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Abstract — Petri net is a powerful tool for modeling and simulation of discrete event dynamic systems (DEDS). This paper is about 
developing a new real-time control simulator based on Petri net. This paper presents some of the design challenges that were dealt 
with during the development stages of the simulator; the design issues were: realization of token gaming (time requirements in 
consumption of input tokens and creation of output tokens), representation of event continuity (whether places or transitions 
represent event continuity), and interaction with the external influences (whether to map places or transitions to interact with 
external events). This paper shows that the following were found to be the most suitable for development of the real-time control 
simulator: ASAP firing for realization of token gaming, transition for representing continuity of events, and transition (with the 
pre and post definitions) for interacting with external event). 
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I. INTRODUCTION 

General Purpose Petri Net Simulator (GPenSIM) is a tool 
for modeling and simulation of discrete-event dynamic 
systems (DEDS) [1]; GPenSIM is based on Petri nets [2; 3]. 
GPenSIM has been successfully used as a tool for teaching 
discrete simulation and then also to solve some industrial 
problems [4; 5].  

This paper talks about the recent real-time enhancements 
added to GPenSIM to make it function as a Real-Time 
Control Simulator. This paper talks about some of the design 
issues that were dealt with during the development of the 
real-time version. In the following section, a short 
introduction to existing version of GPenSIM is given. From 
section III, real-time enhancements to GPenSIM are 
discussed. 

II. GPENSIM 

This section presents a brief introduction to GPenSIM. 

A. GPenSIM: an Easy-to-use Tool for DEDS Simulation 

The reasons for developing a new simulator were [6; 7]:  
For basic users: 1) a tool that is easy to understand and 

easy to use, even for users with minimal mathematical and 
programming skills. 

For advanced users: 2) allow seamless integration of 
DEDS models with the other toolboxes that are readily 
available on the MATLAB platform;  3) allow easy 
extension of GPenSIM functions, and 4) Compact simulation 
code. 

GPenSIM is developed by the author of this paper, in 
order to satisfy the four criteria stated above (ease of use, 
flexible, extensible, and compact code).  GPenSIM is 
realized as a toolbox for the MATLAB platform, so that 

diverse toolboxes that available in the MATLAB 
environment (e.g. Fuzzy Logic Toolbox, Control Systems 
Toolbox, Advanced Statistical Analysis Toolbox, etc. [8]) 
can be used in the discrete models that are developed with 
GPenSIM. 

B. Existing Tools for Real-Time Control Simulation 

There are many tools that are available for real-time 
control simulation. SimEvents and SIMULINK are excellent 
tools that run on the MATLAB platform. Both are capable of 
real-time control and allow incorporation of diverse tools 
(fuzzy, neural net, etc.) and libraries; however, these two 
tools are general purpose and are not Petri net based. The 
project this paper talks about is only interested in developing 
a Petri net based simulator because of the many benefits of 
using Petri nets (such as possessing simple graphical 
representation as well as strong linear algebraic 
representation that allows mathematical analysis both on the 
structural and on the behavioral front) for modeling and 
simulation of DEDS. LabView is another good tool that can 
be defined as a real-time control simulator; however, 
LabView is not based on Petri nets either. In summary, to the 
author’s best knowledge, there isn’t a single tool that is Petri 
net based, real-time capable and allows easy integration of 
diverse tools and techniques in the models of DEDS.  

C. The Existing Architecture of GPenSIM 

A simple model created GPenSIM has 3 files: the 
elements of the Petri net model (places and transitions) and 
the static connections (arcs) that exist between the elements 
are defined in a file called Petri net Definition File (PDF); 
initial inputs (initial tokens, etc.) to the system are defined in 
the main simulation file (MSF), and the interaction between 
the Petri net model and the environment are defined in file(s) 
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called Transition Definition File (TDF). Interested reader is 
referred to the GPenSIM user manual [1].  

