
REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 25

Developing a Petri Nets based Real-Time Control Simulator

Reggie Davidrajuh
Electrical and Computer Engineering

University of Stavanger
Stavanger, Norway

e-mail: reggie.davidrajuh@uis.no

Abstract — Petri net is a powerful tool for modeling and simulation of discrete event dynamic systems (DEDS). This paper is about
developing a new real-time control simulator based on Petri net. This paper presents some of the design challenges that were dealt
with during the development stages of the simulator; the design issues were: realization of token gaming (time requirements in
consumption of input tokens and creation of output tokens), representation of event continuity (whether places or transitions
represent event continuity), and interaction with the external influences (whether to map places or transitions to interact with
external events). This paper shows that the following were found to be the most suitable for development of the real-time control
simulator: ASAP firing for realization of token gaming, transition for representing continuity of events, and transition (with the
pre and post definitions) for interacting with external event).

Keywords - modeling and simulation, discrete event dynamic system (DEDS), Petri net simulator, real-time systems, GPenSIM

I. INTRODUCTION

General Purpose Petri Net Simulator (GPenSIM) is a tool
for modeling and simulation of discrete-event dynamic
systems (DEDS) [1]; GPenSIM is based on Petri nets [2; 3].
GPenSIM has been successfully used as a tool for teaching
discrete simulation and then also to solve some industrial
problems [4; 5].

This paper talks about the recent real-time enhancements
added to GPenSIM to make it function as a Real-Time
Control Simulator. This paper talks about some of the design
issues that were dealt with during the development of the
real-time version. In the following section, a short
introduction to existing version of GPenSIM is given. From
section III, real-time enhancements to GPenSIM are
discussed.

II. GPENSIM

This section presents a brief introduction to GPenSIM.

A. GPenSIM: an Easy-to-use Tool for DEDS Simulation

The reasons for developing a new simulator were [6; 7]:
For basic users: 1) a tool that is easy to understand and

easy to use, even for users with minimal mathematical and
programming skills.

For advanced users: 2) allow seamless integration of
DEDS models with the other toolboxes that are readily
available on the MATLAB platform; 3) allow easy
extension of GPenSIM functions, and 4) Compact simulation
code.

GPenSIM is developed by the author of this paper, in
order to satisfy the four criteria stated above (ease of use,
flexible, extensible, and compact code). GPenSIM is
realized as a toolbox for the MATLAB platform, so that

diverse toolboxes that available in the MATLAB
environment (e.g. Fuzzy Logic Toolbox, Control Systems
Toolbox, Advanced Statistical Analysis Toolbox, etc. [8])
can be used in the discrete models that are developed with
GPenSIM.

B. Existing Tools for Real-Time Control Simulation

There are many tools that are available for real-time
control simulation. SimEvents and SIMULINK are excellent
tools that run on the MATLAB platform. Both are capable of
real-time control and allow incorporation of diverse tools
(fuzzy, neural net, etc.) and libraries; however, these two
tools are general purpose and are not Petri net based. The
project this paper talks about is only interested in developing
a Petri net based simulator because of the many benefits of
using Petri nets (such as possessing simple graphical
representation as well as strong linear algebraic
representation that allows mathematical analysis both on the
structural and on the behavioral front) for modeling and
simulation of DEDS. LabView is another good tool that can
be defined as a real-time control simulator; however,
LabView is not based on Petri nets either. In summary, to the
author’s best knowledge, there isn’t a single tool that is Petri
net based, real-time capable and allows easy integration of
diverse tools and techniques in the models of DEDS.

C. The Existing Architecture of GPenSIM

A simple model created GPenSIM has 3 files: the
elements of the Petri net model (places and transitions) and
the static connections (arcs) that exist between the elements
are defined in a file called Petri net Definition File (PDF);
initial inputs (initial tokens, etc.) to the system are defined in
the main simulation file (MSF), and the interaction between
the Petri net model and the environment are defined in file(s)

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 26

called Transition Definition File (TDF). Interested reader is
referred to the GPenSIM user manual [1].

Figure 1 shows the architecture of GPenSIM; models that
are developed with GPenSIM consist of a number of files
(M-files or MATLAB files) [1]:

Petri Net Definition Files (PDF): these files define the
static structure (elements and their connection) of the
discrete model.

Main Simulation File (MSF): this is the file that calls the
other files; in this file, initial conditions and variables are
declared, and then the simulation is run; finally, the
simulation results (arcs) are plotted and analyzed.

