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Absfract—This paper presents a Recurrent MNeural Network approach for the multipurpose machines Job Shop
Scheduling Problem. This case of JS5F can be utilized for the modeling of project portfoliv management besides
the well known adoption in factery envivonment. Therefore, each project oriented organization develsps a set of
prapects amd it lkas to schedule them as a whoele, In this work, we extended a bi-objective system medel based on the
JESP meedelling and formulated it as a combination of two recurrent newral networks, In addition, we designed an
example within its neural networks that are focused on the Makespan and the Total Weighted Thrdiness objectives.
Moreover, we present the findings of our approach using a set of well known benchmark instances and the discussion

about them and the singularity that arkes.
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[. INTRODUCTION

Job Shop Scheduling Problem (IS5F) has been
adopted by manmy msearchers as base for their models
in order to solve a vanety of problems usually coming
from manufactunng. Moreover, moent rescarch efforts
[26], [27] utilized the JS5S5P formulation in order
to solve pmject scheduling problems. The original
project management focuses on individual projects
[Z], [25], [20], [3], while on the other hand, the
modem project onented organisations have to operate
in mult-project enviromments [9]. This s 2 common
attribute 1o the omganizations services performing a set
of projects concurrently. Hence, the simple project’s
minagement approaches are not suitable for the con-
tempomry project minagement mgquirements,

Job Shop Scheduling Problem has been investigated
by many researchers during the last decades in order o
confront analogous problems suwcesstully [15]. Some
of these endeavors [ 13] utilized a quite interesting and
promising tool: the recurrent neural netwiork.

In this paper, we extend a meurment neunl network
hased model [26] for a case of job shop scheduling
problem, the mult-purpose machines with identical
speeds pmblem (MPM) that models adequately to the
project portfolio. This bi-ohjective model, beside the
Mukespan objective function, is focused on the Total
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Wei ghted Tardiness as proposed by a recent work [27).
In addition, we test the resulted RNNs using a set of
known benchmark instunces, and finally proposing a
scalar objective as a linear combination of the selected
ohjectives.

The rest of the paper is organized as follows. The
related research work is presented briefly in Section 11
In Section [ we desenbe sucoinctly the model, the
structure of the RMNs, and two algonthms which
improve their evolution. In Section V' we provide the
experimental results of the neuml networks using a set
of benchmark instances, and finally, in Secton V1 we
conclude and provide few fuure mesearch directions,

[I. RELATED WORE

During the last three decades many phased mod-
els have been designed and applied by the msearch
community and the pmject management professionals
[14], [17]. In addition, some research projects [5], [29)
were tocused on the formulation of processes on the
design of processes for project management in special
industries, for instance IT projects, Momr specifically,
there 15 an extensive list of models [10] for the case
of software pmjects.

The comman attribute of those models 15 that they
propose a process framework within a fixed identical
number of activities or phases for every project. In
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ather wonds, accomding to them, each organization
divides its projects into an identical mumber of discrete
phases. This is one of the key characteristics of the
Job Shop Scheduling Problem [4].

Sound research hus been conducted during the last
decades focusing on single objective models of Job
Shop Scheduling Problem (155P) and the Resoume
Constrained Scheduling Problem (RCPSP). However,
recent research works [12], [23], [30], [21] have
asserted that the single objective modelling is in-
sufficient and many problems have o be resolved
utilizing the multi-objective approach. The increase
af computer performance, the effective application of
the metaheuristics on single-chjective pmoblems, and
the =ignificance of multi-ohjective approach in many
seientific disciplines are three of the factors which [12]
have contributed to the adoption of the multi-objective
models.

In addition, the above works contend that the
multi-nhjectives models are more effective than single-
ohjective ones in any way. Some of them are hased
an an approach called Pareto front [21], [12]. Briefy,
this approach utilizes a pool of objectives and in
each step chooses some from a set that represent
the optimum or a near optimum solution at this step.
According to some researchers [12], these objectives
am independent and non redundant.

OUm the other hand, other researchers [23]), [30]
proposed an altermative approach: they constructed
4 new objective that combines, two or more of the
following ohjectives; makespan, mean tardiness, mean
flow tme, and mean machine idle time. The final
ohjective function is usually a linear combination of
these objectives with arhitrary weights or coefficients
that are usnally estimated by experimental mesults [30].
Although this method is quite simple and cnticized
[51], it has been extensively used.

Smith [22] presented a review work about the
adoption of newral networks as a salving tool for the
MP-hard combinutorial problems. According o him,
most of the past research on the application of Newral
Metworks on scheduling has been conducted on job-
shop scheduling.