Figure 1 shows the architecture of GPenSIM; models that 
are developed with GPenSIM consist of a number of files 
(M-files or MATLAB files) [1]:  

Petri Net Definition Files (PDF): these files define the 
static structure (elements and their connection) of the 
discrete model. 

Main Simulation File (MSF): this is the file that calls the 
other files; in this file, initial conditions and variables are 
declared, and then the simulation is run; finally, the 
simulation results (arcs) are plotted and analyzed.  

Transition Definition Files (TDF): TDF files are to code 
the conditions (‘guard conditions’) that must be satisfied 
before an enabled transition can fire. However, the TDFs are 
also the files where one can implement a fuzzy logic based 
inference engine or an inference mechanism that make 
decisions based on statistical analysis of massive data. There 
are two types of TDFs: 

Individual (for a specific transition) PRE and POST files: 
a PRE TDF file checks whether guard conditions are 
satisfied before an enabled transition can fire; it can also 
reserve resource for use by the transition; a POST TDF file 
can release resources used by the fired transition and can do 
book keeping work (statistics) after the transition firing.  

COMMON PRE and POST files: these files are common 
for all the transitions; a COMMON PRE can, for example, 
reserve a resource that is generally used by any firing 
transition; likewise, a COMMON POST can release the 
commonly used resource after firing of a transition. 

 

III. DEFINING REAL-TIME GPENSIM 

A new definition is given below for modeling, 
simulation, and control of real-time DEDS using Petri Nets.  

Definition: A Real-Time Petri Net consists of four parts: 
RTPN = (PN, SE, CE, Time) 

The four parts are explained in the following subsections.  

A. PN: the Graph Theoretic Structure     

PN is the first part of RTPN which defines the graph 
theoretic structure – the ordinary P/T Petri Net, consisting of 
a set of passive elements called places (P), a set of active 
elements called transitions (T), a set of bipartite arcs with arc 
weights connecting places and transitions, and a set of initial 
markings (m0).  

B. SE: the Extension for System Resources 

   SE is the second part of RTPN which is the extension 
for System Resources; System resources are managed in 
background by the system; SE consists of the following 
elements: 

SE = (R, Ω, o, t, X, Y), 
  R is the set of systems resources, R = {R1, R2,… , Rn} 
  Ω is the set of operations executable by all the  

systems resources, Ω = {ω1, ω2,…, ωm} 
   o is the partitioning of the operations into subsets that can 

 be executable by the individual resources,   
o: R →2Ω 

   t is the set of timing that are taken for operations,  
t: R× Ω →N+ 

    X and Y are the set of input and output servers that feed 
  material into the resources and remove worked  
 parts from the resources 

C. CE: the Color Extension 

The third part of RTPN CE is the color extension; CE has 
two main functions: overloading tokens with data to 
differentiate one token from another, and mapping transitions 
to logic functions: 

CE = (C, ψ),   
    C: M → {c1, c2, … ck}, k is the number of tokens. C is a 
function mapping the set of tokens (markings) onto a set of 
value assignments (colors), so that the tokens can carry 
work-in-progress (W-I-P) information with them. 

    ψ: T → LOG is the set of logical conditions for firing 
(firing conditions), and for executing resource manipulation 
commands such as request for resource, resource usage, and 
release of resource after usage. 

D. The Time Factor  

 The fourth part of RTPN is the timing: Time represents 
the timing taken by the various operations, activities, and 
events in the DEDS. In a Petri net model, timing can be 
assigned to places, transitions, or to both.  

Time = (TimeT, TimeP),    

TimeT: T →   is a function mapping the set of 
transitions onto a set of real numbers, where the real 

numbers represent the firing time –  the time taken by 
transitions to fire. Firing time can deterministic or stochastic. 

TimeP: P →    is a function mapping the set of places 
onto a set of real numbers, where the real numbers represent 

 

MSF PDFs TDFs

(Optional)  
MATLAB Toolboxes such as  

Fuzzy, Control Systems, Optimization, Statistics, etc 

GPenSIM 
Modules: Net Utilities, Timer, Simulator, 

Analysis, Display 

MATLAB Engine 

Fig.1. Files for simulation 
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the holding time – the time taken by places to hold a token. 
Holding time can deterministic or stochastic. 

