
GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 1 ISSN: 1473-804x online, 1473-8031 print

A New Fast Radix-2 DIF Algorithm and Architecture for Computing the DHT

Gautam A. Shah
Department of Electronics and Telecommunications

St. Francis Institute of Technology, Mumbai University
Mumbai, India

e-mail: gautamshah@ieee.org

Tejmal S. Rathore
Department of Electronics and Telecommunications

St. Francis Institute of Technology, Mumbai University
Mumbai, India

e-mail: tsrathor@ee.iitb.ac.in

Abstract — The radix-2 decimation-in-time (DIT) fast Hartley transform algorithm for computing the Discrete Hartley Transform
(DHT) was introduced by Bracewell. DIT and decimation-in-frequency (DIF) algorithms were further developed by Meckelburg
and Lipka, Prado, Sorenson et al, Kwong and Shiu. In these algorithms, the stage structures perform all the additions and
multiplications and utilize stage dependent sine and cosine coefficients. A new fast radix-2 DIF algorithm for computing the DHT is
proposed, which introduces multiplying structures in the signal flow diagram that perform all the multiplications with the stage
independent cosine coefficients and their related additions leading to simplification of the stage structures which now have to
perform only the additions. This leads to a reduction in the number of multiplications. An architecture utilizing current feedback
operational amplifiers which implements the algorithm in hardware has been proposed. It has been tested by simulating it with the
help of PSpice.

Keywords – algorithm, analog architecture, decimation-in-frequency, discrete Hartley transform, radix-2

I. INTRODUCTION

The fast Hartley transform (FHT) algorithm introduced
by Bracewell [1] performs the DHT in a time proportional to

NN 2log using decimation-in-time (DIT). Meckelburg and
Lipka presented the decimation-in-frequency (DIF) FHT
algorithm [2] claiming it to be faster than the one in [1].
Sorenson et al. [3] using the index mapping approach
analyzed the FHT having the same decomposition as [1],
implemented the algorithms for both DIT and DIF, and
verified their operational complexities to be the same. Prado
[4] presented an in-place version of the FHT in [1] along
with its operational complexity. Kwong and Shiu [5]
restructured the signal flow diagram originally proposed in
[1] for clarity, and applied the transposition theorem to
obtain the DIF algorithm with the same operational
complexity. The above approaches utilize both the cosine
coefficients (CCs) and sine coefficients (SCs) which are
stage-dependent. Hou [6] stressed that the FHT algorithm, in
essence, is a generalization of the Cooley-Tukey fast Fourier
transform (FFT) algorithm to compute the discrete Fourier
transforms (DFT), but it requires only real arithmetic
computations as compared to complex arithmetic operations
in any standard FFT. Hao [7] examined both the pre- and
post-permutation algorithms in [1] and [2], and suggested
improvements to make them faster by use of fast rotation to
reduce the multiplications and by incorporating in-place or
distributed permutation. Malvar [8] presented a new
factorization of the DHT which involves the discrete cosine
transform (DCT). His algorithms minimize the
multiplications at the expense of an increased number of
additions. Rathore [9] reported that, for both the DIT in [1]
and the DIF in [2], the operational complexity involved is the
same. He further utilized the matrix approach, derived some

properties of the DHT [10], obtained the relations for
computational complexity and presented DHT-based DFT
and DFT-based DHT algorithms.

Various architectures have been reported in the literature
to compute the DHT. Chakrabarti and Jaja [11] proposed a
modular bit-level systolic architecture. Dhar and Banerjee
[12] employed a set of linear arrays of Givens rotors. Chang
and Lee [13] derived two models of linear systolic arrays and
suggested the use of cordic algorithms to make the systolic
arrays more efficient in computation. Hsiao et al. [14]
modified the above cordic processor and obtained a higher
throughput and cost effective architecture. Kar and Rao [15]
proposed a unified systolic architecture for sliding window
computation of discrete transforms. Nayak and Meher [16]
implemented a bit-level systolic architecture for discrete
orthogonal transforms using a serial–parallel vector–matrix
multiplication scheme based on the Baugh–Wooley
algorithm. Guo [17, 18] presented two architectures; one
using parallel adders and the other using a distributed
arithmetic based array that utilizes identical ROM modules
and eliminates the accumulation loop in the processing
elements. Amira and Bouridane [19, 20] developed
architectures to implement the DHT on field programmable
gate arrays. Meher et al. [21] presented a design framework
for scalable and modular memory based implementation of
the DHT in systolic hardware. These architectures compute
the DHT using digital VLSI techniques.

