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Abstract — In multibody system dynamics formulations, the modeling of classical non-isoparametric element cannot accurately 
describe the deformation of cross sections. Unlike the conventional methods, the absolute nodal coordinate formulation (ANCF) of 
solid element is not only able to achieve section describtion, but also can directly describe the section deformation through the node 
coordinates. But the deficiency of incomplete polynomial using the current ANCF solid element is expected to avoid locking 
problems that cannot conform to the derivative coordinates across the boundary. In this paper, the ANCF solid element with 
continuity condition and internal viscoelastic damping has been provided and achieved. The continuity condition could be applied 
to make the neighboring elements achieve continuity across boundary, and the viscosity model of the ANCF solid element is 
proposed for large deformations. Some numerical simulations are provided and according to the comparative results, the ANCF 
solid element can get higher accuracy than traditional finite element and former ANCF element. 
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I. INTRODUCTION 

For the current multibody system dynamics, the 
modeling of classical non-isoparametric beam elements is 
mainly based on the Euler-Bernoulli and Timoshenko beam 
theory, which cannot accurately describe the deformation of 
the beam cross section [1]. The ANCF element which was 
first proposed and reported by Shabana [2] is able to achieve 
section describe, but it is necessary to introduce additional 
description frames and deal with a series of locking 
problems [3-5]. Olshevskiy [6] proposed a solid element 
based on Shabana’s ANCF element. Different from the 
elements mentioned above, the Olshevskiy’s ANCF solid 
element directly describes the section deformation through 
the node coordinates without bringing in additional 
coordinates and the locking problems can also be avoided 
by using the incomplete interpolation function which used 
to describe the displacement field. Based on the 
Olshevskiy’s solid element, the ANCF solid element 
considering the continuity condition and internal 
viscoelastic damping has been provided and achieved for 
the first time in this paper. With this solid element, the 
modeling of a rotating flexible beam is realized. According 
to numerical simulations, it is able to get some nonlinearity 
results with solid element and the precision is much higher 
than traditional finite element and former ANCF element. 

In this paper, the total Lagrangian finite element 
approach for ANCF solid element using continuum 
mechanics is proposed in section 2.1 in chapter 2. The 
continuity condition of the ANCF solid element and the 
viscoelastic damping model which derived from the Kelvin-
Voigt model are developed in section 2.2 and 2.3. The 
system dynamics equations are proposed in section 2.4. In 

chapter 3, some typical simulations are represented using 
the ANCF solid element. Finally, the conclusions are 
summarized and its further studies are forecasted in chapter 
4. 

II. REPRESENTATION OF THE ANCF SOLID ELEMENT 

The ANCF solid element is a Lagrangian finite element, 
using the absolute nodal coordinate as the generalized 
coordinate, which was proposed to handle the large 
deformations in flexible problems in recent years. The 
following derivations of the finite element model for the 
ANCF solid element are based on the continuum mechanics 
theory and finite element method. 

A. Displacement Field 

In the reference configuration, the global position vector 
of an arbitrary point on the element can obtain by using the 
global shape function and element absolute nodal 
coordinates. The relationship can be written as follows [7-8]: 

( , , ) ( )x y z tr = S e                            (1) 
where S  is the shape function matrix that depends on 

the element spatial coordinates in global coordinate; x，y 
and z are the node position coordinates in the local 
coordinate; e  is the vector of time-dependent nodal 
coordinates that define the displacements and derivatives at 
a set of nodal points selected for the element. 

Asume the dimensions of the solid element are a b c   
and the element has 8 nodes, so the nodal coordinates e  at 
the node k  of the finite element j  can be defined as:  

T T T T T[ ] 1, ,8jk jk jk jk jk
x y z k  e r r r r         (2) 
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where jkr  is the absolute position vector at the node k  

of the finite element j , and jk
xr ，

jk
yr  and jk

zr are the 

position gradients vectors obtained by differentiation with 
respect to the spatial coordinates x, y and z. Clearly, the 
proposed element has 32 coordinates and 96 degrees of 
freedom. The ANCF solid element is shown in Fig. 1. 

 

Figure 1. The Solid element 

The displacement field of solid element can be defined 
using a polynomial with 32 coordinates as: 
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where k  are the polynomial coefficients, and 4x , 4y , 
4z , 2 2x y , 2 2y z , 2 2z x are ignored as the redundancy terms. 

As a result, the equation in Equation 3 is an incomplete 
interpolation polynomial. 

