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Abstract — The radix-2 decimation-in-time (DIT) fast Hartley transform algorithm for computing the Discrete Hartley Transform 
(DHT) was introduced by Bracewell. DIT and decimation-in-frequency (DIF) algorithms were further developed by Meckelburg 
and Lipka, Prado, Sorenson et al, Kwong and Shiu. In these algorithms, the stage structures perform all the additions and 
multiplications and utilize stage dependent sine and cosine coefficients. A new fast radix-2 DIF algorithm for computing the DHT is 
proposed, which introduces multiplying structures in the signal flow diagram that perform all the multiplications with the stage 
independent cosine coefficients and their related additions leading to simplification of the stage structures which now have to 
perform only the additions. This leads to a reduction in the number of multiplications. An architecture utilizing current feedback 
operational amplifiers which implements the algorithm in hardware has been proposed. It has been tested by simulating it with the 
help of PSpice. 
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I. INTRODUCTION  

The fast Hartley transform (FHT) algorithm introduced 
by Bracewell [1] performs the DHT in a time proportional to 

NN 2log  using decimation-in-time (DIT). Meckelburg and 
Lipka presented the decimation-in-frequency (DIF) FHT 
algorithm [2] claiming it to be faster than the one in [1]. 
Sorenson et al. [3] using the index mapping approach 
analyzed the FHT having the same decomposition as [1], 
implemented the algorithms for both DIT and DIF, and 
verified their operational complexities to be the same. Prado 
[4] presented an in-place version of the FHT in [1] along 
with its operational complexity. Kwong and Shiu [5] 
restructured the signal flow diagram originally proposed in 
[1] for clarity, and applied the transposition theorem to 
obtain the DIF algorithm with the same operational 
complexity. The above approaches utilize both the cosine 
coefficients (CCs) and sine coefficients (SCs) which are 
stage-dependent. Hou [6] stressed that the FHT algorithm, in 
essence, is a generalization of the Cooley-Tukey fast Fourier 
transform (FFT) algorithm to compute the discrete Fourier 
transforms (DFT), but it requires only real arithmetic 
computations as compared to complex arithmetic operations 
in any standard FFT. Hao [7] examined both the pre- and 
post-permutation algorithms in [1] and [2], and suggested 
improvements to make them faster by use of fast rotation to 
reduce the multiplications and by incorporating in-place or 
distributed permutation. Malvar [8] presented a new 
factorization of the DHT which involves the discrete cosine 
transform (DCT). His algorithms minimize the 
multiplications at the expense of an increased number of 
additions. Rathore [9] reported that, for both the DIT in [1] 
and the DIF in [2], the operational complexity involved is the 
same. He further utilized the matrix approach, derived some 

properties of the DHT [10], obtained the relations for 
computational complexity and presented DHT-based DFT 
and DFT-based DHT algorithms.  

Various architectures have been reported in the literature 
to compute the DHT. Chakrabarti and Jaja [11] proposed a 
modular bit-level systolic architecture. Dhar and Banerjee 
[12] employed a set of linear arrays of Givens rotors. Chang 
and Lee [13] derived two models of linear systolic arrays and 
suggested the use of cordic algorithms to make the systolic 
arrays more efficient in computation. Hsiao et al. [14] 
modified the above cordic processor and obtained a higher 
throughput and cost effective architecture. Kar and Rao [15] 
proposed a unified systolic architecture for sliding window 
computation of discrete transforms. Nayak and Meher [16] 
implemented a bit-level systolic architecture for discrete 
orthogonal transforms using a serial–parallel vector–matrix 
multiplication scheme based on the Baugh–Wooley 
algorithm. Guo [17, 18] presented two architectures; one 
using parallel adders and the other using a distributed 
arithmetic based array that utilizes identical ROM modules 
and eliminates the accumulation loop in the processing 
elements. Amira and Bouridane [19, 20] developed 
architectures to implement the DHT on field programmable 
gate arrays. Meher et al. [21] presented a design framework 
for scalable and modular memory based implementation of 
the DHT in systolic hardware. These architectures compute 
the DHT using digital VLSI techniques. 