Transition Definition Files (TDF): TDF files are to code
the conditions (‘guard conditions’) that must be satisfied
before an enabled transition can fire. However, the TDFs are
also the files where one can implement a fuzzy logic based
inference engine or an inference mechanism that make
decisions based on statistical analysis of massive data. There
are two types of TDFs:

Individual (for a specific transition) PRE and POST files:
a PRE TDF file checks whether guard conditions are
satisfied before an enabled transition can fire; it can also
reserve resource for use by the transition; a POST TDF file
can release resources used by the fired transition and can do
book keeping work (statistics) after the transition firing.

COMMON PRE and POST files: these files are common
for all the transitions; a COMMON PRE can, for example,
reserve a resource that is generally used by any firing
transition; likewise, a COMMON POST can release the
commonly used resource after firing of a transition.

III. DEFINING REAL-TIME GPENSIM

A new definition is given below for modeling,
simulation, and control of real-time DEDS using Petri Nets.

Definition: A Real-Time Petri Net consists of four parts:
RTPN = (PN, SE, CE, Time)

The four parts are explained in the following subsections.

A. PN: the Graph Theoretic Structure

PN is the first part of RTPN which defines the graph
theoretic structure – the ordinary P/T Petri Net, consisting of
a set of passive elements called places (P), a set of active
elements called transitions (T), a set of bipartite arcs with arc
weights connecting places and transitions, and a set of initial
markings (m0).

B. SE: the Extension for System Resources

 SE is the second part of RTPN which is the extension
for System Resources; System resources are managed in
background by the system; SE consists of the following
elements:

SE = (R, Ω, o, t, X, Y),
 R is the set of systems resources, R = {R1, R2,… , Rn}
 Ω is the set of operations executable by all the

systems resources, Ω = {ω1, ω2,…, ωm}
 o is the partitioning of the operations into subsets that can

 be executable by the individual resources,
o: R →2Ω

 t is the set of timing that are taken for operations,
t: R× Ω →N+

 X and Y are the set of input and output servers that feed
 material into the resources and remove worked
 parts from the resources

C. CE: the Color Extension

The third part of RTPN CE is the color extension; CE has
two main functions: overloading tokens with data to
differentiate one token from another, and mapping transitions
to logic functions:

CE = (C, ψ),
 C: M → {c1, c2, … ck}, k is the number of tokens. C is a
function mapping the set of tokens (markings) onto a set of
value assignments (colors), so that the tokens can carry
work-in-progress (W-I-P) information with them.

 ψ: T → LOG is the set of logical conditions for firing
(firing conditions), and for executing resource manipulation
commands such as request for resource, resource usage, and
release of resource after usage.

D. The Time Factor

 The fourth part of RTPN is the timing: Time represents
the timing taken by the various operations, activities, and
events in the DEDS. In a Petri net model, timing can be
assigned to places, transitions, or to both.

Time = (TimeT, TimeP),

TimeT: T →  is a function mapping the set of
transitions onto a set of real numbers, where the real

numbers represent the firing time – the time taken by
transitions to fire. Firing time can deterministic or stochastic.

TimeP: P →  is a function mapping the set of places
onto a set of real numbers, where the real numbers represent

MSF PDFs TDFs

(Optional)
MATLAB Toolboxes such as

Fuzzy, Control Systems, Optimization, Statistics, etc

GPenSIM
Modules: Net Utilities, Timer, Simulator,

Analysis, Display

MATLAB Engine

Fig.1. Files for simulation

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 27

the holding time – the time taken by places to hold a token.
Holding time can deterministic or stochastic.

IV. BASIC DESIGN ISSUES OF REAL-TIME GPENSIM

This section discusses three main design issues during
the development of Real-Time GPenSIM:

1. How to realize ‘token game’: by ASAP firing,
delayed firing, or by aging?

2. How to model events: by places or by transitions?
and,

3. How to interact with the external environment:
thorough ‘loaded places’ or by ‘firing transitions’?

Fig.2. Token game: consumption of input tokens and creation of output
tokens

A. Realizing Token Game

As per definition of the ordinary (P/T) Petri nets [2], if a
transition has the input places with enough tokens, then the
transition is enabled and that it can fire; firing of a transition
leads to consumption of the input tokens from the input
places. This means, the tokens inside the input places
disappears into the firing transition for a while; when the
transition completes firing, the output tokens are deposited
into the output places, thus the tokens ‘reemerges’ albeit in
different places (in output places) and in different numbers
(number of output tokens deposited into the output places
depends on the arc weights of the output arcs connecting the
output places to the transition). For example, in the figure 2,
at time t=0, transition T is enabled (because it has an input
place with one token in it) and when it fires, it consumes the
input token from the input place; figure 2 explains the
disappearance of the input token as it is being consumed (or
processed) inside the transition. When the transition T
completes firing at time t=3, the transition deposits a token
(an output token) into the output place. As the figure
captions, the phenomenon of ‘disappearance’ and
‘reemergence’ of tokens is known as the ‘token game’.

The token game creates some problems, especially in
terms of reachability analysis [9-11]: during simulations,
most of the states are not reachable due to the firings of the
transitions and the ensuing disappearances of tokens; thus,
there are generally three methods to realize consumption of
tokens during firing of the transitions, the latter two methods
avoid token disappearance [9-11]:

ASAP firing of transitions: in this realization, tokens do
disappear and remerge as discussed above and shown in
figure 2.

Delay before firing: in this realization, when a transition
is enabled, the input tokens in the input places are marked as
unavailable and will be not be taken away from the input

places. After a predefined time delay, the transition fires and
thus removes the input tokens from the input places. The
delay in transition firing - the time difference between the
enabled position and the start of firing - should give ample
time for recording the state of the system. This realization
requires that all the transitions are assigned delay timing.

Aging of tokens: as in the previous realization, in this
realization too when a transition is enabled, the input tokens
in the input places are marked as unavailable and will not be
taken away from the input places. However, there is no delay
in the transition firing as the transition is allowed to fire
immediately. In addition, when the transition fires, the
tokens in the input places are still there, not removed from
the input places, and marked as unavailable. Only when the
transition completes firing, the input tokens are removed
from the input places and the output tokens are deposited
into the output places; thus, creation of output tokens from
input tokens happens instantaneously thus all the tokens are
accounted for.

GPenSIM realizes the first method for token gaming –
ASAP firing of transitions; it was argued that although token
gaming creates problems with reachability analysis, ASAP

input place pi
representing input

materials

transition t representing
machining process

Machining time = firing time of
the transition

output place po
representing

machined parts

pi po t

pi represents
input materials

start of
machining

pm represents
machining process

pi pm

po represents
machined parts

po ts

external
signal end of

machining

te

token in pm represents machining
process

Machining time =
(end of firing te) – (start of firing of ts)

3a. transition t represents event
continuity

3b. place pm represents event
continuity

Fig.3. Representing events

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 28

firing of transitions is the natural way of realizing token
gaming: for example, in a production system, when a
machine (‘transition’) is ready (‘enabled transition’), input
materials (‘tokens’) from the input conveyor belts (‘input
places’) are consumed by the machine (‘firing transition’);
the input materials do disappear inside the machine during
the machining process. Only when the machining is
complete, the machined parts (‘output tokens’) are deposited
into the output conveyor belts (‘output places’).

B. Representing events: by places or by transitions?

In a Petri net model, an event (or continuity of an event)
can be modeled by two ways: an event can be represented by
a transition, or by a place.

Figure 3 depicts the two ways of the representation. In
figure 3a, a transition represents the machining event: the
start of transition firing indicates the start of the machining
process and the completion of the firing of the transition
indicates the finishing of the machining process. Real-Time
GPenSIM generally assumes that events should be
represented by transitions as transitions are the active
elements in Petri nets. In figure 3b, a place represents the
machining process: token(s) inside the place indicates that
the machining process goes on.

Though Real-Time GPenSIM generally assumes
transitions representing event continuity, it allows both ways
of representing continuity of an event. If the machining time
is deterministic and known before hand, then the machining
is best represented by a transition. If the machining time is
not known before and is only determined (or controlled) by
external environment, then a place representation (as shown
in figure 3b) is better suited for this situation.

C. Interacting with External Environment

A real-time simulator should interact with external
environment; it should perceive the external environment
through sensors and make it control policies executed
through actuators connected with it.

There are generally two ways to realize the interaction
with the external environment: loaded places [12], and firing
transitions.

Figure 4 shows the way the ‘loaded’ places are used to
interact with the external environment. Sensory data is fed
into the places as tokens. Similarly, when a place is loaded
with tokens, it triggers actuators executing the control policy
coded in the tokens.