IV. BASIC DESIGN ISSUES OF REAL-TIME GPENSIM 

This section discusses three main design issues during 
the development of Real-Time GPenSIM: 

1. How to realize ‘token game’: by ASAP firing, 
delayed firing, or by aging?  

2. How to model events: by places or by transitions? 
and,  

3. How to interact with the external environment: 
thorough ‘loaded places’ or by ‘firing transitions’?  
 

 

Fig.2. Token game: consumption of input tokens and creation of output 
tokens 

A. Realizing Token Game 

As per definition of the ordinary (P/T) Petri nets [2], if a 
transition has the input places with enough tokens, then the 
transition is enabled and that it can fire; firing of a transition 
leads to consumption of the input tokens from the input 
places. This means, the tokens inside the input places 
disappears into the firing transition for a while; when the 
transition completes firing, the output tokens are deposited 
into the output places, thus the tokens ‘reemerges’ albeit in 
different places (in output places) and in different numbers 
(number of output tokens deposited into the output places 
depends on the arc weights of the output arcs connecting the 
output places to the transition).  For example, in the figure 2, 
at time t=0, transition T is enabled (because it has an input 
place with one token in it) and when it fires, it consumes the 
input token from the input place; figure 2 explains the 
disappearance of the input token as it is being consumed (or 
processed) inside the transition. When the transition T 
completes firing at time t=3, the transition deposits a token 
(an output token) into the output place. As the figure 
captions, the phenomenon of ‘disappearance’ and 
‘reemergence’ of tokens is known as the ‘token game’. 

The token game creates some problems, especially in 
terms of reachability analysis [9-11]: during simulations, 
most of the states are not reachable due to the firings of the 
transitions and the ensuing disappearances of tokens; thus, 
there are generally three methods to realize consumption of 
tokens during firing of the transitions, the latter two methods 
avoid token disappearance [9-11]: 

ASAP firing of transitions: in this realization, tokens do 
disappear and remerge as discussed above and shown in 
figure 2.  

Delay before firing:  in this realization, when a transition 
is enabled, the input tokens in the input places are marked as 
unavailable and will be not be taken away from the input 

places. After a predefined time delay, the transition fires and 
thus removes the input tokens from the input places. The 
delay in transition firing - the time difference between the 
enabled position and the start of firing - should give ample 
time for recording the state of the system. This realization 
requires that all the transitions are assigned delay timing. 

Aging of tokens: as in the previous realization, in this 
realization too when a transition is enabled, the input tokens 
in the input places are marked as unavailable and will not be 
taken away from the input places. However, there is no delay 
in the transition firing as the transition is allowed to fire 
immediately. In addition, when the transition fires, the 
tokens in the input places are still there, not removed from 
the input places, and marked as unavailable. Only when the 
transition completes firing, the input tokens are removed 
from the input places and the output tokens are deposited 
into the output places; thus, creation of output tokens from 
input tokens happens instantaneously thus all the tokens are 
accounted for.  

GPenSIM realizes the first method for token gaming – 
ASAP firing of transitions; it was argued that although token 
gaming creates problems with reachability analysis, ASAP 

input place pi 
representing input 

materials

transition t representing 
machining process 

Machining time = firing time of 
the transition 

output place po 
representing 

machined parts 

pi  po  t 

pi represents  
input materials 

start of  
machining

pm represents 
machining process 

pi  pm  

po represents 
machined parts 

po ts

external 
signal end of  

machining 

te 

token in  pm represents machining 
process 

Machining time =  
(end of firing te) – (start of firing of ts)  

3a. transition t represents event 
continuity  

3b. place pm represents event  
continuity  

Fig.3. Representing events 
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firing of transitions is the natural way of realizing token 
gaming: for example, in a production system, when a 
machine (‘transition’) is ready (‘enabled transition’),  input 
materials (‘tokens’) from the input conveyor belts (‘input 
places’) are consumed by the machine (‘firing transition’); 
the input materials do disappear inside the machine during 
the machining process. Only when the machining is 
complete, the machined parts (‘output tokens’) are deposited 
into the output conveyor belts (‘output places’). 