The role of analog integrated circuits in modern 
electronic systems remains important, even though digital 
circuits dominate the market for VLSI solutions. Analog 
systems have always played an essential role in interfacing 
digital electronics to the real world. An important advantage 
of digital integrated circuits has been their relative ease of 
design over analog circuits. In particular, since digital circuit 
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design is amenable to automation, several CAD-compatible 
digital integrated circuit design methodologies have been 
developed, including design-for-testability, design 
optimization and rapid prototyping in field-programmable 
gate arrays (FPGAs). However, there are architectures which 
compute the DHT based on analog blocks. Culhane et al. 
[22] presented an analog circuit which utilizes a linear 
programming neural net to compute the DHT. Raut et al. 
[23] presented basic switched capacitor building blocks in 
systolic array architecture to implement the DFT. A two 
dimensional DCT structure proposed by Kawahito et al. [24] 
is designed with fully differential switched-capacitor circuits. 
Digitally controlled analog circuits proposed by Chen et al. 
[25] utilize the principle of charge scaling for computing the 
DCT and DFT. Mal and Dhar [26] proposed an analog 
sampled data architecture for the DHT.   

The growing computational demand for complex 
information processing has motivated significant research in 
the design of power efficient signal processing systems. One 
method for achieving low-power designs is to move 
processing on system inputs from the digital processor to 
analog hardware. However, for analog systems to be 
desirable to digital signal processing engineers, they need to 
provide a significant advantage in terms of size and power 
and yet still remain relatively easy to use and integrate into a 
larger digital system. Reconfigurable analog arrays, dubbed 
field-programmable analog arrays (FPAAs), can speed the 
transition of systems from digital to analog by providing the 
ability to rapidly implement advanced, low-power signal 
processing systems [27]. This has demanded the 
development of high performance analog circuits that are 
reconfigurable and suitable for CAD methodologies. Analog 
circuits based on the current feedback operational amplifier 
(CFA) technique are suitable for high frequency applications 
[28]. The CFA combines high bandwidth and very fast large 
signal response with excellent dc performance. It is 
optimized for use in current to voltage applications and as an 
inverting mode amplifier. It can be used in place of 
traditional operational amplifiers (OA) and its current 
feedback architecture results in much better ac performance, 
high linearity and an exceptionally clean pulse response. Its 
closed-loop bandwidth is determined by the feedback resistor 
and is almost independent of the closed-loop gain unlike 
OA-based circuits, which are limited by a constant gain-
bandwidth product. It can be used in ways similar to a 
conventional OA while providing performance advantages in 
wideband applications [29, 30]. 

The proposed algorithm overcomes the stage 
dependencies of the CCs and SCs. It utilizes only CCs which 
are stage independent. It introduces multiplying structures 
(MSs), and results in a signal flow diagram (SFD) with 
butterflies similar in each stage structure (SS). It leads to 
simplification of the stage computations and reduces the 
operational complexity. A simple and versatile basic analog 
circuit based on CFAs is designed, which can be easily 
reconfigured as a stage structure or multiplying structure 
circuit. An architecture which is modular and can be scaled 
for higher values of N is proposed to implement the 
algorithm. 

II. DISCRETE HARTLEY TRANSFORM 

An N-point DHT XH of a sequence x(n) is defined as 
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where cas (.) = cos (.) + sin (.). Using the matrix approach 
[10], the DHT can be expressed as 
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In the expression      xHX NH  , HN is the N × N 
Hartley matrix and its elements are given by  

 jih , cas 







N

ij2
 (1)

where indices i and j are integers from 0 to N – 1 [22].  
The FHT algorithm by Bracewell [1] performs the DHT 

of a data sequence of N elements in a time proportional 
to NN 2log  where PN 2 . The algorithm in [2] requires an 
operation count given by NA additions and NM multiplications  


 

2

43log3 2 


NNN
N A  (2) 

 43log2  NNNN M  (3) 

Sorenson et al [3] have analyzed the FHT algorithm in [1] 
using the index mapping approach. Their radix-2 DIT and 
DIF programs implement the FHT algorithm with the same 
operation count as given by (2) and (3). Prado [4] in his 
paper presents an in-place version of the FHT in [1] and 
gives a table for the number of non-trivial real operations 
which tally with those obtained by using (2) and (3). Kwong 
and Shiu [5] have restructured the signal flow diagram 
originally proposed in [1] for clarity, and applied the 
transposition theorem to obtain the DIF algorithm with the 
same operational complexity. However, Rathore [9] has 
observed that for all these radix-2 algorithms [1]-[5], the 
operational complexities involved are the sameThe above 
approaches utilize both the cosine coefficients (CCs) and 
sine coefficients (SCs) which are stage-dependent. The 
proposed algorithm computes only stage independent CCs. 
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III. PROPOSED ALGORITHM 

A view of the proposed algorithm operation may be 
obtained as a sequence of matrix operations on the data. The 
DHT 

     nxLLLLLLLLPNX MMPMPPPrH 112222)1(
1 
 ,

where LS is a SS matrix (SSM) and LSM is a MS matrix 
(MSM). 