According to the absolute nodal coordinate vector e  and 
displacement interpolation function ( , , )x y z , the 
components of the shape function matrix of the ANCF solid 
element can be derived as follows:  
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where a, b and c are the dimensions of the element along 

the axis x，y and z, k ， k  and k  are the dimensionless 
coefficients at node k, / , / , /x a y b z c     . The 
position vector of an arbitrary material point on element j  
can be written as:  

8
,1 ,2 ,3 ,4

3 3 3 3 3 3 3 3
1

j k k k k jk

k

S S S S   


   r I I I I e    (5) 

where jS and je  are , respectively, the element global 
shape function matrix and the vector of nodal coordinates. 

B. Continuity Condition 

It previous section, an incomplete interpolation 
polynomial is used to describe the displacement field of the 
element. But due to the deficient of the incomplete 
polynomial using in the ANCF solid element cannot 
conformal in the derivative coordinates across the boundary. 
It leads to the presence of higher-order continuous 
inconsistency at element boundary. As a result, it is 
necessary to consider the issue of continuity between the 
elements in order to guarantee the modeling accuracy when 
using multiple elements. 

The definition of continuity between two adjacent 
elements is shown in Figure. 2, where the Arabic numeral is 
the element node number, superscript is the element number, 
and subscript is the material derivative in corresponding 
direction. 

 

Figure 2. Continuity between adjacent elements 



MA CHAO et al: A NEW ABSOLUTE NODAL COORDİNATE FORMULATİON OF SOLİD ELEMENT WİTH  . . . 

DOI 10.5013/IJSSST.a.17.21.10 10.3 ISSN: 1473-804x online, 1473-8031 print 

The ANCF solid element meets the 1C  continuous at 
each node by definition, for it uses the positions and the 
derivative of positions as the nodal coordinates. Clearly, the 
nodes on the adjacent surface between element p and q meet 

the 0C , 1
yC  and 1

zC  continuous. The 1
xC  continuous needs 

to satisfy the following equation in order to guarantee the 
multi-element continuously:  

( 1) ( 0)
p q

x x  S e S e                     (6) 

where xS  is the derivative of element shape function S  
in x direction, and e  is the vector of time-dependent nodal 
coordinates. The Equation 6 can be rewritten as 

2,3,6,7 1,4, 5,8
pm qn

xy xy

pm qn
xz xz

m n
   



r r

r r
        (7) 

where pm
xyr  is the partial derivatives of the node m  from 

the element p  along x and y directions, m  and n  are, 
respectively, the sharing node on the adjacent surface 
between element p and q. 

C. Constitutive Equations 

The ANCF solid element proposed by Olshevskiy [6] 
used linear elastic model and ignored the effect of damping 
on the dissipation of energy in deformation. In the modeling 
of solid element in this paper, according to the Kelvin-Voigt 
model [9], the viscoelastic model for ANCF solid element 
suitable for large deformation is established. The total 
stresses for isotropic homogeneous viscoelastic material can 
be written as the sum of the elastic stress due to the 
deformation and the stress due to the damping, that is,  

k ke kd σ σ σ                               (8) 

Where kσ  is the element stress, keσ  and kdσ  are, 
respectively, the elastic stress and the stress due to damping. 

Describe the strain using the Green-Lagrange strain 
tensor in reference configuration as follows:  

T1
( )

2
 ε J J I                              (9) 

Where ε  is Green-Lagrange strain tensor, and J is 
deformation gradient represented by [ ]x y zJ r r r . 
Rewrite the Equation 9 to a vector form as follows:  

TT T T T T T1
1 1 1

2v x x y y z z x y x z y z     ε r r r r r r r r r r r r  (10) 

where the subscript v  represents the vector form of the 
tensor. In reference configuration, describe the elastic stress 
using the second Piora-Kirchhoof stress tensor as follows:  

T1 1
2P J  σ J σJ                       (11) 

where 2Pσ  is the second Piora-Kirchhoof stress tensor, 
and J  is the determinant of deformation gradient 
represented as ( )x y zJ   r r r , and σ  is Cauchy stress 
tensor in current configuration. 

According to the generalized Hooke's law, the 
relationship of strain and stress are,  

2,P v vσ Eε                             (12) 

where E  is material coefficients matrix represented as 
follows which can be determined by constitutive relations: 
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Where E  is elastic modulus, and   is Poisson’s ratio. 

