I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

EVOLUTIONARY IDENTIFICATION OF DYNAMICAL
SYSTEMS

IVAN ZELINKA
ROMAN SENKERIK
ZUZANA OPLATKOVA

Faculty of Applied Informatics
Department of Applied Informatics
Tomas Bata University in Zlin
Nad Stranemi 4511 Zlin, Czech Republic
Email: {zelinka,senkerik,oplatkova}@fai.utb.cz

Abstract: Synthesis, identification and control of the complex dynamical systems are usually extremely
complicated. When classics methods are used, some simplifications are required which tends to lead to idealized
solutions that are far away to reality. In contrast, the class of methods based on evolutionary principles is
successfully used to solve this kind of problems with a high level of precision. In this paper a novel method is
discussed which has been successfully proven in many simulations like neural network synthesis and electrical
circuit synthesis. Typical examples are discussed, alongside the use of evolutionary algorithms on dynamical

system synthesis - identification.

Keywords: symbolic regression, genetic programming, grammar evolution, analytic programming, SOMA

1 INTRODUCTION

The term symbolic regression (SR) represents a
process, in which measured data is fitted by a
suitable mathematical formula such as x*> + C,
sin(x)+1/€*, etc., Mathematically, this process is
quite well known and can be used when data of an
unknown process is obtained. Historically SR has
been in the preview of manual manipulation,
however during the recent past, a large inroad has
been made through the use of computers. Generally,
there are two well-known methods, which can be
used for SR by means of computers. The first one is
called genetic programming or GP [Koza, 1998;
Koza et al., 1999] and the other is grammatical
evolution [O'Neill and Ryan, 2002; Ryan et al.,
1998].

The idea as to how to solve various problems using
SR by means of evolutionary algorithms (EA) was
introduced by John Koza who wused genetic
algorithms (GA) for GP. Genetic programming is
basically a symbolic regression, which is done by
using of evolutionary algorithms instead of a human
brain. The ability to solve very difficult problems is
now well established, and hence, GP today performs
so well that it can be applied, e.g. to synthesize
highly sophisticated electronic circuits [Koza et al.
2003].

In the last decade of the 20™ century, C. Ryan
developed a novel method for SR, called
grammatical evolution (GE). Grammatical evolution
can be regarded as an unfolding of GP because of
some common principles, which are the same for

IJSSST, Vol. 9, No. 3, September 2008 47

both algorithms. One important characteristic of GE
is that it can be implemented in any arbitrary
computer language compared with GP, which is
usually done (in its canonical form) in LISP. In
contrast to other evolutionary algorithms, GE was
used only with a few search strategies, with a binary
representation of the populations [O'Sullivan and
Ryan, 2002]. Another interesting investigation using
symbolic regression was carried out by [Johnson
2003] working on Artificial Immune Systems or/and
systems which are not using tree structures like
linear genetic programming (full text is at
https://eldorado.uni-dortmund.de/bitstream/2003/
20098/2/Brameierunt.pdf) and another similar
algorithm to AP, Multi Expression Programming
(see http://www.mep.cs.ubbcluj.ro/).

In this paper, a different method is presented which
is called analytic programming (AP) [Zelinka 2002
a], [Zelinka 2002 b], [Zelinka and Oplatkova, 2003],
[Zelinka and Oplatkova, 2004], [Zelinka, Chen,
Celikovski, 2008]. AP is also a tool for symbolic
regression, based on different principles compared to
GP and GE. The important principles of AP,
together with tests and a comparison of its main
principles with GP and GE, are presented.

2 MOTIVATION

The motivation to develop analytic programming
was based on several facts. In the case of GP,
individuals consist of various functions and
terminals [Koza 1998]. For example, when an
offspring is created, the principles of GA are used
and two chromozomes are cut into two parts, which

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

are then exchanged. It means that the main
principles of GA are a part of GP. When the same
philosophy is followed in the case of different
algorithms, for example in differential evolution
(DE), [Price 1999], incorrect functional structures
would be obtained. This is due to the fact that the
offspring creation in DE is based on arithmetical
operations. Their usage ensures that when a new
individual (offspring - trial vector) is created via a
noisy vector, then the n™ parameter can look like
“F*(cos()-tan()) + mod()” after direct application of
DE rules. It is clear that there is no direct way to
create a program based on such kinds of operations.

A similar situation of GP exists for GE, because the
individual is also represented in the binary string and
a new offspring is created in a similar way as in GP
(crossover, mutation). Despite this fact, there is one
theoretical possibility as to how GE can be used by
an arbitrary evolutionary algorithm and some
investigations were made in [O'Sullivan and Ryan
2002]. Because there is no possible use of GP and
GE in their fundamental forms by arbitrary
evolutionary algorithm, it would be suitable to
develop some universal method for symbolic
regression. A method, showing attributes of such
universality was developed during 2000-2003 and it
is called analytic programming (AP). The remaining
part of this paper is focused on its brief description
of existing methods and simulations on selected case
examples.

3 GENETIC PROGRAMMING AND
GRAMMATICAL EVOLUTION

The term genetic programming (GP) was coined by
JR. Koza (see for example [Koza 1998]). Main
principle of GP is based on genetic algorithm which
is working with a population of individuals,
represented in LISP programming language.
Individuals, in its canonical form of GP, are not
binary strings as is the case for GA, but consist of
LISP symbolic objects like sin(), +, Exp(),
MyFunction, etc. The origin of these objects are
from LISP or they are simply user defined functions.
Symbolic objects are usually divided into two
classes: functions and terminals. Functions were just
explained and terminals represent a set of
independent variables like X, y, and constants like 7,
3.56, etc here.