The role of analog integrated circuits in modern
electronic systems remains important, even though digital
circuits dominate the market for VLSI solutions. Analog
systems have always played an essential role in interfacing
digital electronics to the real world. An important advantage
of digital integrated circuits has been their relative ease of
design over analog circuits. In particular, since digital circuit

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 2 ISSN: 1473-804x online, 1473-8031 print

design is amenable to automation, several CAD-compatible
digital integrated circuit design methodologies have been
developed, including design-for-testability, design
optimization and rapid prototyping in field-programmable
gate arrays (FPGAs). However, there are architectures which
compute the DHT based on analog blocks. Culhane et al.
[22] presented an analog circuit which utilizes a linear
programming neural net to compute the DHT. Raut et al.
[23] presented basic switched capacitor building blocks in
systolic array architecture to implement the DFT. A two
dimensional DCT structure proposed by Kawahito et al. [24]
is designed with fully differential switched-capacitor circuits.
Digitally controlled analog circuits proposed by Chen et al.
[25] utilize the principle of charge scaling for computing the
DCT and DFT. Mal and Dhar [26] proposed an analog
sampled data architecture for the DHT.

The growing computational demand for complex
information processing has motivated significant research in
the design of power efficient signal processing systems. One
method for achieving low-power designs is to move
processing on system inputs from the digital processor to
analog hardware. However, for analog systems to be
desirable to digital signal processing engineers, they need to
provide a significant advantage in terms of size and power
and yet still remain relatively easy to use and integrate into a
larger digital system. Reconfigurable analog arrays, dubbed
field-programmable analog arrays (FPAAs), can speed the
transition of systems from digital to analog by providing the
ability to rapidly implement advanced, low-power signal
processing systems [27]. This has demanded the
development of high performance analog circuits that are
reconfigurable and suitable for CAD methodologies. Analog
circuits based on the current feedback operational amplifier
(CFA) technique are suitable for high frequency applications
[28]. The CFA combines high bandwidth and very fast large
signal response with excellent dc performance. It is
optimized for use in current to voltage applications and as an
inverting mode amplifier. It can be used in place of
traditional operational amplifiers (OA) and its current
feedback architecture results in much better ac performance,
high linearity and an exceptionally clean pulse response. Its
closed-loop bandwidth is determined by the feedback resistor
and is almost independent of the closed-loop gain unlike
OA-based circuits, which are limited by a constant gain-
bandwidth product. It can be used in ways similar to a
conventional OA while providing performance advantages in
wideband applications [29, 30].

The proposed algorithm overcomes the stage
dependencies of the CCs and SCs. It utilizes only CCs which
are stage independent. It introduces multiplying structures
(MSs), and results in a signal flow diagram (SFD) with
butterflies similar in each stage structure (SS). It leads to
simplification of the stage computations and reduces the
operational complexity. A simple and versatile basic analog
circuit based on CFAs is designed, which can be easily
reconfigured as a stage structure or multiplying structure
circuit. An architecture which is modular and can be scaled
for higher values of N is proposed to implement the
algorithm.

II. DISCRETE HARTLEY TRANSFORM

An N-point DHT XH of a sequence x(n) is defined as

    





1

0

N

n
H nxkX cas 








N

kn2 k…– 

where cas (.) = cos (.) + sin (.). Using the matrix approach
[10], the DHT can be expressed as



 
 

 

 

 





























































 



1

0

1

1

0

1,10,1

1,10,1

1,01,00,0

Nx

x

hh

hh

hhh

NX

X

X

NNN

N

H

H

H












In the expression      xHX NH  , HN is the N × N
Hartley matrix and its elements are given by

 jih , cas 







N

ij2
 (1)

where indices i and j are integers from 0 to N – 1 [22].
The FHT algorithm by Bracewell [1] performs the DHT

of a data sequence of N elements in a time proportional
to NN 2log where PN 2 . The algorithm in [2] requires an
operation count given by NA additions and NM multiplications


 

2

43log3 2 


NNN
N A  (2)

 43log2  NNNN M  (3)

Sorenson et al [3] have analyzed the FHT algorithm in [1]
using the index mapping approach. Their radix-2 DIT and
DIF programs implement the FHT algorithm with the same
operation count as given by (2) and (3). Prado [4] in his
paper presents an in-place version of the FHT in [1] and
gives a table for the number of non-trivial real operations
which tally with those obtained by using (2) and (3). Kwong
and Shiu [5] have restructured the signal flow diagram
originally proposed in [1] for clarity, and applied the
transposition theorem to obtain the DIF algorithm with the
same operational complexity. However, Rathore [9] has
observed that for all these radix-2 algorithms [1]-[5], the
operational complexities involved are the sameThe above
approaches utilize both the cosine coefficients (CCs) and
sine coefficients (SCs) which are stage-dependent. The
proposed algorithm computes only stage independent CCs.

