
N NIHALANI et al: AN INTELLIGENT INTERFACE FOR RELATIONAL DATABASES

IJSSST, Vol. 11, No. 1 ISSN: 1473-804x online, 1473-8031 print 29

An Intelligent Interface for relational databases

Neelu Nihalani *
Associate Professor ,RGPV

Bhopal, MP India
neelurgpv@yahoo.co.in

Dr. Mahesh Motwani
Deputy Registrar(Exams)

RGPV,
Bhopal, MP, India

Dr. Sanjay Silakari
Prof., Dept. of CSE,

UIT, RGPV,
Bhopal, MP, India

Abstract: In the present computing world, most new-generation database applications demand intelligent interface to enhance
efficient interactions between database and the users. The most accessible interfaces for databases must be intelligent and able to
understand natural language expressions. In this paper mapping of natural language queries to SQL is discussed. We propose a
general architecture for an intelligent database interface and also a real implementation of such a system which can be connected
to any database. One of the main characteristics of this interface is domain-independence, which means that this interface can be
used with any database. Another characteristic of this system is ease of configuration. The intelligent interface employs semantic
matching technique to convert natural language query to SQL using dictionary and set of production rules. The dictionary consists
of semantics sets for tables and columns. The shaped query is executed and the results are presented to the user. This interface was
first tested using Supplier-Parts database and secondly with Northwind database of SQL server 7.0.

Keywords- Databases; Structured Query Language (SQL); intelligent interface; Intelligent Database System (IDBS), Flexible
Querying; Intelligent Layer; Domain Independent Interface.

I. INTRODUCTION

In the present computing world, computer based
information technologies have been extensively used to
help many organizations, private companies, academic and
education institutions to manage their processes and
information systems. Information systems are used to
manage data. A general information management system
that is capable of managing several kinds of data, stored in
the database is known as Database Management System
(DBMS) [1]. Databases are comprehensive element in
private and public information systems which are essential
in number of application areas[2]. Databases are gaining
prime importance in a huge variety of application areas
employing private and public information systems.
Retrieval of a large amount of the same type of data is
very efficient in relational databases [3], but still the user
has to master the DB schema completely to formulate the
queries.

Structured Query Language (SQL) is an ANSI
standard for accessing and manipulating the information
stored in relational databases. It is comprehensively
employed in industry and is supported by major database
management systems (DBMS). Most of the languages
used for manipulating relational database systems are
based on the norms of SQL.

In the past few years, many advances have been made
in the field of databases and many other fields of critical
relevance to information technology. An intelligent
database is an emerging database technology that has
dramatic impact on the way we think and work[4]. It

greatly expands our capabilities as information users.
Intelligent databases are the databases that that are
endowed with data management system able to manage
large quantities of data to which various forms of
reasoning can be applied to infer additional data and
information. This includes knowledge representation
techniques, inference techniques and intelligent user
interfaces.
 These techniques play different roles in enhancing
database systems: knowledge representation techniques
allow one to represent better in DB semantics of the
application domain, inference techniques allow one to
reason about the data to extract additional data or
information; and intelligent user interfaces help users to
make requests and receive the replies interfaces by
making use , typically , of natural language (NL) facilities
that extend beyond the traditional query language
approach[5].

II. NATURAL LANGUAGE INTERFACE TO
DATABASE

 In recent times, there has been a rising demand for
non-expert users to query relational databases in a more
natural language encompassing linguistic variables and
terms, instead of operating on the values of the attributes.
Talking to a computer in a natural language such as plain
English is always a dream that drives the progress of
human-computer interaction work[6,7].

N NIHALANI et al: AN INTELLIGENT INTERFACE FOR RELATIONAL DATABASES

IJSSST, Vol. 11, No. 1 ISSN: 1473-804x online, 1473-8031 print 30

This has led to the development of Natural Language
Interface to Databases (NLIDB). NLIDBs permits users
to formulate queries in natural language, providing access
to information without requiring knowledge of
programming or database query languages.