For each SSM, there is a matrix LY having dimensions Y 
× Y, where SPY  12  which repeats itself along the forward 

diagonal N/Y times. If LY is split into 4 quadrants 
42

31

QQ

QQ
, 

Q1 Q2 and Q3 have the same elements and are identity 
matrices, whereas Q4 = - Q1. Fig. 1 shows the SSMs involved 
in the stages 1 to 4 for N = 16. 

MSMs are introduced for the stages 1 ≤ S < (P − 1). For 
each LSM, matrix LZ having dimensions Z × Z, where 

SPZ  12 , repeats itself along the forward diagonal N/Z 

times. Splitting LZ into 4 quadrants 
42

31

QQ

QQ
, only Q1 and 

Q4 have some non-zero elements. Q1 is an identity matrix, 
whereas elements which appear in Q4 are related to the CCs 
of the elements in the first row or column of HN. The CCs 
appear along the forward diagonal of Q4. They also appear 
along the inverse diagonal of the sub-matrix formed within 
Q4 after deleting the 0th row and 0th column of Q4. The 
intersection element of both these elements is a unity factor. 
Due to the cosine-sine symmetry, there is a reduction in the 
number of these elements to only a few CCs and a unity 
factor. 
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Figure 1.  Matrices LS  and LY for N = 16, S =1 to 4. 

The first stage has the maximum number of CCs. The 
number of CCs for the other stages is lesser and their values 
belong to the set of CCs for the first stage. While computing 
LZ it is sufficient to compute Q4. Hence, only (N/4) – 1 stage 
independent CCs have to be computed. Fig. 2 shows the 
MSMs involved in the stages 1 and 2 for N = 16. 

The permutation matrix shown in Fig. 3 is involved in the 
computation and applied to the outputs of the final stage to 
rearrange them in the normal order. 

A succession of P stage operations followed by 
permutation leads stage by stage to the outputs,  nx1  

through  nxP , and finally to the transform output XH. For 
any stage, SS performs only additions, and MS performs the 
multiplications with the CCs and the related additions. 
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Figure 2.  Matrices LSM and LZ for N = 16, S =1, 2. 
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Figure 3.  Permutation Matrix for N = 16. 
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Figure 4 depicts a partial SFD showing a generalized SS 
and MS. The SFD for the SS is simple, follows a regular 
pattern and performs only additions. For each MS, the CCs 

ii  ,  or 0.707 are multiplied with different elements as 
shown in Fig. 4. For each stage S from 1 to P - 2, there are 
CCs in the corresponding MS.  
Elements from 0 to m/2 have no CCs.  
Each element (m/2) + i has no CC for i = m/4, the CC 707.0  
for i = m/8, and CCs i  and i  for i = 1 to (m/8) – 1 and 
(m/8) + 1 to (m/4) – 1.  
Each element m – i has the CC 707.0  for i = m/8, and CCs 

i and i  for i = 1 to (m/8) – 1 and (m/8) + 1 to (m/4) – 1,  

where 
m
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Hence, for all the MSs, only (N/4) – 1 stage independent 
CCs have to be computed. 
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Figure 4.  A SFD for the generalized structure, N = 2P 

In the proposed algorithm the operational complexity is 
calculated as follows: 
The additions are performed by both the SS and MS.  
Each SS requires N additions, for N = 2P, the number of 
stages are P, hence, total number of additions for all the SSs 
= NP.  

Number of MSs required per stage 
m

N
 , where 

)1(2 SPm  . 
 

Each MS requires (m/2) – 2 additions.  
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m

Nm






  2

2


m

NN 2

2
 

The number of additions for all the MSs are 





 





 

2

1
12

2

2

P

S
SP

NN


For the entire SFD including all the SSs and MSs 
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It is clear from (2) and (4) that NA remains the same. 
The multiplications are performed within the MSs. 

Each MS requires m – 6 multiplications. 