The elastic strain energy can be expressed as follows: 

2
1

: d
2ke PV

U V  σ ε                     (14) 

Define the relationship between damping stress and the 
rate of change of the strain tensor as follows:  

,d v v σ Dε                            (15) 

where dσ  is damping stress, and ε  is the rate of change 
of the Green-Lagrange strain tensor. D  is material damping 
coefficients matrix determined by constitutive equation and 
could be represented by matrix as follows:  
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where v  and v  are the coefficients defined as 

 2 (1 2 ) / 3(1 2 )di deE G      , v deG  , and G  is the 

shearing modulus. di  and de  are, respectively, the 
dissipation factors associated with the dilatational and 
deviatoric stresses. The dissipation power can be written as 
follows:  

1
: d

2kd dV
P V  σ ε                       (17) 

Substitute Equation 12 and 15 into Equation 8, the solid 
element constitutive equation described by the elasticity 
coefficients and damping coefficients can be written as:  

,k v v v  σ Eε Dε                        (18) 
The Equation 18 is the viscoelastic constitutive equation 

with absolute nodal coordinates description of solid 
element. In the derivation, Green-Lagrange strain tensor is 
directly used to deduce the strain energy without 
introducing deformation assumptions, so the geometric 
nonlinearity is preserved. It makes the ANCF solid element 
can describe the large deformation and large rotation 
directly without introducing additional descriptions. 

D. Dynamics Equations 

For the viscoelastic material, assuming that V  and v  
are, respectively, the volume of element before and after the 
deformation, and the corresponding density are   and 0 . 
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According to the principle of virtual work, the elastic force 
of element in reference configuration can be obtained by 
Green-Lagrange strain tensor and the second Piola-
Kirchhoff stress tensor as follows:  

2 : dj j j j j
Pke keV

W V       σ ε Q e         (19) 

where j
keW  is the virtual work of elastic force, and j

keQ  
is generalized elastic force. 

For damping force, it can be obtained from the rate of 
change of the Green-Lagrange strain tensor and damping 
stress as follows: 

( : d )dj j j j j
kd d kdV

W V t       σ ε Q e       (20) 

where j
kdW  is the virtual work of damping force, and 

j
kdQ  is generalized damping force. 

In addition to the virtual work of the elastic force and 
damping force, the principle of virtual work also defines the 
virtual works of the inertia and applied forces. The virtual 
work of the inertia forces is defined as 

T

0 dj j j j j j j j
I Iv

W v          a r Q e M e e    (21) 

where j
IW  is the virtual work of inertial force, and ja  

is acceleration vector of element j , j
IQ  is generalized 

inertial force, jM is a constant symmetric mass matrix of 

element j , 
T

dj j j

V
V M S S . 

For the external force, it can be obtained by principle of 
virtual work as follows:  

T

dj j j j j
e eV

W V      f r Q e                (22) 

where j
eW  is the virtual work of external force, jf  is 

external force, and j
eQ  is generalized external force. 

According to Equation 19-22, the motion equation of 
element j  in the unconstrained case can be written as:  

j j j j j
eke kd   M e Q Q Q 0                   (23) 

The dynamics equation of multibody system is written 
as: 

 T T 0    qq Mq C λ Q                    (24) 

where M  is mass matrix of the system, can be obtained 
by Equation 21, q  is generalized coordinate of the system, 
can be obtained by Equation 2, qC  is the matrix of 
constraint equation, λ  is the vector of Lagrange multipliers, 
Q  is the generalized force of the system, including the 

elastic force keQ , the damping force kdQ  and the external 

force eQ , which can be respectively obtained by Equation 
19, 20 and 22. 

III. NUMERICAL EXAMPLES 

In this part, both simple pendulum and double pendulum 
are used to demonstrate the application of the ANCF solid 
element with continuity condition and viscosity model 
developed in this investigation. As a comparison, the 
traditional finite element from the finite element analysis 

software and former ANCF element from literature are used 
as the comparative analysis. 

A. Simple Pendulum 

The beam is oriented horizontally along x direction with 
the constrained by spherical joints at the end of one side. 
The dimensions of beam are 1.0 m 0.02 m 0.02 m  , and 
the dimensions of ANCF solid element are 
0.25 m 0.02 m 0.02 m  , adding the 1C  continuity 
conditions between the elements. The density of the material 

37200 kg / m  . The gravity acceleration 29.8 m / sg  . 
The modulus of elasticity 2.0e8 PaE  . The Poisson’s ratio 

0.3  . The dissipation factors 0.5e-5di  , 0.3e-6de  . 
The beam is in a static at the initial and rotates freely under 
the gravity when the simulation begins. Use the BEAM189 
element form the ANSYS software to set up a rotating beam 
simulation at the same conditions. Compare the results 
between the ANCF solid element and BEAM189 element to 
obtain the displacement curves as shown in Figure 3. 
 

 

Figure 3. Comparsion of displacement of the high stiffness beam at the 
end point 

From the Figure 3 we can see that, in high stiffness case, 
the displacement curves obtained by 4 ANCF solid elements 
are almost identical with curves obtained by 4 and 10 
BEAM189 elements, which illustrate that the capacity of the 
ANCF solid element in dealing with small deformations is 
equal to the traditional element and the two methods 
maintain a fine consistency. 