B. Representing  events: by places or by transitions? 

In a Petri net model, an event (or continuity of an event) 
can be modeled by two ways: an event can be represented by 
a transition, or by a place.  

Figure 3 depicts the two ways of the representation. In 
figure 3a, a transition represents the machining event: the 
start of transition firing indicates the start of the machining 
process and the completion of the firing of the transition 
indicates the finishing of the machining process. Real-Time 
GPenSIM generally assumes that events should be 
represented by transitions as transitions are the active 
elements in Petri nets. In figure 3b, a place represents the 
machining process: token(s) inside the place indicates that 
the machining process goes on. 

Though Real-Time GPenSIM generally assumes 
transitions representing event continuity, it allows both ways 
of representing continuity of an event. If the machining time 
is deterministic and known before hand, then the machining 
is best represented by a transition. If the machining time is 
not known before and is only determined (or controlled) by 
external environment, then a place representation (as shown 
in figure 3b) is better suited for this situation. 

C. Interacting with External Environment 

A real-time simulator should interact with external 
environment; it should perceive the external environment 
through sensors and make it control policies executed 
through actuators connected with it.  

There are generally two ways to realize the interaction 
with the external environment: loaded places [12], and firing 
transitions. 

Figure 4 shows the way the ‘loaded’ places are used to 
interact with the external environment. Sensory data is fed 
into the places as tokens. Similarly, when a place is loaded 
with tokens, it triggers actuators executing the control policy 
coded in the tokens.  

The other way is to use transitions. A firing transition 
may trap sensory data (read data from sensors) and also send 
output data to actuators.  

In GPenSIM, ‘firing transitions’ are used for interaction 
with the external environment. Again, this is because of the 
fact that the transitions are the active elements in a Petri net, 
thus, are useful as agents for communication with the 
external environment. To support interaction, an enabled 
transition can call its preprocessor (TDF PRE) before it starts 
firing, and after firing it can call a post-processor (TDF 
POST); a firing transition uses the pre and post processors to 
interact with the external environment.   Figure 5 explains 
the use of the pre and post processors of a firing transition. 

Figure 5 depicts a simple example where transition t is 
supposed to set a light bulb on for a time period of 5 seconds. 
However, the transition t must wait until it receives a start 
signal from the sensor. To implement this example: 

Step-1: transition t is enabled and waiting for the start 
signal: the transition is enabled (because it has a token in its 
input place), thus it runs the pre-processor. In the pre-
processor, there is a condition which says that the transition 
cannot start firing until it receives the start signal from an 
external sensor. Thus, the arrival of sensory data (start 
signal) is a logic condition coded in the pre-processor, which 
must be satisfied for the transition to start firing.  

Step-2: arrival of the start signal: when the start signal 
arrives, the transition t starts firing. Before it starts firing, it 
runs the final code in the pre-processor, which says to feed 
the actuator to turn on the light. Hence, the transition sends 
signal to the actuator to turn on the light.  
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Fig.4. Interacting with external 
environment through loaded tokens 
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Step-3: transition t is firing: transition t is active (fires) 
for a pre-defined and deterministic time period (5 seconds). 
During this period, there is no change in the status of the 
light, thus it is still switched on.  

Step-4: transition t has fired (transition is completed); 
now, the transition can run the post processor.  Code in the 
postprocessor informs the transition to force the actuator to 
turn off the light. Hence, the transition sends signal to the 
actuator to turn off the light.       

The results of pre-processor turning on the light, the 
transition keeping the status of light (ON) for 5 seconds, and 
the post-processor turning off the light – makes the light bulb 
turned on for 5 seconds. 