Hence multiplications per stage  
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The number of multiplications for the entire SFD are 
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From (3) and (5) it is seen that NM is lesser for N ≥ 8 in 
the proposed algorithms as compared to the existing 
algorithms in [1] – [5]. It is evident that the number of non-
trivial arithmetic operations is reduced by 2 multiplications 
(M) for each MS introduced. The reduction of 2M at the first 
stage is due to one MS corresponding to stage 1 and a 
reduction of 4M at the second stage is due to two MSs 
corresponding to stage 2. As the values of P and N increase, 
the MSs for the corresponding stages also increase, leading 
to a further reduction in the M. The total number of M 

reduces by 
2

4N
 for N ≥ 8. The comparison of the 

operational complexities of the existing radix-2 algorithms 
with the proposed algorithm for various transform lengths is 
shown in Table I.  
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TABLE I.  COMPARISON OF OPERATIONAL COMPLEXITIES  

 Length 
Radix-2 FHT algorithms 

[1]-[5] 
Proposed Radix-2 

Algorithm 
N NM NA Total NM NA Total 

8 4 26 30 2 26 28 
16 20 74 94 14 74 88 
32 68 194 262 54 194 248 
64 196 482 678 166 482 648 

128 516 1154 1670 454 1154 1608 
256 1284 2690 3974 1158 2690 3848 
512 3076 6146 9222 2822 6146 8968 

1024 7172 13826 20998 6662 13826 20488 
2048 16388 30722 47110 15366 30722 46088 
4096 36868 67586 104454 34822 67586 102408 

 
Fig. 5 shows the SFD for the proposed algorithm with N 

= 16, P = 4. It is regular and well structured. The first stage 
consists of the SS and MS. The matrix for L1 shown in Fig. 1 

is directly mapped as SS and that for L1M shown in Fig. 2 is 
directly mapped as MS for stage 1 in the SFD. This stage has 
the maximum number of stage independent CCs which 
should be equal to (N/4) – 1. As N = 16, these should be 3. 
Although in the SFD it appears to be more, as α1 = β3 and α3 
= β1, they may be treated as α1, β1, and 0.707. 

The second stage also consists of the SS and MS. The 
matrix for L2 shown in Fig. 1 is directly mapped as SS and 
that for L2M shown in Fig. 2 is directly mapped as MS for 
stage 2 in the SFD. This stage has only one stage 
independent CC 0.707 which belongs to the set of CCs for 
the first stage. 

The third and fourth stages consist only of the SSs. The 
matrices for L3 and L4 shown in Fig. 1 are directly mapped as 
SSs for stages 3 and 4 respectively. The fourth stage 
followed by permutation results in the transformed output. 
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Figure 5.  SFD for proposed algorithm with N = 16, P = 4. 
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IV. CFA BASED ANALOG CIRCUIT 

Consider the circuit shown in Fig. 6.  
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Figure 6.  Basic analog circuit 

The outputs are  

 



















 BA V
R

R
V

R

R

RR

RR
V

1

4

1

3

43

21
1  (6) 

 and BA V
R

R
V

R

R
R

R

R

R
V

5

6

8

7

6

5

5

6
2

1

1























  (7) 

Thus, the circuit acts as a weighted summer and 
subtractor. 

 
Case (i): Choosing 
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Thus the circuit may be utilized in the stage structure. 
 
Case (ii): Choosing 
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Thus the circuit may be utilized in the multiplying 
structure. 

V. ANALOG ARCHITECTURE  

An architecture to obtain the radix-2 DHT for N = 2, 4, 8 
and 16 shown in Fig. 7 have been implemented utilizing the 
basic analog circuit.  
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Figure 7.  Architecture to obtain the DHT for (a) N = 2, (b) N = 4, (c) N = 8 
and (d) N = 16. 
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Each butterfly in the SFD of the SS shown in Fig. 4 is 
implemented by a single analog stage structure circuit (SSC). 
Each stage has N/2 butterflies and hence requires N/2 SSCs 
to implement it. Similarly, each butterfly in the SFD of the 
MS shown in Fig. 4 is implemented by a single multiplying 
structure circuit (MSC). For each stage S from 1 to P – 2, 
there are 2(S - 1) MSs and each MS has (2(P - S - 1) – 1) MSCs. 
Hence, 2(S - 1) · (2(P - S - 1) – 1) are the total number of MSCs for 
each stage. The recursive structure allows generating the 
architecture for next higher order transform length from two 
identical lower order ones. It can be directly mapped into the 
SFD and provides a regular structure for easy 
implementation. 