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 3 ISSN: 1473-804x online, 1473-8031 print

III. PROPOSED ALGORITHM

A view of the proposed algorithm operation may be
obtained as a sequence of matrix operations on the data. The
DHT

     nxLLLLLLLLPNX MMPMPPPrH 112222)1(
1 
 ,

where LS is a SS matrix (SSM) and LSM is a MS matrix
(MSM).

For each SSM, there is a matrix LY having dimensions Y
× Y, where SPY  12 which repeats itself along the forward

diagonal N/Y times. If LY is split into 4 quadrants
42

31

QQ

QQ
,

Q1 Q2 and Q3 have the same elements and are identity
matrices, whereas Q4 = - Q1. Fig. 1 shows the SSMs involved
in the stages 1 to 4 for N = 16.

MSMs are introduced for the stages 1 ≤ S < (P − 1). For
each LSM, matrix LZ having dimensions Z × Z, where

SPZ  12 , repeats itself along the forward diagonal N/Z

times. Splitting LZ into 4 quadrants
42

31

QQ

QQ
, only Q1 and

Q4 have some non-zero elements. Q1 is an identity matrix,
whereas elements which appear in Q4 are related to the CCs
of the elements in the first row or column of HN. The CCs
appear along the forward diagonal of Q4. They also appear
along the inverse diagonal of the sub-matrix formed within
Q4 after deleting the 0th row and 0th column of Q4. The
intersection element of both these elements is a unity factor.
Due to the cosine-sine symmetry, there is a reduction in the
number of these elements to only a few CCs and a unity
factor.












88

88
1 II

II
L


















YLO

O
II

II
L

8

8

44

44

2
























Y

Y

Y

LO

OL
O

O
LO

O
II

II

L

4

4
8

8

4

4
22

22

3




































Y

Y

Y

Y

Y

Y

Y

LO

OL
O

O
LO

OL

O

O

LO

OL
O

O
LO

O
II

II

L

2

2
4

4
2

2

8

8

2

2
4

4

2

2
11

11

4

LY

LY

LY

LY

NNI N  Identity Matrix, NNON  Null Matrix












88

88
1 II

II
L


















YLO

O
II

II
L

8

8

44

44

2
























Y

Y

Y

LO

OL
O

O
LO

O
II

II

L

4

4
8

8

4

4
22

22

3




































Y

Y

Y

Y

Y

Y

Y

LO

OL
O

O
LO

OL

O

O

LO

OL
O

O
LO

O
II

II

L

2

2
4

4
2

2

8

8

2

2
4

4

2

2
11

11

4

LY

LY

LY

LY

NNI N  Identity Matrix, NNON  Null Matrix

Figure 1. Matrices LS and LY for N = 16, S =1 to 4.

The first stage has the maximum number of CCs. The
number of CCs for the other stages is lesser and their values
belong to the set of CCs for the first stage. While computing
LZ it is sufficient to compute Q4. Hence, only (N/4) – 1 stage
independent CCs have to be computed. Fig. 2 shows the
MSMs involved in the stages 1 and 2 for N = 16.

The permutation matrix shown in Fig. 3 is involved in the
computation and applied to the outputs of the final stage to
rearrange them in the normal order.

A succession of P stage operations followed by
permutation leads stage by stage to the outputs,  nx1

through  nxP , and finally to the transform output XH. For
any stage, SS performs only additions, and MS performs the
multiplications with the CCs and the related additions.