The main principle of GP is usually demonstrated by
means of so-called trees (basically graphs with
nodes and edges, Figures 1 and 2) representing
individuals in LISP symbolic syntax. Individual in
the shape of a tree, or formula like 0.234 z + x —
0.789 are called programs. Because GP is based on
GA, then evolutionary steps (mutation, crossover,
...) in GP are in principle the same as in GA. As an
example of GP, assume two artificial parents — trees
in Figure 1 and 2 representing programs (0.234 z + x

IJSSST, Vol. 9, No. 3, September 2008 48

—0.789 and zy (y+0.314 z). When a crossover is
applied, then, for example, subset of trees are
exchanged. The resulting offspring’s are given in
Figure 2.

Parent 1 Parent 2
®)
®
® ©
@ @»
Z*%0.234+X-0.789 Z*Y*(Y +72%0.314)

Figure 1: Parental program in genetic programming

Offspring 1 Offspring 2

¥ +7Z*0314)+ X -0.789

Z*Y *(Z2%*0.243)

Figure 2: Offspring program in genetic
programming

Subsequently, the offspring’s fitness is calculated so
that behaviour of just synthesized and evaluated
individual-tree should ideally be similar to the
desired behavior. The term desired behaviour can be
understood as a measured data set from some
process (program should fit them as well as
possible) or like optimal robot trajectory, i.e.
program is a realization of a sequence of robot
commands (Move Left, Stop, Go_ Forward,...)
leading to the final position as ideally as possible.
This is basically the same for GE and AP. Due to the
complex and rich theory of GP, it is recommended
for detailed description of GP to see [Koza 1998],
[Koza 1999].

Another method doing the same procedure, from the
point of view of the resulting program like GP was
developed [O'Neill, Ryan 2002] and is called
grammatical evolution.

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

Grammatical evolution is in its canonical form based
on GA, however thanks to a few important changes
it has a few advantages when compared to GP. The
main difference is individual coding. Whereas GP
manipulates in LISP symbolic expressions, GE uses
individuals, based on binary strings. These are
transformed into integer sequences and mapped into
final program by means of so called Backus-Naur
form (BNF) by the following artificial example.
Assume that T = {+,-,*,/, X, Y} is a set of operators
and terminals and F = {epr, op, var}, the so called
nonterminals. In this case, grammar used for final
programme synthesis is given by Table 1. Rules
used for individual transforming into a program is
based on (1). Grammatical evolution is based on
binary chromosome with variable length, divided
into so called codons (range of integer value 0-255),
which is transformed into a integer domain
according to Table 2.

unfolding = codon mod rules (1)

where rules is number of rules for given nonterminal

Table 1: GE grammar in artificial example

Nonterminals Unfolding Index
expr n= Op exXpr expr (0)
var (D
op = + 0)
- 1"
* 2°)
/ (€))
var n= X 0)
Y 1)
Table 2: Chromozome transformation
Chromozome | Binary Integer | BNF index
Codon 1 00101000 40 (0)
Codon 2 11000011 162 ()
Codon 3 00001100 67 (1)
Codon 4 10100010 12 (0)
Codon § 01111101 125 (1)
Codon 6 11100111 231 (1)
Codon 7 10010010 146 Unused
Codon 8 10001011 139 Unused

Synthesis of actual programme is as follows: Start
begins with nonterminal object expr. Because
integer value of Codon 1 (see Table 2) is 40 then
according to (1) is unfolding of expr = op expr expr
(40 mod 2, 2 rules for expr, i.e. (0) and (1)).
Consequently, Codon 2 is used for unfolding of op
by * (162 mod 4) which is terminal and thus
unfolding for this part of program is closed. Then it
continues in unfolding of the remaining
nonterminals (expr expr) till the final program is
fully closed by terminals. If the program is closed
before the end of the chromosome is reached, then
the remaining codons are ignored. Otherwise it

IJSSST, Vol. 9, No. 3, September 2008 49

continues again from the beginning of the
chromosome. The final program is based on the
described example is in this case X*Y (see Figure
3). For fully detailed description of GE principles, it
is recommended to see [O'Neill, Ryan 2002].

expr

op expr expr N
| | | N——
var var
X Y

X*y

Figure 3: Tree structure of final program.

3 ANALYTIC PROGRAMMING
3.1 General Ideas

Very similar introduction is in [Zelinka, Oplatkova,
Nolle, 2005], however for readers comfort we have
decided to partly repeat rewritten introduction of AP
here.

The term analytic programming was coined by the
authors of this article as a matter of simplicity: Since
it is possible to use almost any evolutionary
algorithm (computationally verified) for AP, each
EA used for the new approach would add its name to
the emerging algorithm, e.g. SOMA [Zelinka 2004]
programming, DE programming, SA programming
etc. This clearly would be confusing and
complicated. Analytic programming indicates the
use of an EA for analytic solutions synthesis (i.e.
symbolic regression), thus it was the main reason for
choosing the term ‘analytic programming’.

Analytic programming was inspired by the
numerical methods in Hilbert functional spaces and
by GP. The principles of AP lie somewhere between
these two philosophies: From GP stems the idea of
the evolutionary creation of symbolic solutions,
whereas the general ideas of functional spaces and
the building of resulting function by means of a
search process (usually done by numerical methods
such as the Ritz or Galerkin method) are adopted
from Hilbert spaces. Like GP or GE, AP is based on
a set of functions, operators and so-called terminals,
which are wusually constants or independent
variables, for example:

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

¢ functions: Sin, Tan, Tanh, And, Or
e operators: +, -, *, /, dt,...
* terminals: 2.73, 3.14, t,...