VI. SIMULATION RESULTS  

The architecture has been tested by simulating it with the 
help of Orcad PSpice. The forward and the inverse 
transformations have been tested. It has been tested by 
applying different types of sequence patterns such as step, 
impulse, sinusoidal, ramp and found to obtain the desired 
output sequences. These output sequences are applied as 
input to the inverse transformation to retrieve back the 
original sequence. The theoretically calculated values and the 
outputs obtained by simulation for the forward and inverse 
transformations for these patterns are tabulated in Tables II 
to V.  

TABLE II.  RESULTS FOR STEP PATTERN  

Forward transformation 
output XH (mV) 

n 
Input 
 x(n)      
(mV)  Theoretical 

Values  
Simulation 

Results 

Inverse 
transform-

ation 
output 

x(n) (mV) 
0 1000 1000 1000 1000 
1 1000 0 0 1001 
2 1000 0 0 998 
3 1000 0 0 998 
4 1000 0 0 1000 
5 1000 0 0 1001 
6 1000 0 0 1001 
7 1000 0 0 1000 

 

TABLE III.  RESULTS FOR IMPULSE PATTERN  

Forward transformation 
output XH (mV) 

n 
Input 
 x(n)      
(mV)  Theoretical 

Values  
Simulation 

Results 

Inverse 
transform-

ation 
output 

x(n) (mV) 
0 200 25 25 200 
1 0 25 24 0 
2 0 25 25 1 
3 0 25 26 0 
4 0 25 25 2 
5 0 25 25 0 
6 0 25 26 0 
7 0 25 25 0 

 

TABLE IV.  RESULTS FOR SINUSOIDAL PATTERN  

Forward transformation 
output XH (mV) 

n 
Input 
 x(n)      
(mV)  Theoretical 

Values  
Simulation 

Results 

Inverse 
transform-

ation 
output 

x(n) (mV) 
0 0 0 0 0 
1 707 500 500 709 
2 1000 0 0 1000 
3 707 0 0 709 
4 0 0 0 2 
5 -707 0 0 -705 
6 -1000 0 0 -998 
7 -707 -500 -500 -705 

 

TABLE V.  RESULTS FOR RAMP PATTERN  

Forward transformation 
output XH (mV) 

n 
Input 
 x(n)      
(mV)  Theoretical 

Values  
Simulation 

Results 

Inverse 
transform-

ation 
output 

x(n) (mV) 
0 200 900 900 201 
1 400 -341 -340 398 
2 600 -200 -200 600 
3 800 -141 -140 798 
4 1000 -100 -100 998 
5 1200 -58 -59 1196 
6 1400 0 0 1396 
7 1600 141 140 1596 

 
The input sequence V(XN) corresponding to a ramp 

sequence pattern is shown in Figure 8 (a), the simulation 
results for the output sequence V(YN) obtained after the 
forward transformation is shown in Figure 8 (b) and the 
retrieved sequence V(ZN) after the inverse transformation is 
shown in Figure 8 (c). They are in good agreement with 
those obtained theoretically.  

 

 

(a) 

Figure 8. (a) Input sequence 
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(b)  

Figure 8. (b) Output sequence after forward transformation 

 
(c)  

Figure 8.  (c) Retrieved sequence after forward and inverse 
transformations  

VII. CONCLUSIONS   

In the existing algorithms [1]-[5], the stage structures 
perform all the additions and multiplications. They require 
the computation of stage dependent cosine and sine 
coefficients for each stage. The proposed algorithm 
introduces multiplying structures in the signal flow diagram 
which perform all the multiplications with the cosine 
coefficients and their related additions. This leads to 
simplification of the stage structures which are now similar 
in nature and perform only the additions. The proposed 
algorithm computes lesser number of stage independent 
cosine coefficients. The distinct advantage is that the number 
of multiplications is reduced without affecting the number of 
additions. Its recursive nature allows generating the next 
higher order transform from two identical lower order ones. 
It can be directly mapped into the SFD and provides a 
regular structure for easy implementation using the proposed 

basic analog circuit. The architecture utilizing this circuit is 
modular and can be scaled for large values of N unlike the 
neural net approach in [22]. It processes the data 
simultaneously at each stage and speeds up the 
transformation as compared to those which employ a 
multiply and accumulate approach as in [26]. Both the 
forward and inverse transformations have been tested by 
performing the simulation on Orcad PSpice. The architecture 
could prove suitable for signal processing applications using 
FPAAs [27]-[28]. 
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