88

88
1 CO

OI
L M








































13

22

31

13

22

31

8 1

1

CC

CC

CC

CC

CC

CC

C


















Z

M

LO

O
CO

OI
L

8

8

44

44

2 





















22

22
4 1

1

CC

CC
C

NNI N  Identity Matrix,

NNON  Null Matrix

LZ

LZ











88

88
1 CO

OI
L M








































13

22

31

13

22

31

8 1

1

CC

CC

CC

CC

CC

CC

C


















Z

M

LO

O
CO

OI
L

8

8
44

44

2 





















22

22
4 1

1

CC

CC
C

NNI N  Identity Matrix,

NNON  Null Matrix

LZ

LZ

Figure 2. Matrices LSM and LZ for N = 16, S =1, 2.



























































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

rP

Figure 3. Permutation Matrix for N = 16.

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 4 ISSN: 1473-804x online, 1473-8031 print

Figure 4 depicts a partial SFD showing a generalized SS
and MS. The SFD for the SS is simple, follows a regular
pattern and performs only additions. For each MS, the CCs

ii  , or 0.707 are multiplied with different elements as
shown in Fig. 4. For each stage S from 1 to P - 2, there are
CCs in the corresponding MS.
Elements from 0 to m/2 have no CCs.
Each element (m/2) + i has no CC for i = m/4, the CC 707.0
for i = m/8, and CCs i and i for i = 1 to (m/8) – 1 and
(m/8) + 1 to (m/4) – 1.
Each element m – i has the CC 707.0 for i = m/8, and CCs

i and i for i = 1 to (m/8) – 1 and (m/8) + 1 to (m/4) – 1,

where
m

i
i

 2
cos and 






  i

m

mi 4

2
cos

 .

Further






 


i

mi

4

 and






 


i

mi

4

 .

Hence, for all the MSs, only (N/4) – 1 stage independent
CCs have to be computed.

m = 2 MS

3m/4

5m/8

7m/8

m-1

m-i

1
2
m

2

m

1
2
m

i
m 
2

0

SS m = 2(P + 1 – S) MS

3m/4

5m/8

7m/8

m-1

m-i

1
2
m

2

m

1
2
m

0

SS

1

0.707

0.707

i

1

11

i
i
i

m = 2 MS

3m/4

5m/8

7m/8

m-1

m-i

1
2
m

1
2
m

2

m

2

m

1
2
m

1
2
m

i
m 
2

i
m 
2

0

SS m = 2(P + 1 – S) MS

3m/4

5m/8

7m/8

m-1

m-i

1
2
m

1
2
m

2

m

2

m

1
2
m

1
2
m

0

SS

1

0.707

0.707

i

1

11

i
i
i

Figure 4. A SFD for the generalized structure, N = 2P

In the proposed algorithm the operational complexity is
calculated as follows:
The additions are performed by both the SS and MS.
Each SS requires N additions, for N = 2P, the number of
stages are P, hence, total number of additions for all the SSs
= NP.

Number of MSs required per stage
m

N
 , where

)1(2 SPm  .

Each MS requires (m/2) – 2 additions.

Hence additions per stage
m

Nm






  2

2


m

NN 2

2
 

The number of additions for all the MSs are





 





 

2

1
12

2

2

P

S
SP

NN


For the entire SFD including all the SSs and MSs


 

2

43log3

22
2

2

1









  






NNNNN
NPN

P

S
SPA  (4)

It is clear from (2) and (4) that NA remains the same.
The multiplications are performed within the MSs.

Each MS requires m – 6 multiplications.

Hence multiplications per stage  
m

N
m 6

m

N
N

6
 .

The number of multiplications for the entire SFD are

 65.3log
2

3
2

2

1







  






NNN
N

NN
P

S
SPM  (5)

From (3) and (5) it is seen that NM is lesser for N ≥ 8 in
the proposed algorithms as compared to the existing
algorithms in [1] – [5]. It is evident that the number of non-
trivial arithmetic operations is reduced by 2 multiplications
(M) for each MS introduced. The reduction of 2M at the first
stage is due to one MS corresponding to stage 1 and a
reduction of 4M at the second stage is due to two MSs
corresponding to stage 2. As the values of P and N increase,
the MSs for the corresponding stages also increase, leading
to a further reduction in the M. The total number of M

reduces by
2

4N
 for N ≥ 8. The comparison of the

operational complexities of the existing radix-2 algorithms
with the proposed algorithm for various transform lengths is
shown in Table I.