V. FURTHER DESIGN ISSUES OF REAL-TIME GPENSIM 

There were two further enhancements made to GPenSIM 
to make it as a real-time simulator:  

1. The usage of “Real-Time” clock, and  
2. Implementation of Scheduling and issues related to 

scheduling of system resources, such as priorities, 
reservation policies, algorithms, etc.  

A. Real-Time Clock 

Figure 6 shows the main loop of the simulation cycles. In 
the main loop the following steps executed in sequence: 

Start of 
Simulation

Initialize Timer

Initialize 
Data Structures for 

Enabled_Transitions, 
Firing_Transitions

Any enabled 
transition?

Place the transition in 
the data structure for 

Firing_transitions 

Can the enabled 
transition fire?

Consume the input 
tokens

Any firing transition 
completing?

Check all the firing 
transitions: 

Remove the fired 
transition from the data 

structure for 
Firing_transitions 

Deposit the output 
tokens

Check all the transitions:

Increase the Timer

Simulation stop 
conditions are met?

End of 
Simulation

YES

YES

YES

YES

NO

NO

NO

NO

Fig.6. The main simulation loop of GPenSIM
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Step-1: The simulator checks for any enabled transition;   
if there is any enabled transition, it is placed into a queue-
like data structure called “Enabled_Transitions”. 

Step-2: If there are any enabled transition (structure 
Enabled_Transitions is not empty), then the respective TDF 
of these transitions are run to make sure whether they can 
actually fire (meaning, the transition satisfy all the conditions 
defined in the TDF). If an enabled transition can fire, then it 
is moved from the structure Enabled_Transitions into 
another data structure called “Firing_Transitions”. At the 
same time, input tokens for this transition are consumed 
from the respective input places.   

Step-3: The simulator checks whether any firing 
transition is completing. This is done by checking the current 
time against the completion times of the transitions sitting in 
the structure Firing_Transitions. If there is any transition that 
is completing, then it is removed from the structure 
Firing_Transitions and the output tokens are deposited into 
the output places of the transition.  After the firing, there 
may be some new transitions that are enabled by the arrival 
of the new output tokens; hence the loop jumps to step-1. 

Step-4: To prepare for the next loop, the timer is 
increased. The timer is increased by a value that is optionally 
given by the user. Otherwise, the timer increment (known as 
“delta_T”) will be one-fourth (0.25 times) of the smallest 
firing time of any transition. If all the firing times are zero, 
then the increment will be 0.25 time units. As usual, smaller 
the increment value for timer, finer the simulations will be 
(more simulation samples per time unit); on the other hand, 
larger the increment value for timer, coarser the simulations 
will be. 

After timer increment, the loop jumps to step-1. 
Steps 1-4 stated above describes the main simulation 

cycle. Among the steps 1-4 stated above, step-4 is 
exclusively deals with timer increment; at the end of each 
cycle, the timer is incremented by a discrete value (a default 
value set by the simulator or an optional value chosen by the 
user). However, in real-time environment, there is no need 
for sudden increment to timer, as a real-time timer should 
continuously shift forward. Thus, step-4 becomes obsolete in 
real-time environment. Instead, whenever the current time is 
needed, the CPU time (real-time) must be referenced. This 
change is now implemented in GPenSIM for real-time 
simulations. 

B. Scheduling of System Resources 

System resources and optimal management of them are 
very important issues that have to be supported by a real-
time system. Thus, real-time GPenSIM also provides the 
following functionality [7]:  

1. Declaring system resources,  
2. Utilizing resources (functions for requesting 

(reserving), allocating, and releasing resources),  
3. Declaring Priorities of different transitions,  
4. Changing priorities of transitions: functions for 

increasing or decreasing priority of a transition, and 
comparing priorities of transitions, and  

5. Reporting resource usage: new print functions that 
show total resource usage, idle time, etc.   

The following fundamental assumption was made in 
realizing the additional functions for system resource 
modeling: A system resource is a ‘critical section’ meaning a 
resource can be used by only one consumer at a time; this 
means, resources possesses ‘mutual exclusion’ property.  