All these ‘mathematical’ objects create a set from
which AP tries to synthesize an appropriate solution.
The main principle of AP is based on discrete set
handling (DSH), proposed in [Zelinka 2004] (see
Figure 4). Discrete set handling itself can be seen as
a universal interface between EA and the problem to
be solved symbolically. That is why AP can be
carried out using almost any evolutionary algorithm.
Analytical programming, together with a few basic
examples, is discussed in more detail in [Zelinka and
Oplatkova, 2003].

Individual ~ {X{, X, X3, X4, Xs, Xg, ---}

N
- A\

Discrete set {-1, 44.35, 99, 231, True, False, -65.44, -0.01,|.... }

\\\\I///

{1,2,3,4,5,6,7,8, ..
|

Integer index

No Yes
Costfunction F (x}, ... %y ..) = % B
sin(x,) A

Figure 4: Discrete set handling.

The set of mathematical objects are functions,
operators and so-called terminals (usually constants
or independent variables). All these objects are
mixed together as shown in Figure 5 and consists of
functions with different number of arguments.
Because of the variability of the content of this set, it
is called for article purposes, “general functional
set” — GFS. The structure of GFS is nested i.e. it is
created by subsets of functions according to the
number of their arguments. The content of GFS is
dependent only on the user. Various functions and
terminals can be mixed together. For example GFS
is a set of all functions, operators and terminals,
GFS3a is a subset containing functions with only
three arguments, GFSy, represents only terminals,
etc.

GFS,; = {+,-,," Sin, Cos, Tan, t, X, Mod, ...}
GFS3q = {User_Function, Beta, ...}
GFSy4g= {Log, Mod, Gamma, . }

GFSj4= {Sin, Cos, Tan, Abs, ...}

GFSpag= L, X, y, 70, ...}

Figure 5: Principle of the general functional set

IJSSST, Vol. 9, No. 3, September 2008 50

Briefly, in AP, individuals consist of non-numerical
expressions (operators, functions,...) as described
above, which are in the evolutionary process
represented by their integer indexes (Figure 6 and 7).
This index then serves as a pointer into the set of
expressions and AP uses it to synthesize the
resulting function-program for cost function
evaluation.

AP was tested in three versions. All three versions
used for program synthesis the same sets of
functions, terminals, etc., as Koza applied in GP
[Koza 1998], [Koza et al 1999]. The second version
(AP pers, termed first version APyp,.) is modified in
the sense of constant estimation. For example, Koza
used for the so-called sextic problem [Koza 1998]
randomly generated constants, whereas AP here uses
only one, called K which is inserted into the formula
(2) at various places, by the evolutionary process.
When a program is synthesized, then all K’s are
indexed so that K, K5, ..., K, are obtained (3) in the
formula, and then all K, are estimated using a
second evolutionary algorithm (4). Because EA
(slave) “works under” EA (master, i.e. EApaster P
program P K indexing P EAg,.. P estimation of
K,) then this wversion is called AP with
metaevolution - APt

2

x"+K

)

JTK

x’ +K,

— (3)
T
2

x“+3.56 @
.7'[—229

Because this version is quite time consuming, AP e,
was modified to the third version, which differs from
the second one in the estimation of K. This is done
by using a suitable method for non-linear fitting
(AP,¢). This method has shown the most promising
performance when unknown constants are present.
Results of some comparative simulations can be
found in [Zelinka 2002 a], [Zelinka 2002 b],
[Zelinka and Oplatkova 2003], [Zelinka and
Oplatkova 2004], [Zelinka, Oplatkova and Nolle
2004]. For the simulations described here, AP, was
used.

3.2 Data Set Structure and Mapping Method

The subset structure presence in GFS is vitally
important for AP. It is used to avoid synthesis of
pathological programs, i.e. programs containing
functions without arguments, etc. Performance of
AP is, of course, improved if functions of GFS are
expertly chosen based on experiences with solved
problem.

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

The important part of the AP is a sequence of
mathematical operations, which are used for
program synthesis. These operations are used to
transform an individual of a population into a
suitable program. Mathematically said, it is mapping
from an individual domain into a program domain.
This mapping consists of two main parts. The first
part is called discrete set handling (DSH) and the
second one is security procedures, which do not
allow to synthesize pathological programs. Discrete
set handling proposed in [Lampinen, Zelinka 1999],
[Zelinka 2004] is used to create an integer index,
which is used in the evolutionary process like an
alternate individual handled in EA by method of
integer handling. The method of DSH, when used,
allows to handle arbitrary objects including
nonnumeric objects like linguistic terms {hot, cold,
dark,...}, logic terms (True, False) or other user
defined functions. In AP, DSH is used to map an
individual into GFS and together with security
procedures (SP) creates above mentioned mapping
which transforms arbitrary individual into a
program. Individuals in the population consist of
integer parameters, i.e. an individual is an integer
index pointing into GFS.