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 5 ISSN: 1473-804x online, 1473-8031 print

TABLE I. COMPARISON OF OPERATIONAL COMPLEXITIES

 Length
Radix-2 FHT algorithms

[1]-[5]
Proposed Radix-2

Algorithm
N NM NA Total NM NA Total

8 4 26 30 2 26 28
16 20 74 94 14 74 88
32 68 194 262 54 194 248
64 196 482 678 166 482 648

128 516 1154 1670 454 1154 1608
256 1284 2690 3974 1158 2690 3848
512 3076 6146 9222 2822 6146 8968

1024 7172 13826 20998 6662 13826 20488
2048 16388 30722 47110 15366 30722 46088
4096 36868 67586 104454 34822 67586 102408

Fig. 5 shows the SFD for the proposed algorithm with N

= 16, P = 4. It is regular and well structured. The first stage
consists of the SS and MS. The matrix for L1 shown in Fig. 1

is directly mapped as SS and that for L1M shown in Fig. 2 is
directly mapped as MS for stage 1 in the SFD. This stage has
the maximum number of stage independent CCs which
should be equal to (N/4) – 1. As N = 16, these should be 3.
Although in the SFD it appears to be more, as α1 = β3 and α3
= β1, they may be treated as α1, β1, and 0.707.

The second stage also consists of the SS and MS. The
matrix for L2 shown in Fig. 1 is directly mapped as SS and
that for L2M shown in Fig. 2 is directly mapped as MS for
stage 2 in the SFD. This stage has only one stage
independent CC 0.707 which belongs to the set of CCs for
the first stage.

The third and fourth stages consist only of the SSs. The
matrices for L3 and L4 shown in Fig. 1 are directly mapped as
SSs for stages 3 and 4 respectively. The fourth stage
followed by permutation results in the transformed output.

P
 E

 R
 M

 U
T

 E

x1(n) x2(n) x3(n) NXH
x4(n)

Stage 3 Stage 4

Stage 2

MSsSS

Stage 1

MSSS

α1

x (n)

0.707

0.707

0.707

0.707

0.707

0.707

α3

α3

α1

β1

β1

β3

β3

P
 E

 R
 M

 U
T

 E

x1(n) x2(n) x3(n) NXH
x4(n)

Stage 3 Stage 4

Stage 2

MSsSS

Stage 1

MSSS

α1

x (n)

0.707

0.707

0.707

0.707

0.707

0.707

α3

α3

α1

β1

β1

β3

β3

Figure 5. SFD for proposed algorithm with N = 16, P = 4.

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 6 ISSN: 1473-804x online, 1473-8031 print

IV. CFA BASED ANALOG CIRCUIT

Consider the circuit shown in Fig. 6.

+

_

CFA

+

_

CFA

R5

R7

R1

R3

V2

V1

R2

R6

R8

R4
VA

VB

+

_

CFA

+

_

CFA

R5

R7

R1

R3

V2

V1

R2

R6

R8

R4
VA

VB

Figure 6. Basic analog circuit

The outputs are

 



















 BA V
R

R
V

R

R

RR

RR
V

1

4

1

3

43

21
1  (6)

 and BA V
R

R
V

R

R
R

R

R

R
V

5

6

8

7

6

5

5

6
2

1

1























  (7)

Thus, the circuit acts as a weighted summer and
subtractor.

Case (i): Choosing

4321 RRRR  and 1
7

8

5

6 
R

R

R

R


 BA VVV 1  (8)

 and BA VVV 2  (9)

Thus the circuit may be utilized in the stage structure.

Case (ii): Choosing

1
43

21 



RR

RR
 iR

R

R

R


5

6

1

3  iR

R 
1

4 

and 1
1

8

7 






 


i

i

R

R






 BiAi VVV  1  (10)

 and BiAi VVV  2  

Thus the circuit may be utilized in the multiplying
structure.

V. ANALOG ARCHITECTURE

An architecture to obtain the radix-2 DHT for N = 2, 4, 8
and 16 shown in Fig. 7 have been implemented utilizing the
basic analog circuit.