(Though a resource can be used by only one consumer at 
a time, a consumer can use as many resource as it wants, 
limited only by availability).  

VI. APPLICATION EXAMPLE 

This section presents an application example as a proof-
of-concept of real-time enhancements made to GPenSIM. 
The example discussed in this section is purposely made 
simple for that the details of modeling, simulation, and 
solving techniques of GPenSIM becomes apparent. This 
section develops a Petri net model for the well-known traffic 
signal example, together with control mechanism for 
pedestrian crossing. 

A. The (Norwegian) Traffic Signal 

Operation of a single independent Norwegian traffic 
signal with pedestrian crossing:  

Normal traffic signal cycle: Let’s assume that the signal 
starts with RED color. Then it turns into RED and 
YELLOW, and then into GREEN, then follows YELLOW 
and finally back to RED again. 

Pedestrian presses the STOP button: When pedestrian 
presses the STOP button, then the traffic signal will continue 
until the RED color becomes active.  And then, the traffic 
signal will stop at RED for a while, to allow the pedestrians 
to cross, and then resumes the normal cycle.  

Emergency button is pressed:  If the emergency button is 
pressed (presumably, the emergency button is not accessible 
to pedestrians, but remotely controlled by traffic controllers), 
then the normal operation of the traffic signal will stop 
immediately turning off all the color lights, except the 
YELLOW light, which will start blinking. Normal traffic 
signal cycle can only be started, remotely, by pressing the 
START button – here again, it is assumed that the activation 
of the START button is done remotely by the traffic 
controllers. 

B. The Model 

Figure 7 shows the five modules that make up the Petri 
net model. In the model, transitions shown with single slab 
means they are simple and do not use pre-processors and 
postprocessors; whereas transitions shown with three slabs 
means they are do call their preprocessors first and they fire 
for a deterministic time and after completion of the firing, 
they call their postprocessors.  

Module M1- Normal cycle: This module consisting of 4 
transition-place pairs for the 4 color sequences. Table 1 
explains the functions of preprocessors, and postprocessors 
of each transition. 

Table 1. Functions of a transitions together with its preprocessor and 
postprocessor during the normal cycle 

  preprocessor T postprocessor 
Seq-1 tR_pre: (RED) 

is ON 
tR:  5 sec tR_post: (RED) 

is off 
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Seq-2 tYR_pre: (RED 
and YELLOW) 

is ON  

tYR: 2 
sec 

tYR_post: (RED 
and YELLOW) 

is off 
Seq-3 tG_pre: 

(GREEN) is ON 
tG: 5 sec tG_post: 

(GREEN) is off 
Seq-4 tY_pre: 

(YELLOW) is 
ON 

tY: 2 sec tY_post: 
(YELLOW) is 

off 
 
The table 1 above explains, for example, that in 

sequence-1 of the normal cycle, the transition tR (meaning 
transition for the RED light) first run the preprocessor tR_pre 
which turns on the RED light. Then the transition starts 
firing for 5 seconds, which is basically a delay of five 
seconds. After this firing, the transition tR completes its 
operation by running its postprocessor tR_post, which turns 
off the RED light. This sequence thus effectively turns on the 
RED light for just 5 seconds.   

The normal cycle also includes interruption for 
pedestrian crossings, during which RED light will be turned 
on for a predefined time. However, the control routine for the 
interruption to allow pedestrian crossing and resumption of 
normal cycle is coded within the ‘Model M4: Pedestrian 
Crossing Button Pressed’.  

 
Fig. 7. The Petri net model of the traffic signal problem 
 
Module M2 - Abnormal cycle: This sequence is known 

as “Traffic signal preemption”, where the normal traffic 
cycle is interrupted giving priority to special traffic (such as 
emergency traffic for transporting fire engines, ambulances, 
and police squad cars, though sometimes mass transit 
vehicles including buses) [13; 14].  The normal cycle 
interruption is done by remote transmitters that send remote 
signals (e.g. radio waves, infrared signals, or strobe light 
signals) that are received by a sensor on or near the traffic 
lights [14].  