Ome of the most interesting appmaches o MNs
used 5o faris Lagrangian Relaxation of the constraints
combined with Becurrent Newral Metworks (ENNs)
[13] vsnally aiming at one objective function. The
kery idea of this approach is that the energy function
is composed of seveml terms. Howewver, the main
shortcoming of this method is the existence of many
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local minma.

REMMs have been adopted by many researchers in
order to confront combinatorial optimization problems
[13]. This adoption described comprehensively in a
seminl review work [7]. The concept of this comhina-
tion is to stan from a feasible solution of the problem
and its aim is to find better feasible solutions reducing
the value of the energy function. Lastly, the method
for the solving of a combinaonal problem using a
EMNN described by Dreyfus [7], has been utilized by
recent warks [26], [27).

One crucial cholce of a neural netaork s its activa-
tiom function. During the last decades a vast mimber of
resgarchers proposed seveml activation functions for
their neural network [8]. The most common function
is the Step function [24]. Another useful function that
simplifies the equations of motion’s caleulations is the
quadratic function [26].

According to PMI's [19] definition, the successful
project management has to accomplish two goals; to
deliver the project’s deliverables in time and within
the budget. Usnally, the projects have predefined dead-
lines that are ensured by imposed severe violation
penalties. The measure of those penalties is the Total
Weighted Tardiness, one of the choices for the objec-
tive functoms of the model [27], [14]. [31].

Previous research efforts showed that the ENM [26],
[27] can provide very promising sol utions compared to
the solutions devised by the typical heuristic methods.
These works provide o model for bi-objective special
case of the job scheduling that fits well for project
portfolio scheduling.

Wery few researchers have designed and tested
sets of benchmarks that are spitable for the specific
MPMS pmhblem. Une of them is B. Jurisch [1] who
constructed a set of benchmarks via the modification
of the well known benchmarks created by Lawmence
[16]. Moreover, this work has been well accepted by
the community and exploited in subseguemt works
[11]. Currently, a lot of mesearch efforts are based on
these benchmarks [28], [18]. An intemsting set has
been proposed as an extension of the Lowmence [16]
and JTunsch [1] benchmarks to cover the ohjective of
the Tardiness [6].

[l. SvsTEM MODEL

The adopted system maodel [26], [27] for the project
portfolio scheduling problem is defined by the follow-
ing premises [15], [2]:
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According to the classification o | J]~ the simplitied
wersion of our problem can be expressed as follows
[26]:

) = PMPM. oy = k|3; = chains, 3, = di|y =
0.5 # Chae + 0.5 = uy T

Briefly, each schedule 5 is a vector that consists
of the start times of the activities (operations) of
all projects (jobs). So, accomling o the definitions
described in previous work [26], [27] the constrained
mindel can be exprssed as follows:

a5 x F 08 0.5 = F 18] =
N
minf.h ® Cpae + 0.5 = Z w3
i=1
Subject to
S — Sapi4de<lisNz<X 1
S,>0i<Nl<z<X
B (ST — 8Tt gher) < 0, V1w € Tea Ty, #

£F, i

(1— 8% HE™ — 8% 4 gy} < 0,97, € rg N
i E . .

gt =S, NmeR

when -e'FI':'__Iu =1if&87 = 'i':“u' ot herwise -e'FI':'__Iu =1l
Mote thut the activities oo and 24, can be assipned to
the same resource 7. The explanation of every term
used in this modelling is presented in table L

The amended model [26], [27] utilizes separate
EMNM= for every objective function. These neural net-
works don't include hidden layers and consist of only
one layer of neummns with zero input. The mumber of
the neurons for each BMNN is caleulated easily by the
product & « X where N is the number of projects
and X the number of activities for every prmoject.

The energy functions and the equations of motion
for both BEMMs, according to the above formulation,
defined by the equations (1), (21, (3), (4) amre as

fallowrs:

Ell'l'\-l:'q] - 'Fll'l"-l:'q] +ﬁ‘-|r|'\-'['|r|'\-|:'q] {I]
Eu'll:'q] = 'Fll'll:'q] +F"'-||'IL||'II:H] {2]
s, AR, (8]
Ly, Emald) (3

at T as, ]
45 aE,, (5]

o ) it f
@ - M Tas, 4

The above functions (1), (2) more analytically ane
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Tablke 1
MODELLING PAR AMETERS