SSC
x(0)

x(1)

X(0)

X(1)

x(0)

x(2)

X(0)

X(1)
D2

D2
x(1)

x(3)

X(2)

X(3)

(a) (b)

D2

D2

x(n) XH = x1(n)

x(n) XH = x2(n)x1(n)

D4
D2 Permute

SSC
x(0)

x(1)

X(0)

X(1)

x(0)

x(2)

X(0)

X(1)
D2

D2
x(1)

x(3)

X(2)

X(3)

(a) (b)

D2

D2

x(n) XH = x1(n)

x(n) XH = x2(n)x1(n)

D4
D2 Permute

D2

D2

D2

D2

MSC

x(0)

x(4)

x(1)

x(5)

x(2)

x(6)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

(c)

D4

D4

D8

x(n) XH = x3(n)x1(n)

Permute

D2

D2

D2

D2

MSC

x(0)

x(4)

x(1)

x(5)

x(2)

x(6)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

(c)

D4

D4

D8

x(n) XH = x3(n)x1(n)

Permute

x(n) XH = x4(n)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x1(n)

x(0)

x(8)

x(1)

x(9)

x(2)

x(10)

x(3)

x(11)

x(4)

x(12)

x(5)

x(13)

x(6)

x(14)

x(7)

x(15)

MSC1

MSC2

MSC3D2

D8

D2

D2

D2

D2

D2

D2

D2

D8

Permute
(d)

x(n) XH = x4(n)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x1(n)

x(0)

x(8)

x(1)

x(9)

x(2)

x(10)

x(3)

x(11)

x(4)

x(12)

x(5)

x(13)

x(6)

x(14)

x(7)

x(15)

MSC1

MSC2

MSC3D2

D8

D2

D2

D2

D2

D2

D2

D2

D8

Permute
(d)

Figure 7. Architecture to obtain the DHT for (a) N = 2, (b) N = 4, (c) N = 8
and (d) N = 16.

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 7 ISSN: 1473-804x online, 1473-8031 print

Each butterfly in the SFD of the SS shown in Fig. 4 is
implemented by a single analog stage structure circuit (SSC).
Each stage has N/2 butterflies and hence requires N/2 SSCs
to implement it. Similarly, each butterfly in the SFD of the
MS shown in Fig. 4 is implemented by a single multiplying
structure circuit (MSC). For each stage S from 1 to P – 2,
there are 2(S - 1) MSs and each MS has (2(P - S - 1) – 1) MSCs.
Hence, 2(S - 1) · (2(P - S - 1) – 1) are the total number of MSCs for
each stage. The recursive structure allows generating the
architecture for next higher order transform length from two
identical lower order ones. It can be directly mapped into the
SFD and provides a regular structure for easy
implementation.

VI. SIMULATION RESULTS

The architecture has been tested by simulating it with the
help of Orcad PSpice. The forward and the inverse
transformations have been tested. It has been tested by
applying different types of sequence patterns such as step,
impulse, sinusoidal, ramp and found to obtain the desired
output sequences. These output sequences are applied as
input to the inverse transformation to retrieve back the
original sequence. The theoretically calculated values and the
outputs obtained by simulation for the forward and inverse
transformations for these patterns are tabulated in Tables II
to V.

TABLE II. RESULTS FOR STEP PATTERN

Forward transformation
output XH (mV)

n
Input
 x(n)
(mV) Theoretical

Values
Simulation

Results

Inverse
transform-

ation
output

x(n) (mV)
0 1000 1000 1000 1000
1 1000 0 0 1001
2 1000 0 0 998
3 1000 0 0 998
4 1000 0 0 1000
5 1000 0 0 1001
6 1000 0 0 1001
7 1000 0 0 1000

TABLE III. RESULTS FOR IMPULSE PATTERN

Forward transformation
output XH (mV)

n
Input
 x(n)
(mV) Theoretical

Values
Simulation

Results

Inverse
transform-

ation
output

x(n) (mV)
0 200 25 25 200
1 0 25 24 0
2 0 25 25 1
3 0 25 26 0
4 0 25 25 2
5 0 25 25 0
6 0 25 26 0
7 0 25 25 0

TABLE IV. RESULTS FOR SINUSOIDAL PATTERN

Forward transformation
output XH (mV)

n
Input
 x(n)
(mV) Theoretical

Values
Simulation

Results

Inverse
transform-

ation
output

x(n) (mV)
0 0 0 0 0
1 707 500 500 709
2 1000 0 0 1000
3 707 0 0 709
4 0 0 0 2
5 -707 0 0 -705
6 -1000 0 0 -998
7 -707 -500 -500 -705

TABLE V. RESULTS FOR RAMP PATTERN

Forward transformation
output XH (mV)

n
Input
 x(n)
(mV) Theoretical

Values
Simulation

Results

Inverse
transform-

ation
output

x(n) (mV)
0 200 900 900 201
1 400 -341 -340 398
2 600 -200 -200 600
3 800 -141 -140 798
4 1000 -100 -100 998
5 1200 -58 -59 1196
6 1400 0 0 1396
7 1600 141 140 1596

The input sequence V(XN) corresponding to a ramp

sequence pattern is shown in Figure 8 (a), the simulation
results for the output sequence V(YN) obtained after the
forward transformation is shown in Figure 8 (b) and the
retrieved sequence V(ZN) after the inverse transformation is
shown in Figure 8 (c). They are in good agreement with
those obtained theoretically.