There are many applications that can take
advantages of NLIDB. In PDA and cell phone
environments, the display screen is not as wide as a
computer or a laptop. Filling a form that has many
fields can be tedious: one may have to navigate
through the screen, to scroll, to look up the scroll box
values, etc. Instead, with NLIDB, the only work that
needs to be done is to type the question similar to the
SMS (Short Messaging System).

The NLIDB is actually a branch of more
comprehensive method called Natural Language
Processing (NLP). In general, the main objective of NLP
research is to create an easy an friendly environment to
interact with users in the sense that computer does not
require any programming language skills to access the
data; only natural language is required.
The research of Natural Language interface to databases
(NLIDB) has recently received attention from the
research communities. The area of NLIDB research is still
very experimental and systems so far have been limited to
small domains, where only certain types of statements can
be used. When the systems are scaled up to cover larger
domains, it becomes difficult due to vast amount of
information that needs to be incorporated in order to parse
statements. Although the earliest research has started
since the late sixties, NLIDB remains an open search
problem.

III. RELATED WORK

 For the last thirty years, numerous attempts have
been made to build useful natural language interface. It
has turned out to be much more difficult than what was
originally expected. There have been large number of
research works introducing the theories and
implementations of NLIDBs. There are mainly four kinds
of four kinds of NLIDBs framework[8].

A. Template Based approach

The first type of framework is based on pattern
matching. Typical applications of this type of framework
is SAVVY[9]. In this system, some patterns are written
for different types of queries and these patterns are
executed after the queries are entered.The main advantage
of pattern matching approach is that no elaborate
parsing and modules of interpretation are required and the
systems are very easy to implement. Some pattern-
matching systems were able to perform impressively well
in certain applications. One of the best natural language

processing system that is based on pattern-matching
approach is ELIZA [10] However as mentioned[8] , a
pattern matching system is too shallow and therefore
would often lead to bad failures.

B. Syntax-based approach

The method used in the system LUNAR [11]
supports a syntax-based approach where a parsing
algorithm is used to generate a parse tree depending on
user’s queries. This method is especially used in
application-specific database systems. A database query
language must be provided by the system to enable the
mapping from parse tree to the database query. Moreover,
it is difficult to decide the mapping rules from the parse
tree to the query language (e.g. SQL) that the database
uses.

C. Semantic Grammar approach

The system LADDER [8] uses semantic grammars
where syntactic processing techniques and semantic
processing techniques are used together. The
disadvantage of this method is that semantic approach
needs a specific knowledge domain, and it is quite
difficult to adapt the system to another domain. In fact, a
new grammar has to be developed when the system is
configured for a different domain.

D. Intermediate Representation language based
approach

Some intermediate representation languages can be
used to convert the statements in natural language to a
known formal query language. MASQUE/SQL [12] is an
example for this approach. It is a front-end language for
relational databases that can be reached through SQL.
User defines the types of the domain which database
refers using an is-a hierarchy in a built-in domain-editor.
Moreover, words expected to appear in queries with their
logical predicates are also declared by the user. Queries
are first transformed into a Prolog-like language LQL,
then into SQL. The advantage of this technique is that the
system generating the logic queries is independent from
the database and therefore, it is very flexible in domain
replacements.

Despite of the achievements attained in this area ,
present day NLIDBs do not guarantee correct translation
of queries in natural language to database languages. The
most desirable characteristic of the NLIDBs that the
researchers are proposing is Domain Independence, which
means that interface can be used with different databases
and reconfiguration of the NLIDB from one domain to
another is done automatically[23,24].