Analytic programming is basically a series of
function mapping. Presented in Figure 6 and 7, is a
demonstrated example of how a final function is
created from an integer individual. Number 1 in the
position of the first parameter means that the
operator “+” from GFS,; is used (the end of the
individual is far enough). Because the operator “+”
has to have at least two arguments, the next two
index pointers 6 (sin from GFS) and 7 (cos from
GFS) are dedicated to this operator as its arguments.
Both functions, sin and cos, are one-argument
functions so the next unused pointers 8 (tan from
GFS) and 9 (t from GFS) are dedicated to sin and
cos function. Because as an argument of cos is used,
variable t on this part of resulting function is closed
(t is zero-argument) in its AP development. One-
argument function tan remains and because there is
one unused pointer 9, tan is mapped on “t” which is
on 9™ position in GFS.

To avoid synthesis of pathological functions, a few
security “tricks” are used in AP. The first one is that
GFS consists of subsets containing functions with
the same number of arguments. Existence of this
nested structure is used in the special security
subroutine which measures as to how far the end of
individual is and according to this, objects from
different subsets are selected to avoid pathological
function synthesis. If more arguments are desired
than it is possible (the end of the individual is near),
the function will be replaced by another function
with the same index pointer from subset with lower
number of arguments. For example, it can occur if
the last argument for one argument function will not

IJSSST, Vol. 9, No. 3, September 2008 51

be terminal (zero-argument
demonstrated in Figure 7.

function) as

GFS need not be constructed only from clear
mathematical functions as is demonstrated, but also
other user-defined functions, which can be used, e.g.
logical functions, functions which represent
elements of electrical circuits or robot movement
commands.

3.3 Crossover, Mutations and Other Evolutionary
Operations

During the evolution of a population, different
operators are used, such as crossover and mutation.
In comparison with GP or GE, evolutionary
operators like mutation, crossover, tournament, and
selection are fully in the competence of the used
evolutionary algorithm. Analytic programming does
not contain them in any point of view in its internal
structure. Analytic programming is created like
superstructure of EAs for symbolic regression
independent on their algorithmical structure.
Operations used in evolutionary algorithms are not
influenced by AP and vice versa. For example, if DE
is used for symbolic regression in AP then all
evolutionary operations are done according to the
DE rules.

Individual parameters {1, 6, 7, 8, 9, 9} are used by AP like
pointers into GFS and through serie of mappings m1 - m5
final formula sin(tan(?)) + cos(?) is created.

m1 m3 m5
3 3
Individual = {1, 6, 7, 8, 9, 9}

m2 m4

1T

/)

R /

sin(tan(?)) + cos(t)

m1 m3 m5

1 Wy

GFS,, = {+, -, /, ", d/dt, sin, cos, tan, t, Q, mod, ...}
[4 4

m2 mé4

Figure 6: Main and simplified principle of AP

Individual parameters {1, 6, 7, 8, 9, 9} are used by AP like
pointers into GFS and through serie of mappings m1 - m5
final formula sin(tan(#)) + cos(¢) is created.

m1 m3 mb5

e

Individual = {1, 6, 7, 8, 9, w in(tan(Mod(?)) + cos(1)
l_f|_f sin(tan(Mod(?)) + cost
m2 mé4

Without security

JC

| With security sin(tan(sz) +cos(7)

VI
GFS, ={t, x,y,7, 2.6, K, 33.986,C4, m, 2, Q, ...}

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

Figure 7: AP principle with security principles.
According to the main idea of AP, a Mod function
would be selected as an argument for Tan function.
When security subroutine measure how far the end
of individual is, then Mod is replaced by Q from the
terminal subset.

3.4 Reinforced Evolution

During evolution, less or more suitable individuals
are synthesized. Some of these individuals are used
to reinforce evolution towards better solution
synthesis. The main idea of reinforcement is based
on addition of just synthesized and partly successful
program into initial set of terminals. Reinforcement
is based on user-defined threshold (temporarily
acceptable cost value or fitness) used in the decision
as to which individual will be used for addition into
the initial set of terminals.

For example, if the threshold is set to 5, and fitness
of all individuals - programs in the population is
larger than 5, then the evolution is running on basic,
i.e. initial GFS. When the best of all individuals in
the actual population is less than 5, then it is
completely added into the initial GFS and is marked
like terminal. Henceforth, the evolution is running
on enriched GFS containing partially successful
program. Thanks to this fact, evolution is able to
synthesize final solutions much faster than AP
without reinforcement. This fact has be exhaustively
verified through countless simulations on a number
of different problems. When a program is added into
GFS, then the threshold is also set to its fitness. If
another individual with lower fitness is found, the
threshold is synthesized and the older threshold is
overwritten by the new value.

It is quite similar to automatically defined functions
(ADF) from GP, however the set of functions and
terminals in GP can contain more than one ADF
(which of course, theoretically increase complexity
of searched space according to N!) including
properly defined arguments of these ADF and
critical situations checking (selfcalling,...). This is
not a problem of AP reinforcement, because the
added program into initial GFS is regarded like a
terminal (or terminal structure), i.e. no function, no
arguments, no selfcalling, etc. and cardinality of
initial GFS set increase only by one.

3.5 Security procedures

Security procedures (SP) included in AP as well as
in GP, are used to avoid various critical situations. In
the case of AP security procedures were not
developed for AP purposes after all, but they are
mostly an integrated part of AP. However,
sometimes they have to be defined as a part of cost
function, based on the kind of situation arising (for

IJSSST, Vol. 9, No. 3, September 2008 52

example situation 2, 3 and 4, see below). Critical
situations are like:

1. pathological function (without arguments,
self-looped...)

2. functions with imaginary or real part (if not
expected))

3. infinity in functions (dividing by 0, ...)