During the abnormal cycle, the YELLOW light blinks; 
this is realized by combination of the transitions tABN_TG 

and tDLY1: the preprocessor of tABN_TG turns the 
YELLOW light on, followed by tABN_TG firing for one 
sec, and then the postprocessor of tABN_TG turns off the 
YELLOW light. Firing of transition tDLY1 for one second 
effectively keeps the YELLOW light off for one second. The 
normal traffic signal cycle can be restored again by remote 
signal. 

Module M3 – (Re)activating Normal Cycle: This 
module codes the routine for reactivating the normal cycle 
after a traffic signal preemption e.g. for emergency traffic. 
Note that the reactivation is triggered by a remote button 
action that is an external event and is fed by a sensor into the 
transition tSTART_BUTTON.    

Module M4 – Pedestrian Crossing: This module codes 
the control routine for pedestrian crossing interruption 
initiated by pedestrian pressing the button. The button action 
is an external event that is fed by a sensor into the transition 
tPEDES_BUTTON.   

Module M5 – Abnormal Cycle Control: This module 
codes the control routine for traffic signal preemption, which 
is initiated by remote action by traffic controllers. This 
external button action is fed by a sensor into the transition 
tABN_BUTTON. 

The following two subsections (C and D) presents traffic 
control using two different hardware devices:  

1. NI-DAQ Device  
2. Lego NXT Mindstorms Robot 
Due to brevity, program codes for the two simulations 

are not shown in this paper. Interested reader is encouraged 
to inspect the complete code at [15; 20], to enjoy the 
compactness and the easiness of the program code. 

C. Controlling Traffic Lights via NI-DAQ Device 

The test-bed for testing Real-Time GPenSIM consists of 
the following hardware (see figure 8): 

 National Instrument NI USB-6525 data acquisition 
device (DAQ) is used for receiving input signals 
from the three buttons, and also for operating 
(outputs) the three lights RED, YELLOW, and 
GREEN.  

 MathWorks Data Acquisition Toolbox (version 
R2011b) was used to communicate with the NI 
USB-6525 hardware.  

 Custom made circuit board with four buttons 
(ON/OFF buttons) and with four LED lights. 

GPenSIM program code for traffic signal simulation and 
control using via NI USB-6525 data acquisition device 
(DAQ), is simple and easy to study. The code is not shown 
here, but fully available at [15].    

Experiment results: There wasn’t any remarkable result 
obtained as the traffic signals performed just as they should 
be. The only observation that could be mentioned is the 
speed difference between DAQ device and the simulator: 
During the sequence-1 of the traffic signal normal cycle (see 
table 1), RED and YELLOW lights are supposed to be 
turned ON at the same time during the start of the sequence 
and then to be turned OFF, again at the same time, at the end 
the sequence. Though simulator (through tR_pre and 
tR_post) sent instructions to actuator, the DAQ device 

M1: Normal Cycle

M2: Abnormal Cycle

M3: (Re)activating Normal Cycle

M4: Pedestrain Crossing Button is Pressed

M5: Abnormal Button is Pressed

tY

pY

tG

pG

pR

tR

pYR

tYR

tSTART

pSTART

tSTART_BUTTON

pSTART_BUTTON

pCNE1 tCNE1

tPEDES_BUTTON

pPEDES_BUTTONpSTOP

tSTOP

tABN_BUTTON

pABN_BUTTON

tABN

pABN

pCNE2
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pAB2

tDLY1

tABN_TG

pAB1
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sometimes collapses as it cannot update two outputs 
instantaneously. There must be a delay induced between 
activating RED and YELLOW lights; but this delay is so 
small (about 30ms) and hence unnoticeable for human eyes. 