Among the most important domain dependent
NLIDBs we can mention: ILNES [13], VILIB [14], Kid
[15], and CISCO [16]. In these types of interfaces, the

N NIHALANI et al: AN INTELLIGENT INTERFACE FOR RELATIONAL DATABASES

IJSSST, Vol. 11, No. 1 ISSN: 1473-804x online, 1473-8031 print 31

percentage of correctly answered queries ranges from
69.4% to 96%. Regarding the main domain independent
interfaces the following stand out: EnglishQuery [17],
PRECISE [18], ELF [19], Edite [20], SystemX [21], and
MASQUE/SQL [12]. The success percentage of these
interfaces is less than that of domain dependent interfaces.
Much of the research work is being done to improve the
success percentage of domain independent interfaces.

IV. THE INTELLIGENT SYSTEM OVERVIEW

 It is known that databases respond only to standard

SQL queries and it is highly impossible for a common
person to be well versed in SQL querying. Moreover they
may be unaware of the database structures namely table
formats, their fields with corresponding types, primary
keys and more. On account of these we design an
intelligent layer which accepts common user’s imperative
sentences as input and converts them into standard SQL
queries to retrieve data from relational databases based on
knowledge base.
 The main characteristic of the system are as
follows:

 It is domain independent. The Hence , the
configuration process is automatic.

 The interface can be easily and automatically
configured. Interface relies on the Metadata set,
Semantic set for tables and attributes.

The primary advantage of the system is that it
conceals the inherent complexity involved in information
retrieval based on unqualified user queries. Our recent
paper [22] introduced core algorithm for converting a
natural language user query to Standard SQL query. In
this paper we provide a brief overview of the domain
independent NLIDB system focusing on the components
necessary to understand the functionality of the proposed
system.

 In the presented system, an intelligent layer is
designed in such a way that it can be can be connected to
any existing database system, which is responsible for the
intelligent information processing and performing flexible
queries.

The system is designed to accept any relational
database schema. Our NLIDB system accepts users
natural language sentences as input , parses them
semantically and builds an SQL query for the database.
The core functionality is based on the semantics and rules,
which can be modified by the system administrator. Our
system is composed of two modules: a pre-processor and
a run time processor. Pre-processor is used to generate
Domain Dictionary. Dictionaries used by the existing
NLIDBs are created manually or semi automatically The
pre-processor automatically generates the domain
dictionary by reading the schema of the database, uses
WordNet to create semantic sets for each table and

attribute name. The pre-processor also creates the rules
that can be edited by the system administrator. Our
system addresses the semantic parsing through the use of
rules that are generated by the pre-processor. The rules
are based on the schema of the database, on WordNet and
on the administrator feedback. The system administrator
can edit , add and modify these rules.
The run time processor uses these rules and tries to
match the input words with predefined data structures,
tables and attribute names from the database schema. The
rules describe the relations between the table and its
attributes. We have assumed that the tables and attributes
names in the schema are meaningful and can be found in
the English Dictionary. If this is not the case, the system
administrator has possibility to specify the synonyms.

V. DESIGN OF INTELLIGENT INTERFACE FOR
DATABASES

 In general, a database (D) is termed as set of tables
organized in some common structure. The vital
information that briefly describes the tables in the
database is organized into a metadata set (M).Table 5.1
shows the sample metadata set of the supplier-part
database which is automatically generated by the system.
The metadata set holds entries for all the ‘ n ’ tables in the
relational database with all their corresponding fields and
their unique primary key.

TABLE I. METADATA SET (M)

Table Primary Key Field Foreign Key

Supplier Sup_no
Sup_no,

Sup_name,
sup_city

Part Part_no

Part_no,
Part_name,
Part_city,
Part_color

Shipment Part_no,Sup_no
Sup_no,
Part_no,
Quantity

(Sup_no,
Supplier)

(Part_no, Part)

 The metadata set is organized as follows:

1)+(n<y<0 }, R ,F ,P ,F , {T = M kykykyTyy
Where T Set of tables in M

 TF Set of all fields in T

 kP  Primary key in T

 kF  Foreign key in T

 kR  Reference attribute and table

N NIHALANI et al: AN INTELLIGENT INTERFACE FOR RELATIONAL DATABASES

IJSSST, Vol. 11, No. 1 ISSN: 1473-804x online, 1473-8031 print 32

The proposed approach employs a set of predefined
training structures. The primary benefit of these training
sets is that they can be expanded or appended when the
intelligent information system discovers some new
knowledge. The significant training sets used are:

 The Expression mapping set (mapE) contains the

list of commonly used conditional clauses and
their associated mathematical symbols. It acts as
a look up table to locate the SQL defined
mathematical operators.