4. ,frozen® functions (an extremely long time
to get a cost value - hrs...)

5. ete...

Simply, a SP can be regarded here as a mapping
from an integer individual to the program where it is
checked for how far the end of the individual is, and
based on this information a sequence of mapping is
redirected into a subset with lower number of
arguments. This satisfies the condition that no
pathological function will be generated. Other
activities of SP are integrated parts of cost function
to satisfy items 2-4, etc.

3.6 Similarities and Differences

Because AP was partly inspired by GP, then
between AP, GP and GE some differences as well as
some similarities logically are there. A few of these
are:

e Synthesized programs (similarity): AP as
well as GP and GE is able to do symbolic
regression in a general point of view. It
means that output of AP is according to all-
important simulations [Zelinka 2002 a],
[Zelinka 2002 b], [Zelinka and Oplatkova
2003], [Zelinka and Oplatkova 2004] and
[Zelinka, Oplatkova and Nolle 2004]
similar to programs from GP and GE (see
www.ft.utb.cz/people/zelinka/ap).

* Functional set (similarity): APy, Operates
in principle, on the same set of terminals
and functions as GP or GE while AP, or
AP, ruse universal constant K (difference)
which is indexed after program synthesis.

* Individual coding (difference): coding of an
individual is different. Analytic
programming uses an integer index instead
of direct representation as in canonical GP.
GE uses the binary representation of an
individual, which is consequently converted
into integers for mapping into programs by
means of BNF [O'Neill and Ryan 2002].

* Individual mapping (difference): AP uses
discrete set handling, [Zelinka 2004] while
GP in its fundamental form uses direct
representation in Lisp [Koza 1998] and GE
uses Backus-Naur form (BNF).

* Constant handling (difference): GP uses a
randomly generated subset of numbers —
constants [Koza 1998], GE utilizes user
determined constants and AP uses only one

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

constant K for AP, and AP, which is
estimated by other EA or by nonlinear
fitting.

* Security procedures (difference): to
guarantee synthesis of non-pathological
functions, procedures are used in AP which
redirect the flow of mapping into subsets of
a whole set of functions and terminals
according to the distance of the end of the
individual. If pathological function is
synthesized in GP, then synthesis is
repeated. In the case of GE, when the end
of an individual is reached, then mapping
continues from the individual beginning,
which is not the case of AP. It is designed
so that a non-pathological program is
synthesized before the end of the individual
is reached (maximally when the end is
reached).

3.7 Some selected programs

During AP’s development and research simulations,
various kinds of programs have been synthesized
(see www.fai.utb.cz/people/zelinka/ap). In (5), (6)
two mathematical programs are shown for final
program complexity demonstration, which were
randomly generated amongst 1000 programs to
check if the final structure is free of pathologies —
ie. if all functions has the right number of
arguments, etc. In this case, there was no paid
attention on mathematical reasonability of following
test programs based on clear mathematical functions.

1

L (e

cosh| cot

log| e
(%)

tog{~coth™ (/=1 - cosh™ (i)

sec™ (1.28) . .
et

log(t)

Other examples come from real comparative
simulations with GP. Example (7) demonstrates one
concerning the Boolean problems solution, (8)
synthesized formula for polynomial fitting problem
in general form (see general constant K after
indexing, i.e. K[[1]]...) and (9) its exact and final
state after nonlinear constants K estimation.

(7

IJSSST, Vol. 9, No. 3, September 2008 53

Nand[Nand[Nor[A,B],C&&B],Nor[Nor[C,A],C&&
C&&A]]|[Nand[Nand[Nand[C&&A,C&&A],C&&A
&&A]Nand[C&&A||C&&A,A]]

(k)

K+—y >
1K (KK

%
®)
(-1+ K, +2x(-x - K,))

x (1.99 + 2(2.14™"7 - x) x)(0.50 - 0.50x%) (9)
Interested readers can find more at AP website
www.fai.utb.cz/people/zelinka/ap.

3.8 Analytic Programming - Summary

Summarily a different approach to the symbolic
regression called analytic programming is described.
Based on its results and structure, it can be stated
that AP appears to be a universal candidate for
symbolic regression by means of different search
strategies. Problems on which AP was applied were
selected from test and theory problems domain as
well as from real life problems. They were:

* Random synthesis of function from GFS,
1000 times repeated. The aim of this
simulation was to check if AP could
generate pathological function. In this
simulation, randomly generated individuals
were created and consequently transformed
into programs and checked for their internal
structure. No pathological program was
identified.

* sin(t) approximation, 100 times repeated.
AP was used to synthesize program
function sin(x) fitting.

. ||cos(t)|+sin(t)| approximation, 100 times

repeated, the same as in the previous
example. The main aim was again the
fitting of dataset generated by a given
formula.

* Solving of ordinary differential equations
(ODE): u”’(t) = cos(t), u(0) = 1, u(n) = -1,
u’(0) =0, u’(m) = 0, 100 times repeated. AP
was searching for suitable function, which
would solve this case of ODE.

¢ Solving of ODE: ((4 + x)u’’(x))”’ + 600u(x)
= 5000(x-x2), u(0)=0, u(1)=0, u’’(0)=0,
u’(1)=0, 5 times repeated (due to longer
time of simulation in the Mathematica®
environment). Again as in the previous
case, AP was used to synthesize a suitable
function — solution of this kind of ODE.
This ODE was used from and represents a
civil engineering problem in reality.

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

* Boolean even and symmetry problems
according to the [Koza 1998] for
comparative reasons.