The other way is to use transitions. A firing transition
may trap sensory data (read data from sensors) and also send
output data to actuators.

In GPenSIM, ‘firing transitions’ are used for interaction
with the external environment. Again, this is because of the
fact that the transitions are the active elements in a Petri net,
thus, are useful as agents for communication with the
external environment. To support interaction, an enabled
transition can call its preprocessor (TDF PRE) before it starts
firing, and after firing it can call a post-processor (TDF
POST); a firing transition uses the pre and post processors to
interact with the external environment. Figure 5 explains
the use of the pre and post processors of a firing transition.

Figure 5 depicts a simple example where transition t is
supposed to set a light bulb on for a time period of 5 seconds.
However, the transition t must wait until it receives a start
signal from the sensor. To implement this example:

Step-1: transition t is enabled and waiting for the start
signal: the transition is enabled (because it has a token in its
input place), thus it runs the pre-processor. In the pre-
processor, there is a condition which says that the transition
cannot start firing until it receives the start signal from an
external sensor. Thus, the arrival of sensory data (start
signal) is a logic condition coded in the pre-processor, which
must be satisfied for the transition to start firing.

Step-2: arrival of the start signal: when the start signal
arrives, the transition t starts firing. Before it starts firing, it
runs the final code in the pre-processor, which says to feed
the actuator to turn on the light. Hence, the transition sends
signal to the actuator to turn on the light.

 receive data
from sensors as

tokens

make
control
policies

Fig.4. Interacting with external
environment through loaded tokens

presence of
tokens activate

actuators

External
environment

sensors

actuators

p
os

t-
p

ro
ce

ss
or

p

re
-p

ro
ce

ss
or

Step-2: start
signal arrives

Fig.5. Using transition to interact
with the external environment

Step-1:
wait for

start
signal

Step-2: signal
actuator to turn

the light ON

Step-3:
transition fires
for 5 seconds

(no change in the
status of the light,

thus it is still
switched on)

Step-4: signal
actuator to turn
OFF the light

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 29

Step-3: transition t is firing: transition t is active (fires)
for a pre-defined and deterministic time period (5 seconds).
During this period, there is no change in the status of the
light, thus it is still switched on.

Step-4: transition t has fired (transition is completed);
now, the transition can run the post processor. Code in the
postprocessor informs the transition to force the actuator to
turn off the light. Hence, the transition sends signal to the
actuator to turn off the light.

The results of pre-processor turning on the light, the
transition keeping the status of light (ON) for 5 seconds, and
the post-processor turning off the light – makes the light bulb
turned on for 5 seconds.

V. FURTHER DESIGN ISSUES OF REAL-TIME GPENSIM

There were two further enhancements made to GPenSIM
to make it as a real-time simulator:

1. The usage of “Real-Time” clock, and
2. Implementation of Scheduling and issues related to

scheduling of system resources, such as priorities,
reservation policies, algorithms, etc.

A. Real-Time Clock

Figure 6 shows the main loop of the simulation cycles. In
the main loop the following steps executed in sequence:

Start of
Simulation

Initialize Timer

Initialize
Data Structures for

Enabled_Transitions,
Firing_Transitions

Any enabled
transition?

Place the transition in
the data structure for

Firing_transitions

Can the enabled
transition fire?

Consume the input
tokens

Any firing transition
completing?

Check all the firing
transitions:

Remove the fired
transition from the data

structure for
Firing_transitions

Deposit the output
tokens

Check all the transitions:

Increase the Timer

Simulation stop
conditions are met?

End of
Simulation

YES

YES

YES

YES

NO

NO

NO

NO

Fig.6. The main simulation loop of GPenSIM

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 30

Step-1: The simulator checks for any enabled transition;
if there is any enabled transition, it is placed into a queue-
like data structure called “Enabled_Transitions”.

Step-2: If there are any enabled transition (structure
Enabled_Transitions is not empty), then the respective TDF
of these transitions are run to make sure whether they can
actually fire (meaning, the transition satisfy all the conditions
defined in the TDF). If an enabled transition can fire, then it
is moved from the structure Enabled_Transitions into
another data structure called “Firing_Transitions”. At the
same time, input tokens for this transition are consumed
from the respective input places.