 The Conjunction training set (TC) consists of the

list of generally used Conjunctive clauses like
where, who etc. These conjunctive clauses
determine the exact Query definition. When the
system encounters a relatively new conjunctive
clause, it is appended to the existing training set.

 The trained stop word set (WS) contains the list

of all common stop words that are likely to occur
in a user typed query.

 The semantic set (S) contains the list of all
possible semantics related to table names and
fields in the database.

 Rules related to database schema-The schema of
the database gets translated into the rules. These
rules are produced by the system, and they are
based on the relationships between the tables. If
in a SQL query two tables Suppliers and Products
are referenced , then the attribute equation
Products.CategoryId = Categories.CategoryId
should be used in the where clause.

A. Intelligent Interface components

Figure I. Components of intelligent interface

This section gives a vivid description of how the user

query is transformed to be used for data retrieval from
databases. In our proposed approach, we define a

universal set uQ which holds all the individual tokens in

the user typed query. Every token represents a unique

element in the universal set uQ . Every user query is

likely to contain a display or subjective part which
specifies the intended result, the Conjunction part which
determines the SQL definition Clause and the Criteria part
which describes the condition or constraint. All these
parts of the user query will be represented as three distinct

sets dP , jP and cP . Here the sets dP , jP and cP contain

tokens that represent the subject, the Conjunctive clause
and the Criteria respectively.

uQ User Query

dP Subjective/Display part of uQ

jP Conjunctive part of uQ

cP Criteria/condition part of uQ

Evidently, the sets dP , jP and cP form the subsets of the

universal set uQ . The subsets of uQ may be structured in

the following formats:

 du PQ  Or },,{ cjdu PPPQ  Or

},,{ djcu PPPQ 

The two components of intelligent interface as shown
in Figure I are User query decomposer and SQL query
generator, the functions of which are described as follows.

B. User Query Decomposer

This component decomposes the User Query into

three parts dP , jP and cP using the predefined training

sets. TC , mapE and WS . Firstly user query is intersected

with TC . This decomposes the query in above three parts.

Then expression mapping is done for cP using mapE .

Subsequently stop word removal is done for dP and cP

using WS training set.

Example 1 : Get me supplier details where supplier’s
native place is LONDON

 uQ  Get me supplier details where supplier’s

native place is LONDON

 dP  supplier details

N NIHALANI et al: AN INTELLIGENT INTERFACE FOR RELATIONAL DATABASES

IJSSST, Vol. 11, No. 1 ISSN: 1473-804x online, 1473-8031 print 33

 jP where

 cP  supplier native place = LONDON

Example 2 : Get full details of all the suppliers

 uQ  Get full details of all the suppliers

 dP  details suppliers

 jP  null

 cP  null

t
dP Table)(dP and consider t

dP (initially)
f

dP Field)(dP and consider f
dP (initially)

 The next step is to locate the tables and fields

mentioned in the set dP and cP . These sets are

intersected with the metadata set M. If it yields a non-
empty set, table names are chosen from the Metadata set
M. Else if it yields an empty set, then the sets are

intersected with the set TS and FS , to retrieve the

appropriate table names and field names associated with
the matching semantics.

Now t
dP contains the names of tables to used in SQL

query and f
dP contains fields names and cP contains

condition part of the query.