* Simple neural network synthesis by means
of AP — a simple few layered NN synthesis

was tested by AP.
» Optimal robot trajectory estimation (56"
kongres IAC2005, 17-21.10, Fukuoka

Japan, see also www.iac2005.org).

¢ Controller synthesis — for a selected class of
systems, a controller was synthesized.

* Deterministic chaos synthesis [Zelinka,
Chen, Celikovsky, 2008]

Remaining text in this article is focused on
dynamical system synthesis.

4 Dynamical System Identification

4.1 Problem selection

The class of selected dynamical systems has been
selected for this case study:

1
42541 (10)
1
(s+1)° (1n)
1-0,5s
s(s+ 1) (12)
1

(13)
(1+5)(1+0,55)(1+0,5%s)(1+0,5%s)

Systems (10) — (13) are stable, excluding system
(12) which is unstable. This system has been added
here to check whether EAs are able identify also
unstable systems and has been selected from a
representative class of dynamical systems. Systems
like those above selected are used in the control
engineering for testing of identification algorithms.
Due to this fact were selected for simulations in this

paper.

4.2 The Fitness Function

The fitness (cost function) has been calculated using
the distance between the behavior of the original
system and the synthesized candidate program (14).
The minimal value (the best solution) is 0 for all
problems. The aim of all the simulations was to find
the best solution, i.e. a solution that returns the cost
value 0.

IJSSST, Vol. 9, No. 3, September 2008 54

10
f;:ost = E|OSl - SS1|

i=1
OS; - output in the i" iteration

of the original system (14)

SS. - output in the i"™ iteration

of the synthesized system

4.3 Optimisation Algorithm Used and Parameter
Setting

For the experiments described here, stochastic
optimisation algorithms, such as Differential
Evolution, version DERand1Bin (DE) [Price 1999]
and SelfOrganizing Migrating Algorithm, strategy
All-To-One (SOMA) [Zelinka 2004], had been used.

Differential Evolution [Price, 1999] is a population-
based optimization method that works on real-
number coded individuals. For each individual x; ¢ in
the current generation G, DE generates a new trial
individual x’; by adding the weighted difference
between two randomly selected individuals x,, g and
XpG to a third randomly selected individual X3 .
The resulting individual x’;g is crossed-over with
the original individual x;g. The fitness of the
resulting individual, referred to as a perturbated
vector u;g+;, 1S then compared with the fitness of
Xic. If the fitness of w; g is greater than the fitness
of Xig, Xig is replaced with u;gs, otherwise Xx;g
remains in the population as x;g+. Differential
Evolution is robust, fast, and effective with global
optimization ability. It does not require that the
objective function is differentiable, and it works
with noisy, epistatic and time-dependent objective
functions.

SOMA is a stochastic optimization algorithm that is
modelled on the social behaviour of co-operating
individuals [Zelinka, 2004]. It was chosen because it
has been proved that the algorithm has the ability to
converge towards the global optimum [Zelinka,
2004]. SOMA works on a population of candidate
solutions in loops called migration loops. The
population is initialized randomly distributed over
the search space at the beginning of the search. In
each loop, the population is evaluated and the
solution with the highest fitness becomes the leader
L. Apart from the leader, in one migration loop, all
individuals will traverse the input space in the
direction of the leader. Mutation, the random
perturbation of individuals, is an important operation
for evolutionary strategies (ES). It ensures the
diversity amongst the individuals and it also
provides the means to restore lost information in a
population. Mutation is different in SOMA
compared with other ES strategies. SOMA uses a
parameter called PRT to achieve perturbation. This

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

parameter has the same effect for SOMA as
mutation has for GA.

The novelty of this approach is that the PRT Vector
is created before an individual starts its journey over
the search space. The PRT Vector defines the final
movement of an active individual in search space.

The randomly generated binary perturbation vector
controls the allowed dimensions for an individual. If
an element of the perturbation vector is set to zero,
then the individual is not allowed to change its
position in the corresponding dimension. An
individual will travel a certain distance (called the
path length) towards the leader in n steps of defined
length. If the path length is chosen to be greater than
one, then the individual will overshoot the leader.
This path is perturbed randomly.

The control parameter settings have been found
empirically and are given in Table 5 (SOMA) and
Table 6 (DE). The main criterion for this setting was
to keep the same setting of parameters as much as
possible and of course the same number of cost
function evaluations as well as population size
(parameter PopSize for SOMA, NP for DE).
Individual length represents number of optimized
parameters. For an exact description of the
algorithms see [Price 1999] for DE and [Zelinka
2004] for SOMA.

Table 5: SOMA setting

PathLength 3
Step 0.11
PRT 0.1
PopSize 400
Migrations 100
MinDiv -0.1
Individual Length 100

Table 6: DE setting

NP 400
F 0.8
CR 0.2
Generations 2000
Individual Length 100

5 EXPERIMENTAL RESULTS

Both algorithms (SOMA, DE) have been applied 20
times in order to find the optimal structure of the
identified dynamical system. The primary aim of
this comparative study is not to show which
algorithm is better and worse, but to show that AP
can be actually used for different problems of
symbolic regression by different EAs also based on
previous comparative studies and case studies
[Zelinka 2002 a], [Zelinka 2002 b], [Zelinka and
Oplatkova, 2003], [Zelinka and Oplatkova, 2004],

IJSSST, Vol. 9, No. 3, September 2008 55

[Zelinka, Oplatkova and Nolle 2004], and [Zelinka,
Chen, Celikovsky, 2008]. Outputs of all simulations
are depicted in Figures 8 - 13 and numerically
reported in Tables 7. Histograms 8 — 11 report
frequency of fitness based on successful simulations.
It is important to note that system (13) at Figure. 11
has been successfully synthesized only 3 times. This
is probably due to the structure of the cost function
and is open for future research. Simulation for the
remaining systems has been successful for all 20
simulations. In Figure 12 and 13 is a typical example
of synthesized system response.