Symhal Definition
N Mumber al projecis
i Index mumber af project
Py, Py, ..., Py The prajects
L PR g Activities of praject
X Tamal mumbher of the activities
T Index mumber of a activity
iy Deadline time of praject 13
ey Femaky co=t {weighth of pmject 9
fyr T activity af praject I
Srix Lo of activity a,.
Fix Resomrces that can perform
the activity o,
Hir Han tme of activity 4,
for Makespan
£ Sart ime of activity a,,
for Weighted Tardiness
Nl Bar tme of activity a,, a1 time f
A Bart tme of activity a,.,
wmxigned (o mesource T,
Clix Fnizh {compleie) time
af activity a,.
H=qr,rz,..., r_'|_|"|- Set of the resources
M Mumber af the resources
" Inclex mumber of a resource
Oy Scheduling time af praject I,
r'lqu ."-l?hﬂlillins tme af e
Froject Partfalio
s Ohjective functions
i Trdmess af praject [
T Fercent of tandy jobs
I¥ D chte range
£ Totl mumber of the consiramis
Ko . M Femahy factars
E e Eoy Energy funciions
¥ I ¥ . Learning parameter of the RN
rr Vi formy ol iseribmiticm
E Mean function
k Coeflicient af ghe Uniform distrimtion
Ly, La Vialation's penakies af
the comsraims
P, oy Activatiom functions of ghe Ly, La

equal o (5], (6],

£
N .
Ell'l'\-l:'c"'] - I':'T]x ﬁl + "rl"lrl'\- Z .ﬁ'lrl.'.. [‘.-I I:'q” {5]

i=1

N £
Ell'l ['q] - Z |IJI|]-'| + 'F"'-ll'l Z .ﬁ'u'l [‘.I[ 'q]J {ﬁ]
im=1 im=1

The next step of this modelling is the finding of the
first feasible schedule. We used a greedy algorithm o
find a good initial schedule. This technigue assigns
to each activity a msource without violating the con-
straints. The cnterion for the cholce is that the shorest
first unassigned activity from all projects (johs) is
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assi gned o the first available resounce that can execute
it. The technigque is described by the algorithm which
has been proposed in previous relevam work [26],
[Z7]. The key point in this algorithm is the use of the
crtenon that can be altered with regard o different
heuristic rules. According o the first results from the
algorithm’s nmning, it gives a feasible inital schedule
which is 50% closer to the optimum than a mndomly
created schedule (without using heuristics) is.

The first munning of the RNN evolution showed
that the convergence point of every RNMN and for
every benchmark instance was very far away form the
already knrarn minimum or its lower bound. Actually,
this point was wvery close to the processing time
(load) of the activity (phase) that has the maximum
processing time. Obviously, that RNN's omeome leads
to o schedule that it is neither effective nor feasible
one.

S0, in omler w amend this pmblem, we imple-
mented two adjustments applied to the schedule de-
rived by the RMN in every loop of its evolution. The
first adjustment comfronts the violation of the conjunc-
tive comstraints, Those constraims during the RNN's
loop execution are frequently violated. That means
that sometimes two consecutive activities (phases) of
4 job (pmject) are ovedapped timely. The simple tech-
nigue that is utilized is described by the Algorithm 1.

Algorithm 1 Conjunctive Constraints Adjustment
1: for all P = PP do

2 for all j < X — 1 do

3 if Phstartime +  Ph Joad =
Phy 44 |.s#tartime then '

d4: Phijpr.atartime — Phyyostartime +

Fhy g load

5: end if

A end for

7: end for

The second adjustment is aiming at the violation of
the disjunctive constraints ie. the overlapping of two
activities belonging to different jobs that are executed
at the saume tme from the saome machine (resource).
Although the initial schedule algonthm [26] delivers
schedules that don't have this type of violation, the
EMN's evolution denives after some loops non-feasi hle
schedules. The proposed technigue is similar to Algo-
rithm 1 and is presented by Algorithm 2.

Actually, the two technigues tried to keep the sched-
ule derived in every loop feasible. However, there is
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Algorithm 2 Disjunctive Constraints Adjustment
L for all Phy o Phyoinvolved in a Disjunctive
Constrint do
if Phy,assigned = Phy, assigned then
if  Phigstartiee + Phi o doad

Z

-

FPhy, startime then
& Pn'l_,_,,.sstﬁr't iree —  Phy startime +
Ph, load
5: else
fi if  Phyy . startime + Phyydoad =
Ph,  startime then
T Phi o startime +— Phyostartime +
Phy doad
& end :i.'lI
k'R end if
1t end if
11: end for
Tahle 11
PROJECTS” DEADLINES AND THEIR FENMALTY COGTS
Prager | Deadline | Penalry Cosr
Titiee frer Kb e
ARAr
7y 5 I
P 7 2
iy [ i

a contradiction between them. More sped fcally, the
excoution of the Algorithm 2 affects the outcome of
the Algorithm | and vice vemsa, The consequence is
that the overall schedule s not always feasible but the
measure of the non-feasibility 15 already measured by
the comesponding energy function.