Step-3: The simulator checks whether any firing
transition is completing. This is done by checking the current
time against the completion times of the transitions sitting in
the structure Firing_Transitions. If there is any transition that
is completing, then it is removed from the structure
Firing_Transitions and the output tokens are deposited into
the output places of the transition. After the firing, there
may be some new transitions that are enabled by the arrival
of the new output tokens; hence the loop jumps to step-1.

Step-4: To prepare for the next loop, the timer is
increased. The timer is increased by a value that is optionally
given by the user. Otherwise, the timer increment (known as
“delta_T”) will be one-fourth (0.25 times) of the smallest
firing time of any transition. If all the firing times are zero,
then the increment will be 0.25 time units. As usual, smaller
the increment value for timer, finer the simulations will be
(more simulation samples per time unit); on the other hand,
larger the increment value for timer, coarser the simulations
will be.

After timer increment, the loop jumps to step-1.
Steps 1-4 stated above describes the main simulation

cycle. Among the steps 1-4 stated above, step-4 is
exclusively deals with timer increment; at the end of each
cycle, the timer is incremented by a discrete value (a default
value set by the simulator or an optional value chosen by the
user). However, in real-time environment, there is no need
for sudden increment to timer, as a real-time timer should
continuously shift forward. Thus, step-4 becomes obsolete in
real-time environment. Instead, whenever the current time is
needed, the CPU time (real-time) must be referenced. This
change is now implemented in GPenSIM for real-time
simulations.

B. Scheduling of System Resources

System resources and optimal management of them are
very important issues that have to be supported by a real-
time system. Thus, real-time GPenSIM also provides the
following functionality [7]:

1. Declaring system resources,
2. Utilizing resources (functions for requesting

(reserving), allocating, and releasing resources),
3. Declaring Priorities of different transitions,
4. Changing priorities of transitions: functions for

increasing or decreasing priority of a transition, and
comparing priorities of transitions, and

5. Reporting resource usage: new print functions that
show total resource usage, idle time, etc.

The following fundamental assumption was made in
realizing the additional functions for system resource
modeling: A system resource is a ‘critical section’ meaning a
resource can be used by only one consumer at a time; this
means, resources possesses ‘mutual exclusion’ property.

(Though a resource can be used by only one consumer at
a time, a consumer can use as many resource as it wants,
limited only by availability).

VI. APPLICATION EXAMPLE

This section presents an application example as a proof-
of-concept of real-time enhancements made to GPenSIM.
The example discussed in this section is purposely made
simple for that the details of modeling, simulation, and
solving techniques of GPenSIM becomes apparent. This
section develops a Petri net model for the well-known traffic
signal example, together with control mechanism for
pedestrian crossing.

A. The (Norwegian) Traffic Signal

Operation of a single independent Norwegian traffic
signal with pedestrian crossing:

Normal traffic signal cycle: Let’s assume that the signal
starts with RED color. Then it turns into RED and
YELLOW, and then into GREEN, then follows YELLOW
and finally back to RED again.

Pedestrian presses the STOP button: When pedestrian
presses the STOP button, then the traffic signal will continue
until the RED color becomes active. And then, the traffic
signal will stop at RED for a while, to allow the pedestrians
to cross, and then resumes the normal cycle.

Emergency button is pressed: If the emergency button is
pressed (presumably, the emergency button is not accessible
to pedestrians, but remotely controlled by traffic controllers),
then the normal operation of the traffic signal will stop
immediately turning off all the color lights, except the
YELLOW light, which will start blinking. Normal traffic
signal cycle can only be started, remotely, by pressing the
START button – here again, it is assumed that the activation
of the START button is done remotely by the traffic
controllers.

B. The Model

Figure 7 shows the five modules that make up the Petri
net model. In the model, transitions shown with single slab
means they are simple and do not use pre-processors and
postprocessors; whereas transitions shown with three slabs
means they are do call their preprocessors first and they fire
for a deterministic time and after completion of the firing,
they call their postprocessors.

Module M1- Normal cycle: This module consisting of 4
transition-place pairs for the 4 color sequences. Table 1
explains the functions of preprocessors, and postprocessors
of each transition.