0.4 0.6 0.8 1.0

Fitness

Figure 8 Histogram of system (10), randomly
selected results are reported in (Table 7)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fitness

Figure 9. Histogram of system (11), randomly
selected results are reported in (Table 7)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fitness

Figure 10. Histogram of system (12), randomly
selected results are reported in (Table 7)

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

2.0

1L
S

0.5

0.0
0.30 0.35 0.40 0.45 0.50 0.55 0.60

Fitness

Figure 11. Histogram of system (13), randomly
selected results are reported in (Table 7)

t

Figure 12. Typical synthesized system response for
system (11).

1.00

095

0.85F

080, 5 s 7 3 5 10
t

Figure 13. Zoom from Figure 12. Small bars with
squares in the middle represents minimal, maximal
and average values calculated from all simulations
for studied system. Two lines are response of the
original system and the best approximation by
synthesized system.

The structure of the synthesized systems was found
to be quite rich. As an example, reported here is the
selected results for systems (11) by (15) (in general
structure with nonestimated constants) and (16)
(final form, estimated constants and converted to
time domain).

IJSSST, Vol. 9, No. 3, September 2008 56

s(-s+ K, —K62))

K(+s+K;)(s+s" -
K, (15)

2
(5 - K)o+ 25(s+ K,))
2 K7 8

6—0.720807t (_1 + e—0.00008344t) -6331.1 1(_138717

(_1 + 6—0.72089t) _ 1 .387336—0.720807t (_1 + 6—0.7208071)) _

0.00055 UnitStep| 7] (16)

6 CONCLUSIONS

The method of analytic programming described here
is relatively simple, easy to implement and easy to
use. Based on its principles and its universality (it
was tested with 4 evolutionary algorithms — SA, GA,
SOMA and DE in the past, see for example [Zelinka,
Oplatkova, Nolle 2004] or [Zelinka, Chen,
Celikovski, 2008] it can be stated that AP is a
superstructure of an algorithm rather than an
algorithm itself.

The main aim of this paper was to show how the
structure of the various dynamical systems can be
identified by means of evolutionary algorithms
applied in AP. Analytic programming was used here
in basic comparative simulations. Each comparative
simulation was repeated 100 times and all results
were used to create graphs and tables for AP
performance evaluation.

For the comparative study here two algorithms were
used - DE [Price 1999] and SOMA [Zelinka 2004].
A wide variety of optimisation algorithms, i.e. with
different structures and their different abilities to
locate the global extreme, were chosen to prove that
AP can be regarded as an equivalent to GP (at least
in the domain of used problems), and that it can be
implemented using arbitrary evolutionary
algorithms. As a conclusion, the following
statements are presented:

1. Results reached. Based on results reported
in Tables and Figures it can be stated that
all simulations give satisfactory results and
thus AP is capable of solving these classes
of problems.

2. Mutual comparison. When comparing
both algorithms, it is apparent that both
algorithms give good results. Parameter
settings for both algorithms were based on
a heuristical approach and thus there is a
possibility that better settings can be found.

3. Universality. AP was used to solve
differential equations [Zelinka 2002 b],
trigonometrically data fitting [Zelinka 2002

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

a], four polynomial problems from [Koza
1998] (Sextic, Quintic, Sinus Three, Sinus
Four) by four EAs in [Zelinka and
Oplatkova, 2003] and Boolean even - k -
parity and k - symmetry functions synthesis
[Zelinka and Oplatkova, 2004], [Zelinka,
Oplatkova and Nolle 2004] and [Zelinka,
Chen, Celikovsky, 2008]. Together with the
results reported here, it can be stated that
AP seems to be a universal method for
symbolic regression by means of arbitrary
EAs.

4. Failure. The synthesis of selected
dynamical systems failed for system (13).
One of possible explanations of this event
is that the cost function or algorithms
parameters should be defined in a different
way.

Future research is one of the key activities in the
frame of AP. According to all results obtained
during the time it is planned that the main activities
would be focused on:

* Expanding of this comparative study for
genetic algorithms and simulated annealing,
(and other evolutionary techniques).

ACKNOWLEDGEMENT

This work was supported by grant No. MSM
7088352101 of the Ministry of Education of the
Czech Republic and by grants of the Grant Agency
of the Czech Republic GACR 102/06/1132.

REFERENCES

Johnson Colin G., 2003, “Artificial immune systems
programming for symbolic regression”, In C. Ryan, T.
Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa,
editors, Genetic Programming: 6™ European
Conference, LNCS 2610, p. 345-353

Koza J. R., M. A. Keane, M. J. Streeter, 2003, “Evolving
Inventions”, Scientific American, February 2003,
p. 40-47, ISSN 0036-8733

Koza J.R. 1998, “Genetic Programming II”, MIT Press,
ISBN 0-262-11189-6, 1998

Koza J.R..Bennet F.H., Andre D., Keane M., 1999,
“Genetic Programming I1I”, Morgan Kaufnamm pub.,
ISBN 1-55860-543-6, 1999

Lampinen Jouni, Zelinka, Ivan. “New Ideas in
Optimization - Mechanical Engineering Design
Optimization by Differential Evolution”, Volume 1.
London : McGraw-Hill, 1999. 20 p. ISBN 007-
709506-5.