C. SQL Query Generator

This component finds the relation between the tables
display condition and the fields that are to be displayed

and appends the joining condition of tables to cP . With

help of t
dP , f

dP and cP user query in natural language is

converted to equivalent SQL query.

if cP ≠  then

 SQL Query = SELECT f
dP FROM t

dP AS A WHERE

cP

Else

 SQL Query = SELECT f
dP FROM t

dP

So the Generated SQL Statement for Example 1 is
SELECT * FROM Supplier AS A WHERE
A.Sup_city=’LONDON’

VI. EXPERIMENTAL RESULTS

 In this section, we have presented the experimental
results of the proposed intelligent interface. The presented

system has been implemented in JAVA with MySQL and
MS-Access as databases.
 For the experiment , supplier-part database[25] and
Northwind database of SQL server 7.0 were used and a
group of five students was asked to formulate the queries
in English for the two databases. The students were
explained about the schema, relationships between the
tables, primary keys etc. of the database for formulating
the queries. Additionally , the students were given brief
explanation about the kind of queries they could
formulate. The resulting corpus consists of 20 queries for
Supplier-Part database and 40 queries for the Northwind
database. Most of the queries selected for the Northwind
database involved two or more tables. The queries were
classified according to difficulty and were divided into
four types :
(1) explicit table and column information
(2) explicit table and implicit column
(3) implicit table and explicit column and
(4) implicit table and column information.

The corpus of the queries for the supplier-part
database and the Northwind database was introduced to
the interface to obtain the percentage of queries correctly
answered and queries with incorrect answer or queries
unanswered. The following results were obtained : 75%
of the queries (considering all the four types) of the
supplier-part database and 70% of the queries of
Northwind database were translated were translated
correctly.

 The main reason that caused these errors was due to
insufficient information for processing. Some examples of
the queries that could not be correctly translated are the
following: Get full details of LONDON suppliers? and
Get the unit price of TOFU . In both the queries the
attributes are not specified. If the first query is rephrased
as : Get full details of suppliers whose native place is
LONDON or Get full details of suppliers whose city is
LONDON, the interface translates it correctly because the
attribute city is specified. Similarly, in the second query
attribute of TOFU is not specified. If the second query is
rephrased as : Get the unit price of product whose name
is TOFU then the interface matches name with the
attribute productname and the query is translated
correctly.

VII. CONCLUSION

Flexible intelligent interface for database querying is

presented in this paper. The main advantage of the system
is natural language is used for querying the database and
incorporated into the existing database systems. The
presented system accepts flexible user queries and
converts them into a standard SQL query. Expression
mapping, stop words removal and semantic matching
techniques have been utilized by the intelligent layer in
the formation of the SQL query. The efficacy of the

N NIHALANI et al: AN INTELLIGENT INTERFACE FOR RELATIONAL DATABASES

IJSSST, Vol. 11, No. 1 ISSN: 1473-804x online, 1473-8031 print 34

presented system has been demonstrated with the aid of
experimental results.

REFERENCES

[1]. Zongmin Ma, "Intelligent Databases: Technologies and

Applications", IGI publishing, 320 pages, 2007.

[2]. Burlesan, Donald K., Joe Celko, John Paul Cook, and Peter
Gulutzan. 2003. Advanced SQL Database Programmer Handbook.
BMC Software and DBAZine.

[3]. Dietmar Wolfram, "Applications of SQL for Informetric Data
Processing", Proceedings of the 33rd conference of the Canadian
Association for Information Science, 2005.

[4]. "Intelligent Database" from
http://searchsqlserver.techtarget.com/sDefinition
/0,,sid87_gci1124415,00.html

[5]. Bertino, B. Catania, G.P. Zarri, “Intelligent database systems”,
Reading, Addsion Wesley Professional, 2001.

[6]. M. Brodie, “Future Intelligent Information Systems: AI and
Database Technologies Working Together” in Readings in
Artificial Intelligence and Databases, Morgan Kaufman, San
Mateo, CA, 1988.

[7]. Donald P. Mckay and Timothy W. Finin, "The Intelligent Database
Interface: Integrating AI and Database systems", In Proceedings of
the 1990 National Conference on Artificial Intelligence, pp. 677--
684, 1990.