V. EXAMPLE

In omder to explain clearly the model adopted above
we explain its steps through an example. The pre-
sented example is more complicated than the example
described in previous work [27]. We assume here that
an organization manages o Pmoject Portfolio that has
three projects: P, Py, Py Their predefined deadline
times and the comesponding penalty costs are pre-
sented in table 11

The orgunization has o management scheme that
divides its projects into three activities ie. X = 4.
Moreover, the organization has three resources allo-
cated to this project portfolio: 8 = {r1.r2,ra}. Be-

cause each activity is chameterised by taro purameters:
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gy (. T by the activities of the two pmojects ar
characterised as follows:
ayy {20, {ra}}

g {40, {ra.ra}}
gy {10, {r }}
gy {30}
gy {20, {ry}}
gy {20 {ry, ma}}
agy {20, {ry.ra}}
g {20, {ry.ra}}
agy {10, {ra}}

The corresponding conjunctive and disjunctive con-
straints are presented in the diagram shown in Figume
I. The blue lines with an amow at the one end repre-
sent the conjunctive constmints between consecutive
activities of a project (job). The red double arrow lines
represent the dispmetive constraints betwoen activities
helonging to differemt pmjects (johs).

l o )
r ' i .
'i i
| i & -
o i - -1 1 LT
.* [y " C1 ¥
-
- "h ke *
4 - TP . | a +
>
L]
Figure 1. The disjunctive dizgram af the example

The constrained form of the objective function is as
Fallows.

5 % O + 0.5 = (1T + 2«15 + 3Tl

The first of the conjunctive constraints is as follows

and the rest of them are similar [26).

Sn—8Sp+dn =0

Stmilarly, the Arst pair of the disjunctive constraints
i5 s follows and the rest of them have the analogous
form [27).

$11 33050 — Sag+ 9111 =0
(1 — 8y 23)( 523 — 511+ hag) <0
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By converting the constmined problem into an un-
constrained one we have the fol lowing equations using
the transformation proposed in a recent work [13], the
fimt of the conjunctive constraint is transtormed as
Follonars.

ey = 81— 82+ iy

Similarly, the first pair of the disjunctive constraints
are transtormed as fol lows,

er =4y 29[ 8y — 8oy + 4
ey = [1 —d11,29)( Haa — S + ghaa)

Consequently, the two energy functions of the ex-
ample, using the general forms (5), (6), are described
by the equations (71, (8):

el
Ell'l'\-l:'q] - Ell'l-\'.l.l + 'F'l-ll'l'\- Z J?J [‘.II: 'r.;]J 1'T]
i=1

3

Eul8) =Y

i=1

il
IIJI|]r'| +j"'-||'lz.|?_'[""|l:'q]] {E]
i=1

The next step calculates the equation of motion
for each start time S, and for cach energy function
according to the formulus written in section 3. The
equation of motion of the fist neuron for the fimst
energy hunction &, is as follows (the mest have
stmilar form):

ll'!‘.r'.;“ _ '|:-:|E|.-|--[H]
dt = “Hma 51

Let us caleulate the exact form of the fist equation
of motion:

by g LLE T )] i

- _.lll:ll'l'\-T _.r':lrlhﬂ._":_l'
- il gwg | g ) vy | ) iy g e gy | g D gy | g 00
EETER [ FIYESYESEN ] .".'_L___.".' SR EETI)

dlhyy
We choose the activation function to be of quadratic

form. The following gives the detils of the above

equation af maotion:
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o iy
= —Hyns EET -
[ 1/2) Byy = Sygbdnn 3

Fr T +

124y aal Sy
+ T

45,
ot

_r!lrl'\-f"-ll'l"-[

. o
Spackue )

L2011 =dyy ) [Sga =Sy 422 )

+ dlhy +

8142 [y p an( Sy =Spdo ™
a5,

+ L B
+<‘-'IJ."-'IIJ -'5'.'...|3|!I:|-‘:":-|'. Sy :I:IJ:'J —
- _I!I“.\_ej';‘ly:: - .llilrl"-f"'-lrl"-[l:'q]] - 'r.;]_'

The starting time of each activity is calculated by
that algonthm [27]. Brefly, acoording to this, each
activity {operation) is assigned to a resource regard to
its pmocessing time. Mome specifically the shortest fimt
unassigned activity is assigned to the fimst available
resoume that can execute it

Let us consider a separate independent RNN aiming
at the second objective function. So, we can perform
the sume caleulations w find the equations of motion
for the neural network with the energy function given
in the equation (8). 50, the equation of motion of the

+ @)+ fit neuron is as follows.

