikovsky, 2008]. Together with the 
results reported here, it can be stated that 
AP seems to be a universal method for 
symbolic regression by means of arbitrary 
EAs. 

4. Failure. The synthesis of selected 
dynamical systems failed for system (13). 
One of possible explanations of this event 
is that the cost function or algorithms 
parameters should be defined in a different 
way.  

 
Future research is one of the key activities in the 
frame of AP. According to all results obtained 
during the time it is planned that the main activities 
would be focused on: 
 

• Expanding of this comparative study for 
genetic algorithms and simulated annealing, 
(and other evolutionary techniques). 
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Table 7 Results 
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