Table 1. Functions of a transitions together with its preprocessor and
postprocessor during the normal cycle

 preprocessor T postprocessor
Seq-1 tR_pre: (RED)

is ON
tR: 5 sec tR_post: (RED)

is off

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 31

Seq-2 tYR_pre: (RED
and YELLOW)

is ON

tYR: 2
sec

tYR_post: (RED
and YELLOW)

is off
Seq-3 tG_pre:

(GREEN) is ON
tG: 5 sec tG_post:

(GREEN) is off
Seq-4 tY_pre:

(YELLOW) is
ON

tY: 2 sec tY_post:
(YELLOW) is

off

The table 1 above explains, for example, that in

sequence-1 of the normal cycle, the transition tR (meaning
transition for the RED light) first run the preprocessor tR_pre
which turns on the RED light. Then the transition starts
firing for 5 seconds, which is basically a delay of five
seconds. After this firing, the transition tR completes its
operation by running its postprocessor tR_post, which turns
off the RED light. This sequence thus effectively turns on the
RED light for just 5 seconds.

The normal cycle also includes interruption for
pedestrian crossings, during which RED light will be turned
on for a predefined time. However, the control routine for the
interruption to allow pedestrian crossing and resumption of
normal cycle is coded within the ‘Model M4: Pedestrian
Crossing Button Pressed’.

Fig. 7. The Petri net model of the traffic signal problem

Module M2 - Abnormal cycle: This sequence is known

as “Traffic signal preemption”, where the normal traffic
cycle is interrupted giving priority to special traffic (such as
emergency traffic for transporting fire engines, ambulances,
and police squad cars, though sometimes mass transit
vehicles including buses) [13; 14]. The normal cycle
interruption is done by remote transmitters that send remote
signals (e.g. radio waves, infrared signals, or strobe light
signals) that are received by a sensor on or near the traffic
lights [14].

During the abnormal cycle, the YELLOW light blinks;
this is realized by combination of the transitions tABN_TG

and tDLY1: the preprocessor of tABN_TG turns the
YELLOW light on, followed by tABN_TG firing for one
sec, and then the postprocessor of tABN_TG turns off the
YELLOW light. Firing of transition tDLY1 for one second
effectively keeps the YELLOW light off for one second. The
normal traffic signal cycle can be restored again by remote
signal.

Module M3 – (Re)activating Normal Cycle: This
module codes the routine for reactivating the normal cycle
after a traffic signal preemption e.g. for emergency traffic.
Note that the reactivation is triggered by a remote button
action that is an external event and is fed by a sensor into the
transition tSTART_BUTTON.

Module M4 – Pedestrian Crossing: This module codes
the control routine for pedestrian crossing interruption
initiated by pedestrian pressing the button. The button action
is an external event that is fed by a sensor into the transition
tPEDES_BUTTON.

Module M5 – Abnormal Cycle Control: This module
codes the control routine for traffic signal preemption, which
is initiated by remote action by traffic controllers. This
external button action is fed by a sensor into the transition
tABN_BUTTON.

The following two subsections (C and D) presents traffic
control using two different hardware devices:

1. NI-DAQ Device
2. Lego NXT Mindstorms Robot
Due to brevity, program codes for the two simulations

are not shown in this paper. Interested reader is encouraged
to inspect the complete code at [15; 20], to enjoy the
compactness and the easiness of the program code.

C. Controlling Traffic Lights via NI-DAQ Device

The test-bed for testing Real-Time GPenSIM consists of
the following hardware (see figure 8):

 National Instrument NI USB-6525 data acquisition
device (DAQ) is used for receiving input signals
from the three buttons, and also for operating
(outputs) the three lights RED, YELLOW, and
GREEN.

 MathWorks Data Acquisition Toolbox (version
R2011b) was used to communicate with the NI
USB-6525 hardware.

 Custom made circuit board with four buttons
(ON/OFF buttons) and with four LED lights.

GPenSIM program code for traffic signal simulation and
control using via NI USB-6525 data acquisition device
(DAQ), is simple and easy to study. The code is not shown
here, but fully available at [15].