+87) 23l S11 — Sag + by )+ (1 — 28 23+ 67 44)

%[ 82z — 811+ doa) + 8 481 — Sq + )

+i1 — 24y, 4, +'='FIIJ,-.:J] % (S — 811 + a1l

Finally, the equation of motion is:

4%,

T = s S
— st s 20811 23 + 11 ) S0 — S
+(1 — 28y 29) Sax + (1 + 87y 4 + &) 49 )00 +
(1 — &) gqlday + (1 — 2811 5 )5y
(1 — &) gy b

and the first neumon of the RNN is determined by
the follmwing equation:

Suilt +1) = Syit) + S = 8,(t) -
frins Wons [2(811,23 + 11311511 () — Sia(t)
+i(1 — 281 23) Saa(t) + (1 + &) 05 + §1 41080
+i1 — &) oy lbas + (1 — 2815 31184 (t)
H(1 — ) g b

Momover, accomding to the newral network formula-
tion 4 neuron of the netwark is presented in the Figure
2 More specifically, the starting time of each activity,
for instance 5, is represented by o neuron and its
value i5 changed at time ¢ according to the values of
the rest invalved neurons at time ¢ — 1. The rest of
the equations of motion can be caleulated in a similar
WiLy.

Actually, the rest of the equations of motion amr
amalogous but one. The only one neunm which is
different than the other neurons 1s that one from
13, Saa, and Sa which represents the activity with
completion time equals w0 . More specifically
the first term of the equations of motion is egqual to 0
exncept for the latter that is equal to —pe,,..
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When ."."'“ is the starting time of the activity o
regard to the Weighting Tardiness objective function.
Let us caleulate the complete formula of the fimst
equation of motion:

= —phui

A5, AE. (5 A, w T
& T THetTEE = it as

— it Kt i ezl ey jdyra| o7 II“:;_I!:‘:;-_:I b e g ) o e [0 1)
The second term of the above equation is identical
with the second term of the equation of motion of the
fimt objective. S0, we have to caleulate the first term
in order w have the exact form of the equation of
motion as follows,

4%, AT w T
— e e
P S EEST

— st Kt [2(d11,23 + 11,11 1511
—HIJ_' + (1 ?JJJ--"%]S;'{ + (14 & 23+ 81 0
g+ (1 — &) g3 )pay + (1 — 2614 41155,
+11 - '!'FJ"J.'-:J]'-'-"HJ
More specifically, the fist term of the above equa-
tim 15 a5 Folloas.
At w T

.“lll as

ey Ty g Ty iy T )
nE,,

= — i

A a5, gy g=dy )4 2iaan [ 1,5 4ghay =dy 3
EE

= Mt

B 33 max( 0,55, 430 =da3)

ETo =0

+

Sa, the first equation of moton of the BENN that
aiming at the Total Weighted Tardiness ohjective is
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similar o the one for the Makespan objective Le.

Fiky I .

S = = K [20F11,29 +'!|F]]."\'.]]'qjlj - HJI_- +

(1 — 281 23) 85 + (1 + & 53+ 87 5 )en +
(1— &) gqhas + (1 — 26, )5, +
+i1 _"ij'lj.'-u]f-'-u]

and the first neuron of the RNN is given by the
Following equation:

St +1) = 8y, (t) + 5 = §,it)
—ptwt Wt [20811 23 + F1121)051 () — Salt) +
(1 — 21,23 ) 85 (t) + (14 87 55 + 5, 5 )en +
(1 — &) qqktay + (1 — 28,5 5,084, () +
(1 — &7 49 Jebn

Ax we ohserve the equation of motion 15 not depen-
dent on the objective function i.e. the Total ‘Weighted
Tardiness, Actually, the nly neuron that 15 affected
by the form of the objective function is the neuron
which represents the last activity {operation) for every
praject (job). For instance, we calculate the equation
of motion of the neuron represents the last activity of
the fimst project ie. 54 similarly.

The second term- fraction aof the correspondent
egquation is irrelevant o the selected objective function.
Om the other hand, the calculation of the fist term-
fraction leads to:

a0, Sy ey g =y )
FTH

=1l

__I'|:1|'I
1

if 84+ gy —dy =0
— fty ElEE ".uj g+ iy —ady =0

In conclusion, the second BEMM aiming at the Total
Weighted Tardiness objective has only one difference
regard to the first RNM. The thmee neummns 5, 5.,
amd .5'-:;-.; have eguation of motion that contains the
additonal term —gpe ;.