[8]. I. Androutsopoulos, G. Ritchie, P. Thanisch, Natural language
interfaces to databases – an introduction, Journal of Natural
Language Engineering 1 (1) (1995) 29–81.

[9]. Johnson T. (1985), Natural Language Computing : The
commercial Applications. Ovum Limited , London.

[10]. Weizenbaum J, (1966).“ELIZA- A computer program for the study
of natural language communication between man and machine”,
Communications of the ACM, 9(1), pp.36-45.

[11]. W.A. Woods, R.M. Kaplan, B.N. Webber, The lunar sciences
natural language information system: Final report, BBN Report
2378, Bolt Beranek and Newman Inc., Cambridge, Massachussetts,
1972.

[12]. I. Androutsopoulos, G. Ritchie, P. Thanisch, MASQUE/SQL – An
efficient and portable natural language query interface forrelational
databases, in: Proceedings of the Sixth International Conference on
Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, Edinburgh, 1993, pp. 327–330.

[13]. Rocher, G.: Traducción de Queries en Prolog a SQL. BS thesis,
Universidad de las Américas, Puebla, Mexico (1999)

[14]. CORDIS: Telematics for Libraries - Projects, VILIB (1999),
http://cordis.europa.eu/libraries/en/projects/vilib.html

[15]. Chae, J., Lee, S.: Frame Based Decomposition Method for Korean
Language Query Processing.Computer Processing of Oriental
Languages 11(4), 353–379 (1998)

[16]. GPLSI: Procesamiento del Lenguaje Natural
(1998),http://gplsi.dlsi.ua.es/gplsi/areas.htm

[17]. Microsoft TechNet, Chapter 32- English Query Best Practices
(2009), http://technet.microsoft.com/es-mx/library/cc917659en-
us.aspx

[18]. Popescu, A., Etzioni, O., Kautz, H.: Towards a Theory of Natural
Language Interfaces to Databases. In: Proc. International
Conference on Intelligent User Interfaces, Miami, USA, pp. 149–
157 (2003)

[19]. ELF Software, ELF Software Documentation Series (2002),
http://www.elfsoft.com/help/accelf/overview.htm

[20]. Reis, P., Matias, J., Mamede, N.: Edite - A Natural Language
Interface to Databases: a New Dimension for an Approach. In:
Proc. 4th International Conference on Information and
Communication Technology in Tourism, Edinburgh, Scottland
(1997)

[21]. Cercone, N., Mcfetridge, P., Popowish, F., Fass, D., Groeneboer,
C., Hall, G.: The System X Natural Language Interface: Design,
Implementation and Evaluation. Technical report.Centre for
System Science, Simon Fraser University, British Columbia,
Canada (1993)

[22]. N Nihalani, Sanjay Silakari, Mahesh Motwani , Design of
Intelligent layer for flexible querying in databases, International
Journal of Computer Science and Engineering (IJCSE) Vol 1(2)
2009.

[23]. Rangel, Rodolfo and Joaquín Pérez, O. and Juan Javier González,
B. and Gelbukh, Alexander and Sidorov, Grigori and Rodríguez,
M.(2005), “A Domain Independent Natural Language Interface to
Databases Capable of Processing Complex Queries”,MICAI 2005:
Advances in Artificial Intelligence LNCS 3789 pp 833-842.

[24]. B. Juan J. González, Rodolfo A. Pazos Rangel, I. Cristina Cruz C.,
H. Héctor J. Fraire and L. de Santos Aguilar, et al.(2006) "Issues in
Translating from Natural Language to SQL in a Domain-
Independent Natural Language Interface to Databases"LNCS 4293,
MICAI: Advances in Artificial Intelligence, pp 922-931.

[25]. Date, C.J. (2004). "8 Relational Calculus". In Maite Suarez-Rivas;
Katherine Harutunian. An Introduction to Database Systems.
Pearson Education Inc.. ISBN 0-321-18956-6.