(a)

Figure 8. (a) Input sequence

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 8 ISSN: 1473-804x online, 1473-8031 print

(b)

Figure 8. (b) Output sequence after forward transformation

(c)

Figure 8. (c) Retrieved sequence after forward and inverse
transformations

VII. CONCLUSIONS

In the existing algorithms [1]-[5], the stage structures
perform all the additions and multiplications. They require
the computation of stage dependent cosine and sine
coefficients for each stage. The proposed algorithm
introduces multiplying structures in the signal flow diagram
which perform all the multiplications with the cosine
coefficients and their related additions. This leads to
simplification of the stage structures which are now similar
in nature and perform only the additions. The proposed
algorithm computes lesser number of stage independent
cosine coefficients. The distinct advantage is that the number
of multiplications is reduced without affecting the number of
additions. Its recursive nature allows generating the next
higher order transform from two identical lower order ones.
It can be directly mapped into the SFD and provides a
regular structure for easy implementation using the proposed

basic analog circuit. The architecture utilizing this circuit is
modular and can be scaled for large values of N unlike the
neural net approach in [22]. It processes the data
simultaneously at each stage and speeds up the
transformation as compared to those which employ a
multiply and accumulate approach as in [26]. Both the
forward and inverse transformations have been tested by
performing the simulation on Orcad PSpice. The architecture
could prove suitable for signal processing applications using
FPAAs [27]-[28].

REFERENCES
[1] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, vol. 72,

no. 8, pp. 1010-1018, Aug. 1984.

[2] H. J. Meckelburg and D. Lipka, “Fast Hartley transform algorithm,”
Electronics Letters, vol. 21, no. 8, pp. 311-313, Apr. 1985.

[3] H. V. Sorensen, D. L. Jones, C. S. Burrus and M. T. Heideman, “On
computing the discrete Hartley transform,” IEEE Trans. Acoustics,
Speech, and Signal Processing, vol. ASSP-33, no. 4, pp. 1231-1238,
Oct. 1985.

[4] J. Prado, Comments on “The fast Hartley transform,” Proc. IEEE, vol.
73, no. 12, pp. 1862-1863, Dec. 1985.

[5] C. P. Kwong and K. P. Shiu, “Structured fast Hartley transform
algorithms,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. ASSP-34, no. 4, pp. 1000-1002, Aug. 1986.

[6] H. S. Hou, “The Fast Hartley Transform Algorithm,” IEEE Trans.
Computers, vol. C-36, no. 2, pp. 147-156, Feb 1987.

[7] H. Hao, “On fast Hartley transform algorithms,” Proc. IEEE, vol. 75,
no. 7, pp. 961-962, July 1987.

[8] H. S. Malvar, “Fast computation of the discrete cosine transform and
the discrete Hartley transform,” IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. ASSP-35, no. 10, pp. 1484-1485, Oct. 1987.

[9] T. S. Rathore, “Recursive relations for complexities of Hartley
transform algorithms,” IETE Journal of Research, vol. 35, no. 6, pp.
357-359, Nov.-Dec 1989.

[10] T. S. Rathore, “Hartley transform – Properties and algorithms,” in
Proc. National Conf. Real Time Systems, Indore, pp. 21-30, Nov.
1990.

[11] C. Chakrabarti and J. Jaja, “Systolic architectures for the computation
of the discrete Hartley and discrete cosine transforms based on prime
factor decomposition,” IEEE Trans. Comp., vol. 39, no. 11, pp. 1359–
1368, Nov. 1990.

[12] A. S. Dhar and S. Banerjee, “An array architecture for fast
computation of discrete Hartley transform,” IEEE Trans. Circuits
Syst., vol. 38, no. 9, pp. 1095–1098, Sep. 1991.

[13] L. W. Chang and S. W. Lee, “Systolic arrays for the discrete Hartley
transform,” IEEE Trans. Signal Process., vol. 39, no. 11, pp. 2411–
2418, Nov. 1991.