V. EXPERIMENTAL EESULTS AND [MSCUSSION

There are two choices for the benchmarks that can
he wtilized. The first is the design and the implementa-
tion of a new set that can be considered as benchmarks
and the second is the adoption of an established set in
arder to fit the MPM problem. The first option requires
an enormous effort and the necessary recognition by
the research community, Consequently, we have to
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V138 558 ]
=18 T |

Figure 2. The first newron of the example

adopt some ISS5P benchmarks and exploit them in
onder o serve owr goal which is the evaluation of the
proposed techniques. The investigation and the final
selection of this set was not a trivial procedure due
the pmblem modelling.

This 15 actually a serious difficulty because maost of
the literature has concentrated on the ariginal job shop
scheduling problem. According to the formulation of
J55PF each task of each job can be assigned to o unigue
resounce. Hmwever, this is not the case for the project
portfolio. The pmject teams usually are responsible
for different activities of different pmojects and the
project munager assigns the activities wo them. The
simple 155F has been researched by many scholams
dunng the last forty years and there are many bench-
muarks that have been designed and tested successtully.
Unfortumately, the MPM form, which is generalisation
of our problem, did not obtain an established set of
problem instances that is globally accepted and can
be utilised.

Wery few researchers have designed and tested
sets of benchmarks that are suitable for the specific
MPM problem. One of them is B, Tunsch [1] who
constrcted a set of benchmarks via the extension
of the well known benchmark instances created by
Lawrence [16]. Mo specifically, the author changed
the estublished benchmarks by adding machines (re-
sources) randomly to the sets v, © B that can execute
an activity o 50, he generated three groups of bench-
marks (edata, mdata and wvdata) that have as crucial
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properties the average and the maximum camdinality
af the sets v, © K. The edata set contains instances
that allow few choices for each activity (operation). In
the mlata set instances the activities have a moderate
mumber of possible respumces to be assigned. Finally,
the wdata set is the one that allows the most choices
for each activity, The author presented tables with
results using sevenl exnct algorithms and the optimal
solutions (or their low bounds) for their benchmark
instances. Lastly, mamy research efforts are based on
these benchmarks [11]), [28], [18].

We have to undedine that the majority of the
benchmark instances are designed for the fimst objec-
tive Le. e Few researchers tried to implement
suituble benchmarks for the second one ie. 5w T
An imteresting set has been proposed as an extension
afl the Lawrence [16] and Jurisch [1] benchmarks in
order to accomodate the objective of the Tardiness [6],
and it has been exploited for our model.

According to them, there are no benchmark in-
stunces available for job shop scheduling problem with
due date. They also asserted that the established set of
benchmarks proposes by other resecarchers have wvery
fewr jobs and operations and they are limited. They
also contended that their set of benchmarks are larger
thun previous sets and satisfy more ohjective functions,
So they produce 600 problem instances forused on the
mitkespan objective and B instances focused on Tardi-
ness, Subsequent researchers exploited their method in
order to obtain benchmarks with due date. Moreover,
these researchers [6] tested the effectiveness of their
proposed benchmarks using solution methods already
implemented by others.

In conclusion, the rescarch commumity did not
adopted the set of benchmarks created by this work.
However, muny researchers adopted and adapted their
method that penerates randomly due date for their
henchmark instances. We will make use of this work
for the due dates by applying then to the established
Tunsch [1] benchmarks.

Actually, the authors of some imteresting works [ 28],
[18] combined the data sets created by [1] and the
method proposed by [6]. S0 they calculated the due
date as follows:

o o
di — Uk = (1 - 5]: e ?]J )]
when
ko= il+4 457 = E_'f;', @y 4. N the number of the

jobs, A the number of the resources, T' the averige
mimber of tardy jobs (indicative values 0.3, 0.5), D
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due date range (indicative values (L5, 2.5), and o
the pmocessing time of the activity j of the project i.
According to the latter work, a set of benchmarks
can be constructed by wsing the wniform probabil-
ity distribution and the parameters T which is the
expected number of the tardy jobs and £ which is
the due date range pammeter, proposed by [6]. The
selected values for those parmmeters are T = (1.3 and
f =105 The random values for the due tme Le. the
deadlines are obtained from the distribution (9).

In Figures 3, 4 there are two graphs which present
the evolution of the RNN mgamding w the first oh-
joctive function, the mukespan. As we can see, after
few iteratioms, the value of the makespan comverges
towards the known optimum or near optimum. The
comvergence point s higher than that optimum. Ac-
tually, this convergence point is achieved usually for
Wins = 001 and gty = L5 The interesting finding
in these graphs is that for greater values of g,
(fte = 1.57 in most benchmark instances the ENM
comverges o lower values appmaching the optimum.
However, in that case there are appamnt indications
ahout potential singularities.