Experiment results: There wasn’t any remarkable result
obtained as the traffic signals performed just as they should
be. The only observation that could be mentioned is the
speed difference between DAQ device and the simulator:
During the sequence-1 of the traffic signal normal cycle (see
table 1), RED and YELLOW lights are supposed to be
turned ON at the same time during the start of the sequence
and then to be turned OFF, again at the same time, at the end
the sequence. Though simulator (through tR_pre and
tR_post) sent instructions to actuator, the DAQ device

M1: Normal Cycle

M2: Abnormal Cycle

M3: (Re)activating Normal Cycle

M4: Pedestrain Crossing Button is Pressed

M5: Abnormal Button is Pressed

tY

pY

tG

pG

pR

tR

pYR

tYR

tSTART

pSTART

tSTART_BUTTON

pSTART_BUTTON

pCNE1 tCNE1

tPEDES_BUTTON

pPEDES_BUTTONpSTOP

tSTOP

tABN_BUTTON

pABN_BUTTON

tABN

pABN

pCNE2
tCNE2

pAB2

tDLY1

tABN_TG

pAB1

pNOR

tABN_N

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 32

sometimes collapses as it cannot update two outputs
instantaneously. There must be a delay induced between
activating RED and YELLOW lights; but this delay is so
small (about 30ms) and hence unnoticeable for human eyes.

D. Controlling Traffic Lights via LEGO Mindstrom Robot

System Requirements (see also [16-19]):
 Operating system: Windows XP
 MATLAB Version 7.7 (R2008b) or higher
 The RWTH–Mindstorms NXT Toolbox
 LEGO Mindstorms NXT building kit 2.0; LEGO

Mindstorms NXT firmware v1.26 or higher
 For Bluetooth wireless connection: Bluetooth 2.0

adapter recommended by LEGO

 For USB connections: Mindstorms NXT Driver
“Fantom” v1.02

The RWTH–Mindstorms NXT Toolbox [19] is a
software package available for the MATLAB environment
that allows control of LEGO Mindstorms NXT robots from a

PC; a LEGO robot can be controlled from a PC either
through USB connection or through Bluetooth wireless
connection.

By using GPenSIM on top of RWTH–Mindstorms NXT
Toolbox, various discrete control applications (especially,
supervisory control applications) can be developed using
LEGO robot as a specimen. Figure-9 shows the various
layers of software that can be used to develop applications
for discrete robotic control.

Figure-10 shows the LEGO Mindstorms NXT robot
setup as a Norwegian Traffic signal, possessing the traffic
lights red, green, and yellow, in addition to the three push
buttons for pedestrian crossing request, start of emergency
cycle, and reset button (for restarting normal traffic cycle).

GPenSIM program code traffic signal simulation and
control using LEGO robot, is simple and easy to study. The
code is not shown here, but fully available at [20].

Experiment results: The traffic signal simulation and
control performed as it should be. However, there were two
notable observations from this experiment:

Controlling LEGO Mindstorms NXT robot by RWTH–
Mindstorms NXT Toolbox, through Bluetooth wireless
connection is slow and unreliable; RWTH–Mindstorms NXT
Toolbox user manual agrees with this observation [18].

Desktop Environment (MS Windows 7)

GPenSIM Real-Time
Control Simulator

Fig. 8. Real-Time GPenSIM simulating
Norwegian Traffic Signal

Circuitboard with
Switches and LEDs

NI-DAQmx Driver

NI USB-6525
DAQ

Digital I/O

MATLAB

Data Aquisition Toolbox

USB

Desktop Environment (Windows XP)

GPenSIM Real-Time
Control Simulator

Fig. 9. Discrete control of LEGO robot with
RWTH-Mindstorms NXT Toolbox

Bluetooth driver

MATLAB

RWTH Mindstroms NXT
Toolbox

Fantom USB driver

USB
connection

Bluetooth Adapter

Bluetooth
Wireless connection

LEGO Mindstroms
NXT robot

REGGIE DAVIDRAJUH: DEVELOPING A PETRI NETS BASED REAL-TIME CONTROL SIMULATOR

DOI 10.5013/IJSSST.a.13.02.04 ISSN: 1473-804x online, 1473-8031 print 33

However, controlling the robot by RWTH–Mindstorms NXT
Toolbox through USB connection is highly reliable.

Windows 7 Operating System does not allow usage of
RWTH–Mindstorms NXT Toolbox for controlling the
LEGO robot; Windows 7 blocks the toolbox and MATLAB
using either USB or Bluetooth wireless connection to LEGO
robot. This problem is not reported in the user manual for
RWTH–Mindstorms NXT Toolbox. However, Windows XP
works fine with RWTH–Mindstorms NXT Toolbox.