D. Controlling Traffic Lights via LEGO Mindstrom Robot 

System Requirements (see also [16-19]): 
 Operating system: Windows XP  
 MATLAB Version 7.7 (R2008b) or higher 
 The RWTH–Mindstorms NXT Toolbox 
 LEGO Mindstorms NXT building kit 2.0; LEGO 

Mindstorms NXT firmware v1.26 or higher 
 For Bluetooth wireless connection: Bluetooth 2.0 

adapter recommended by LEGO  

 For USB connections: Mindstorms NXT Driver 
“Fantom” v1.02  

The RWTH–Mindstorms NXT Toolbox [19] is a 
software package available for the MATLAB environment 
that allows control of LEGO Mindstorms NXT robots from a 

PC; a LEGO robot can be controlled from a PC either 
through USB connection or through Bluetooth wireless 
connection.  

By using GPenSIM on top of RWTH–Mindstorms NXT 
Toolbox, various discrete control applications (especially, 
supervisory control applications) can be developed using 
LEGO robot as a specimen. Figure-9 shows the various 
layers of software that can be used to develop applications 
for discrete robotic control.  

Figure-10 shows the LEGO Mindstorms NXT robot 
setup as a Norwegian Traffic signal, possessing the traffic 
lights red, green, and yellow, in addition to the three push 
buttons for pedestrian crossing request, start of emergency 
cycle, and reset button (for restarting normal traffic cycle).  

GPenSIM program code traffic signal simulation and 
control using LEGO robot, is simple and easy to study. The 
code is not shown here, but fully available at [20].    

Experiment results: The traffic signal simulation and 
control performed as it should be. However, there were two 
notable observations from this experiment: 

Controlling LEGO Mindstorms NXT robot by RWTH–
Mindstorms NXT Toolbox, through Bluetooth wireless 
connection is slow and unreliable; RWTH–Mindstorms NXT 
Toolbox user manual agrees with this observation [18]. 

Desktop Environment (MS Windows 7)

GPenSIM Real-Time 
Control Simulator 

Fig. 8. Real-Time GPenSIM simulating 
Norwegian Traffic Signal

Circuitboard with 
Switches and LEDs  

NI-DAQmx Driver

NI USB-6525
DAQ

Digital I/O

MATLAB

Data Aquisition Toolbox

USB

Desktop Environment (Windows XP)

GPenSIM Real-Time 
Control Simulator 

Fig. 9. Discrete control of LEGO robot with 
RWTH-Mindstorms NXT Toolbox

Bluetooth driver

MATLAB

RWTH Mindstroms NXT 
Toolbox

Fantom USB driver

USB
connection

Bluetooth Adapter

Bluetooth
Wireless connection

LEGO Mindstroms 
NXT robot
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However, controlling the robot by RWTH–Mindstorms NXT 
Toolbox through USB connection is highly reliable. 

Windows 7 Operating System does not allow usage of 
RWTH–Mindstorms NXT Toolbox for controlling the 
LEGO robot; Windows 7 blocks the toolbox and MATLAB 
using either USB or Bluetooth wireless connection to LEGO 
robot. This problem is not reported in the user manual for 
RWTH–Mindstorms NXT Toolbox. However, Windows XP 
works fine with RWTH–Mindstorms NXT Toolbox. 

 
Fig. 10: LEGO Mindstorms robot setup as a traffic lights simulator 
 

VII. CONCLUSION 

Petri net is a very powerful tool for modeling and 
simulation of discrete event dynamic systems (DEDS); 
Literature study provides many hundred works using Petri 
nets for modeling and simulation of DEDS. GPenSIM is a 
simulator based on Petri nets, which has been as a tool to 
teach discrete simulation, and also been used to solve some 
industrial problems.   This paper talks about enhancing 
GPenSIM with real-time attributes so that it could function 
as a real-time control simulator. The application example 
provided in this paper shows that Real-Time GPenSIM is 
capable of interacting with external environment, perceive 
inputs from sensors and triggering output actuators. But the 
beauty of Real-Time Petri nets generally, and real-time 
GPenSIM specially is that the control policies that are made 
is the model is overwhelmingly simple, easy to understand, 
debug and extend. 
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