In table I, the results of the ENMN evolution for the
makespan are presented in comparison with the knosn
optimum or near aptimum for the set of benchmark
instances falll — lalll modified in order to At o our
maodel [1]. As one can easily observe this BNN con-
verges very Fast tovwards a solution that is significant]y
greater than the known optimum. Actually, the mean
distunce between the two solutions is approximately
L3A%, Apparently, the ENN's results are insufficient
exclusively regurding to the mukespan objective. Sim-
ilardy, we have the same performance regarding to the
second objective, the Total Weighted Tardiness. Hiovar-
ever, if we consider the scalar compound objective
that comprises the makespmn and the total weighted
turdiness we have very promising findings.

The limitations of our appmach are quite obvious.
Fimst, we have to investigate and amend the potential
singulan ties that can be arose in every RNN approach.
Secondly, we have to determine more accurate values
for coefficients of the scalar objective. Third, we
nead to improve the RNN evolution by avoiding the
possible local minima in omder o converge towards
lovwer points close to the global mintmum. Finally,
we have o explore an alternative approach, ie. to
design an altemative unified BENN that will include
hoth ohjective functions,
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Wi CONCLUSIONS AND FUTURE WORK

This paper is an extension of an ongoing msearch
work and focuses on the multipurpose machines Tob
Shop Scheduling Problem. That case of I55F can
be utilized for the modelling of the project portfolio
management. In this work we reviewed the literatume,
extended a bi-ohjective system model based on the
job shop scheduling pmblem and modelled it as a
comhbination of two separate moument neunl networks,
In addition, we provided an example within tao BENNs
regarding 1o Makespan and Total Weighted Tardiness
ohjectives, Moreover, we present the promising find-
ings of our approach using a set of well known
benchmark instances and we provide the discussion
about them and their singulanty issues. One goal of
the future work is o approach a near optimal solution
vig the adjustment of the described ENMs and the
trde-off between the tao adopted objective functions:
the makespan and total weighted tardiness. Finally,
we will apply and test the model on other sets of
benchmark instances and we will study the potential

singulan ties more extensively.
EEFERENCES

[1] Bemd Jurisch. Scfedicdg fols fn Shops wirk Madn-
Purpese Machines. PhD Thesis, University of Os-
nabrueck, 1902,

[2] Tyson R. Browning and All A, Yassine, Resource-
constrained multi-project scheduling: Priority mule per-
formance revisited.  Sere preriwel Fovermal of Prodiee-
rewt Ecoutowieies, 120620212228, 2000,

[3] Peter Brucker, Andreas Drexl, Rolf Mohring, Klaus

Neumann, and Erwin Pesch.  Respurce-constrained

project scheduling: Nowtion, classification, models,

and methods.  Eurpedan Sosernal af Ope nerfonal Re-

searrek, 112 13—, January 9049,

[4] Peter Brucker and Sigrid Kunst. Cowgpler sefrediding.

CGOR-FPublications. Springer, Berlin, 20,

[5] Damiel Antonio Callegari and Ricardo Melo Basios.

Project management and sofiware development pro-

cesses! Imegrating RUP and PMBOE. In firermerionl

Cawiferance ow Svarams Englneenng oond  ModeBng,

TCSEM 07, pages 1-8, Haifa, 2007, TEEE.

[6] Demirkoel, E, Meha, 5., and Uzsoy, B Benchmarks

for shop scheduling problems.  Europeen ol af

(3 peranional Besearek, LD 137-141, 1994,

[ 7] G. Dreyfus. Mewrad Merworks MeSrododegy aua Apepli-

cerrienis. Springer Berlin Heidelberg, Heide lberg, 2005,

ISSN: 1473-804x online, 1473-8031 print



[£]

]|

(18]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

DIMITRIOS TSELIOS et al: MPM JOB SHOP SCHEDULING PROBLEM: A BI-OBJECTIVE APPROACH

Simon Haykin, Newral Nenvorks- A Comprelensive
Fouenaleeriony. . Prentice-Hall Ine., Mew lersey, seoond
cdition.