Fig. 10: LEGO Mindstorms robot setup as a traffic lights simulator

VII. CONCLUSION

Petri net is a very powerful tool for modeling and
simulation of discrete event dynamic systems (DEDS);
Literature study provides many hundred works using Petri
nets for modeling and simulation of DEDS. GPenSIM is a
simulator based on Petri nets, which has been as a tool to
teach discrete simulation, and also been used to solve some
industrial problems. This paper talks about enhancing
GPenSIM with real-time attributes so that it could function
as a real-time control simulator. The application example
provided in this paper shows that Real-Time GPenSIM is
capable of interacting with external environment, perceive
inputs from sensors and triggering output actuators. But the
beauty of Real-Time Petri nets generally, and real-time
GPenSIM specially is that the control policies that are made
is the model is overwhelmingly simple, easy to understand,
debug and extend.

REFERENCES

[1] GPenSIM. Available: http://www.davidrajuh.net/gpensim/

[2] G. Cassandras, and S. LaFortune. Introduction to Discrete Event
Systems. Hague, Kluwer Academic Publications, 1999

[3] B. Hruz and M. Zhou. Modeling and Control of Discrete-event
Dynamic Systems: with Petri Nets and other Tool. Springer-Verlag,
London, 2007

[4] R. Davidrajuh. “Distributed Workflow based Approach for
Eliminating Redundancy in Virtual Enterprising”. Journal of
Supercomputing, Online First, 2011-01-05, DOI: 10.1007/s11227-
010-0544-6

[5] R. Davidrajuh and B. Lin. “Exploring Airport Traffic Capability
Using Petri Net based Model”. Expert Systems With Applications
(ESWA), 38 (2011) pp. 10923-10931

[6] R. Davidrajuh. “Representing Resources in Petri Net Models:
Hardwiring or Soft-coding?”. 2011 IEEE International Conference on
Service Operations and Logistics, and Informatics, Beijing, China,
July 10-12, 2011; pp. 62-67

[7] R. Davidrajuh. “Scheduling using Activity-based Modeling”. 2011
IEEE Conference on Computer Applications & Industrial Electronics
(ICCAIE 2011), Penang, Malaysia, December 4-7, 2011

[8] MATLAB. Available: http://www.mathworks.com

[9] S. Haddad. “Time and Timed Petri Nets”. DISC School on Control of
Discrete-Event Systems: Automata and Petri nets perspectives, June
6-10, 2011, Cagliari, Italy

[10] B. Berthomieu, and M. Diaz. “Modeling and verification of time
dependent systems using Time Petri Nets”. IEEE Transactions on
Software Engineering, 17(3), pp. 259-273, March 1991

[11] B. Berthomieu, and M. Menasche. “A State enumeration approach for
analyzing time Petri nets”. 3rd European Workshop on Petri Nets,
Varenna, Italy, 1982Sfsfsfs

[12] K. Ohashi and K. Shin. “Model-based control for reconfigurable
manufacturing systems”. Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Seoul, Korea,
2001; pp. 553 – 558

[13] United States DOT Federal Highway Administration (2009) Manual
on Uniform Traffic Control Devices, 2009 Edition

[14] United States Patent and Trademark Office. Emergency vehicle
traffic signal preemption system. Retrieved October 7, 2005

[15] Traffic Signal Model - Complete Code for NI-DAQ experiment
(2012) Available: http://davidrajuh.net/gpensim/2012-IJSSST-traffic-
signal-example-NI-DAQ

[16] A. Behrens, L. Atorf, R. Schwann, J. Ball'e, T. Herold, and A. Telle.
“First Steps into Practical Engineering for Freshman Students Using
MATLAB and LEGO Mindstorms Robots”. Acta Polytechnica
Journal of Advanced Engineering, Vol. 48, No. 3, pp. 44--49, June,
2008

[17] A. Behrens, L. Atorf, R. Schwann, B. Neumann, R. Schnitzler, J.
Ballé, T. Herold, A. Telle, T. Noll, K. Hameyer, and T. Aach.
“MATLAB Meets LEGO Mindstorms - A Freshman Introduction
Course Into Practical Engineering”. IEEE Transactions on Education,
Vol. 53, No. 2, May 2010

[18] RWTH- Mindstorms NXT Toolbox User Manual v4.04 (2010). List
of functions.

[19] RWTH–Mindstorms NXT Toolbox: Available:
http://www.mindstorms.rwth-aachen.de

[20] Traffic Signal Model - Complete Code for LEGO Minstorms NXT
experiment (2012) Available: http://davidrajuh.net/gpensim/2012-
IJSSST-traffic-signal-example-LEGO-NXT