[14] J. H. Hsiao, L. G. Chen, T. D. Chiueh, and C. T. Chen, “Novel
systolic array design for the discrete Hartley transform with high
throughput rate,” in Proc. IEEE Int. Conf. Circuits Syst., pp. 1567–
1570, 1993.

[15] D. C. Kar and V. V. Bapeswara Rao, “A cordic-based unified systolic
architecture for sliding window applications of discrete transforms,”
IEEE Trans. Signal Process., vol. 44, no. 2, pp. 441–444, Feb. 1996.

[16] S. S. Nayak and P. K. Meher, “High throughput VLSI implementation
of discrete orthogonal transforms using bit-level vector-matrix
multiplier,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 46, no. 5, pp. 655–658, May 1999.

[17] J. I. Guo, “An efficient design for one-dimensional discrete Hartley
transform using parallel additions,” IEEE Trans. Signal Process., vol.
48, no. 10, pp. 2806–2813, Oct. 2000.

GAUTAM A. SHAH et al: A NEW FAST RADIX-2 DIF ALGORITHM AND ARCHITECTURE FOR COMPUTING

DOI 10.5013/IJSSST.a.12.01.01 9 ISSN: 1473-804x online, 1473-8031 print

[18] J. I. Guo, “A new DA-Based array for one-dimensional discrete
Hartley transform,” in Proc. Int. Symp. Circuits Syst, (ISCAS 2001),
vol. 4, pp. 662-665, May 2001.

[19] A. Amira and A. Bouridane, “An FPGA implementation of discrete
Hartley transforms,” in Proc. 7th Int. Symp. Signal Process. Appl.,
vol. 1, pp. 625–628, Jul. 2003.

[20] A. Amira and A. Bouridane, “An FPGA-based accelerator for discrete
Hartley and fast Hadamard transforms,” in Proc. Int. Symp. Micro-
NanoMechatronics and Human Science (MWCAS’03), vol. 2, pp.
860–863, 2003.

[21] P. K. Meher, T. Srikanthan and J. C. Patra, “Scalable and modular
memory-based systolic architectures for discrete Hartley transform,”
IEEE Trans. Circuits Syst. I, vol. 53, no. 5, pp. 1065–1077, May
2006.

[22] A. D. Culhane, M. C. Peckerar and C. R. K. Marrian, “A neural net
approach to discrete Hartley and Fourier transforms,” IEEE Trans.
Circuits Syst., vol. 36, no. 5, pp. 695-703, May 1989.

[23] R. Raut, B. B. Bhattacharya and S. M. Faruque, “A discrete Fourier
transform using switched-capacitor circuits in systolic array
architecture,” IEEE Trans. Circuits Syst., vol. 37, no. 12, pp. 1578-
1580, Dec. 1990.

[24] S. Kawahito et al.,“A CMOS image sensor with analog two-
dimensional DCT based compression circuits for on-chip cameras,”
IEEE J. Solid-State Circuits, vol. 32, pp. 2030-2041, Dec. 1997.

[25] J. Chen, G. Shou and C. Zhou, “Digital-controlled analog circuits for
weighted-sum operations,” IEICE Trans. Fundamentals, vol. E82-A,
pp. 2505-2513, Nov 1999.

[26] A. K. Mal and A. S. Dhar, “Analog Sampled Data Architecture for
Discrete Hartley Transform,” in Proc. Tenth Int. Conf. on Convergent
Technologies for Asia-Pacific Region, Bangalore, India, vol. 3, pp.
1035–1039, Oct. 2003.

[27] P. K. Meher, T. Srikanthan and J. C. Patra, “Large-Scale Field-
Programmable Analog Arrays for Analog Signal Processing,” IEEE
Trans. Circuits Syst. I, vol. 52, no. 11, pp. 2298-2307, Nov. 2005.

[28] A. H. Madian, S. A. Mahmoud and A. M. Soliman, “Field
Programmable Analog Array based on CMOS CFOA and its
Application,” in Proc. IEEE Int. Conf. Electr. Circuits Syst.
(ICECS’08), pp. 1042–1046, 2008.

[29] AD-844 data sheet, Monolithic operational amplifier, Analog
Devices, Rev-C.

[30] T. S. Rathore and U. P. Khot, “CFA-based grounded-capacitor
operational simulation of ladder filters,” Int. J. Circ. Theor. Appl.,
vol. 36, pp. 697-716, 2008.