Christizn Heimer] and Rainer Kolisch. Scheduling
and staffing multiple projects with a muli-skillad
wiorkfomce, (R Specrrien, 323 20343368, 2000,

Bob Hughes and Hogan Cotterel.  Safneare Pragecr
Mengemens. MoGraw- Hill Education, Berksine UK,
fifth edition, 20404,

Johann Hurink, Bernd Jurisch, and Monika Thole.
Tabu search for the job-shop scheduling problem with
multi-purpose machines. O8 Spekraor, 15:205-215,
1940

DLFE Jones, S K. Mimazat, and M. Tamiz.  Mulii-
abjective meta-heuristics: An overview of the curnent
state-of-the-an.  Ewropean fowermad of  Olpe rerioned
Regearel, 1371019, 2002

M-Tahar Kechadi, K5 Low, and G. Congalves., Be-
cument neural network approach for cyelic job shop
schoduling  prohlem. Jeirierd  of Mehiefene Beriig
Svsremy- Elsevier, {In press), 2012,

Majid Khalili and Reza 8. Tavakkoli-Mopg haddam, A
multi-ohjective electromagnetism algorithm for a bi-
objective flowshop scheduling problem.  foscnal of
Mesigfereriering Svsrams, 3020232239, 2012,

Fohar Laslo, Project ponfolic management: An inte-
pgrated method for resource planning and scheduling
to minimize planningfscheduling- dependent expenses.
T roveellowiveed Fouerineed of Progecr Monerge e, 28608
G1E, 2010,

5. Lawrnence. Resource covisiralned profect sofedilg -
ait expe rimrental e siganion of hewrisie sofeduling
fecfunigiees (Suppdaveent). Graduate School of [ndus-
irial AdminiarationCanegie-Mellon Universing, Pints-
burgh, Pennsylvania, |99,

Office of Government Commerce. Meamaging S ces5-
Sl prefecrn wih PRINCEZ. TS0, London, founh
cdition, 2005,

Fian Pongchairerks. Pamicle swarm oplimization al-
gorithm applicd to scheduling problems. SeisnceAsia,
35890, e,

PMIL A Ghade 1o the Projecs Managemenr Bodv of

Kiowfedpe, Projeat Management [Institution, Pennsyl-
wvania, founth adition, 2608,

Christoph Schwindi.,  Progeer sesiege et g -
soneree eellovarion. Springer-Yerlag, Heidelberg, 2005,

DOI 10.5013/1JSSST.a.14.01.07

[21]

[22)

[23

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

AL Senouci and H B, AlDerham. Genetic algorithm-
based multi-ohjective model for scheduling of linear
opnstriction projects. Advesices G Enghieering Sof-
werre, 3120 LO23—-1028, 2000,

Bate A, Smith. Newral networks for combinasial
optimization: A review of more than a decade of
reszarch. INFORMS Josrnad onr Commpaering, L1 15—
34, 19

1O, Tay and N.B. Ho. Evolving dispatching rulkes
using genetic programming for solving muli-ohjective
flexible job-shop problems. Compuerers i S adiegriad
Engieering, 54 30453473, 2008,

Williens T.M. and Booda JE. Newral networks for
Job-Shop scheduling., Cosiried Eng. Pracrice, 21031
ELURNL S

Mariem Trojet, Fehmi H'Mida, and Pierre Lopez.
Project scheduling under resource constrainis: Appli-
cation of the cumulative global constraint in a decision
suppon framework. Cowpuaers & Sralicsrrial Englieer-
G, 2010

Drimitrios Taelios, Iias K. Savvas, and Tahar MT
Kechadi. Project ponifolio: A job scheduling approach.
In Seceke S se rnenrionneed Conifle rence on Covnplex, fire 18-
pent, aond Seftwere firenave Svarams, pages BAT-R52,
Palerma, [aly, July 2012, TEEE.

Dimitrios Taelios, Iias K. Savvas, and Tahar MT
Kechadi. The weighted tardiness as objoctive function
of a RMN mode| for the job scheduling problem. In Si-
rope e ModeBing Svnposion EMSIE (EMEX012),
pages 13-18, Malta, Malta, Novwember 2002, TEEE.

Wiloot, G, and Billaut, 1.-C. A tabu search algorithm
for solving a multicriteria flexible job shop schodul-
ing problem.  Sere bl Sosornad of Prodicenion
Reserch, 4923069636980, Docember 200 1.

Lucas Wiedemann. frrrdieerior i T P rofeer Moanage-
st . Lcas Wiede mann { Standard Copyright License),
first edition, March 2010,

L-N. Xing, Y.-W. Chen, and E-W. Yang. Muli-
objective Aexible job shop schedule: Design and evalu-
ation by simulation modeling, Apgplied ST Covrpririing
Jemerneel, ™ 10 362-3Th, 2006,

Paui Zhang, Shili Song, and Cheng Wu, A hybrid
artificial bee colony algorithm for the job shop schadul-
ing problem.  Sere il Sosorned of Prodienion
Eeoewiies, LA 167178, 2013,

ISSN: 1473-804x online, 1473-8031 print