O'Neill M. and Ryan C. 2002, “Grammatical Evolution.
Evolutionary Automatic Programming in an Arbitrary

IJSSST, Vol. 9, No. 3, September 2008 57

Language”. Kluwer Academic Publishers,
ISBN 1402074441

O'Sullivan John, Conor Ryan, 2002, “An Investigation
into the Use of Different Search Strategies with
Grammatical Evolution”, Proceedings of the 5t
European Conference on Genetic Programming, p.268
-2717,2002, Springer-Verlag London, UK, ISBN:3-
540-43378-3

Price K. 1999, “An Introduction to Differential Evolution,
in New Ideas in Optimization”, D. Corne, M. Dorigo
and F. Glover, Eds., s. 79-108, McGraw-Hill, London,
UK, 1999. ISBN 007-709506-5

Ryan C., Collins J.J., O'Neill 1998, M., “Grammatical
Evolution: Evolving Programs for an Arbitrary
Language”, Lecture Notes in Computer Science 1391.
First European Workshop on Genetic Programming
1998

Zelinka 1., 2002 a, “Analytic programming by Means of
Soma Algorithm”, Mendel *02, In: Proc. 8"
International Conference on Soft Computing
Mendel’02, Brno, Czech Republic, 2002, 93-101.,
ISBN 80-214-2135-5

Zelinka 1., 2002 b, “Analytic programming by Means of
Soma Algorithm”, ICICIS’02, First International
Conference on Intelligent Computing and Information
Systems, Egypt, Cairo, 2002, ISBN 977-237-172-3

Zelinka 1., Oplatkova Z., Nolle L., 2005, “Analytic
Programming — Symbolic Regression by means of
arbitrary evolutionary algorithms”, IJSST, Vol 6, No 9

Zelinka I., Chen G., Celikovsky S., 2008, “Chaos
Synthesis by Means of Evolutionary Algorithms”,
International Journal of Bifurcation and Chaos,
University of California, Berkeley USA, Vol 18, No 4,
p.-911-942

Zelinka I., Oplatkova Z., 2003, “Analytic programming —
Comparative Study”, CIRAS’03, The second
International Conference on Computational
Intelligence, Robotics, and Autonomous Systems,
Singapore, 2003, ISSN 0219-6131

Zelinka 1., Oplatkova Z., 2004, “Boolean Parity Function
Synthesis by Means of Arbitrarry Evolutionary
Algorithms - Comparative Study", In: 8" World
Multiconference on Systemics, Cybernetics and
Informatics (SCI 2004), Orlando, USA, in July 18-21,
2004

Zelinka 1., Oplatkova Z., Nolle L., 2004, “Boolean
Symmetry Function Synthesis by Means of Arbitrarry
Evolutionary Algorithms - Comparative Study", In:
18™ European Simulation Multiconference (ESM
2004), Magdeburg, Germany, June 13-16, 2004, ISBN
3-936150-35-4

Zelinka Ivan, 2004, “SOMA — Self Organizing Migrating
Algorithm*“,Chapter 7, 33 p. in: B.V. Babu, G.
Onwubolu (eds), New Optimization Techniques in
Engineering, Springer-Verlag, ISBN 3-540-20167X

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

AUTHOR BIOGRAPHIES

IVAN ZELINKA was born in Czech
Republic, and went to the Technical
University of Brno, where he studied
technical cybernetics and obtained his
degree in 1995. He obtained his Ph.D.
degree in technical cybernetics in 2001
at Tomas Bata University in Zlin. He is
now senior lecturer (artificial intelligence, theory of
information) and head of the department. His e-mail
address is: zelinka@fai.utb.cz and his Web-page can be
found at http://www.fai.utb.cz/people/zelinka

ROMAN SENKERIK was born in the

1 ' Czech Republic, and went to the Tomas

= (7 Bata University in Zlin, where he

studied Technical Cybernetics and

M obtained his degree in 2004. He is now a

Ph.D. student and lecturer at the same
university. Email address: senkerik@fai.utb.cz

ZUZANA OPLATKOVA was born in
Czech Republic, and went to the Tomas
Bata University in Zlin, where she
studied technical cybernetics and
obtained her degree in 2003, Ph.D. in
2008. She is now senior lecturer. Her e-
mail address is : oplatkova@fai.utb.cz
and her Web-page can be found at http://web.fai.utb.cz
/?2id=0 2 1 7&iid=3&lang=cs&type=0

IJSSST, Vol. 9, No. 3, September 2008 58

ISSN: 1473-804x online, 1473-8031 print

I. ZELINKA et al: EVOLUTIONARY IDENTIFICATION ...

Table 7 Results
System Min |Max |9 Min Max %)
NEval |Nevar | NEval CvV CV Ccv
1 31 3358 |718,333 |0 0,892707 | 0,0976925
s +2s+1
1 56 2432 [1110,81 |0,494889|0,935361 |0,768286
(s+1)3
1-0.5s 2 801 |180,955 |3,1*10"[0,685508 |0,113692
s(s+1)
1 38 221 99,3333 |0,37409 |0,512158 |0,420114
(1+s)(l+0,5s)(1+0,52s)(1+0,53s)
IJSSST, Vol. 9, No. 3, September 2008 59 ISSN: 1473-804x online, 1473-8031 print