B. Double Pendulum 

In this case, a double pendulum is set up based on the 
simple pendulum discussed in the previous section. The 
modulus of elasticity 2.0e7 PaE   for both upper and 
lower beam, and all other conditions maintain consistent. 
The displacements at the end points from the upper and 
lower beam in first rotary using the ANCF solid element 
and ANSYS BEAM189 element are compared in Fig. 4. 
 



MA CHAO et al: A NEW ABSOLUTE NODAL COORDİNATE FORMULATİON OF SOLİD ELEMENT WİTH  . . . 

DOI 10.5013/IJSSST.a.17.21.10 10.5 ISSN: 1473-804x online, 1473-8031 print 

 

(a) The displacement curves of upper beam. 
 

 

(b) The displacement curves of lower beam 

Figure 4. Comparsion of displacement of the beams at the end points. 

 

The difference of the displacement curves plotted in Fig. 
4 shows that, as the beam stiffness decreased, the flexible 
deformation is increased. The advantages of ANCF solid 
element are gradually embodied. When the double 
pendulum begins to rotate, the displacement curves obtained 
by 4 ANCF solid elements and curves obtained by 4 and 10 
BEAM189 elements are almost identical at the initial time. 
With the increase of the flexible deformation, the curves of 
10 BEAM189 elements deviate from the curves of 4 
BEAM189 elements, which illustrate that the number of 
elements has important implications on the modeling 
accuracy. That means the curves of 10 BEAM189 elements 
have higher precision and better reflection for deformations 
than 4 BEAM189 elements. On the other side, the curves of 
10 BEAM189 elements approach to the curves of ANCF 
solid elements gradually. Although the traditional element 
can compensate the accuracy by increasing the number of 
elements, they cannot solve the large deformation problems 
fundamentally. However, the ANCF solid element show a 
good adaptive ability and high accuracy for describe the 
deformation of the flexible beam. 

C. Large Deformation Pendulum 

The following simulation considers large flexible 
condition in order to verify the applicability of the ANCF 
solid element. The modulus of elasticity 2.0e6 PaE  , and 
all other conditions maintain consistent. The displacements 
at the end point of low stiffness beam in first rotary using 
the ANCF solid element and ANSYS BEAM189 element 
are shown in Figure. 5(a), and the displacements at the end 
point using the ANCF solid element and former ANCF solid 
element from literature [6] are shown in Fig. 5(b). 
 

 

(a) Curves of ANCF solid elements and BEAM189 elements. 
 

 

(b) Curves of ANCF solid elements and former ANCF elements 

Figure 5. Comparsion of displacement of the low stiffness beam at the 
end point 

The difference of the displacement curves shown in Fig. 
5(a) show that, as the beam stiffness is low, the flexibility is 
large, the advantages of ANCF solid element are fully 
embodied. From the diagrams we can see that, in large 
flexible case, in a short time after the start of the simulation, 
the displacement curves obtained by 4 ANCF solid elements 
and curves obtained by 4 and 10 BEAM189 elements are 
almost identical. But with the simulation goes on, these 
curves begin to separate gradually. When the simulation 
performs at about 0.5s, the displacement curves separate 
completely and deviations are accumulated over time. This 
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shows that at this time the traditional element for large 
deformation calculating has been distorted. And the ANCF 
element shows a good adaptability and ability to describe 
the large deformation as described in this investigation and 
other literatures [10-12]. In Fig. 5(b), the ANCF solid 
element proposed in this paper and the ANCF element from 
literature [6] are plotted and compared. Both of them keep a 
good consistency in the whole time. But at 0.9s-1.0s, the 
displacement curves of 10 former ANCF elements show 
more consistent to the curves of 4 ANCF elements than the 
4 former ANCF solid elements. This illustrates the ANCF 
solid element can get higher accuracy than former ANCF 
element and it is consistent with the modeling theory 
proposed in the previous chapter. 

 

IV. CONCLUSIONS 

In this paper, the purpose is to propose a solid element 
model considering continuity condition and internal 
viscoelastic damping using the absolute nodal coordinate 
formulation, which is a reported multibody description for 
large deformation problems recently. In this model, the 
continuity condition has been used to apply the algebraic 
constraint equations to make the neighboring elements 
achieving contain continuity at the boundary. Using the 
relationship between the deformation gradients and the 
components of the Green-Lagrange strain tensor, the 
viscoelastic model is developed based on the Kelvin-Voigt 
model for the ANCF solid element. The feasibility of 
implementing this solid element is demonstrated using 
several examples and the results obtained by the solid 
element are compared with the traditional finite element and 
the former ANCF element. The comparisons show a good 
agreement in small deformations and some advantages in 
large deformations from the element developed in this 
investigation. The simulations illustrate that as the 
flexibility increased, the ANCF solid element can get higher 
accuracy than traditional finite element and former ANCF 
element. The validations, detailed model and other types of 
constraints for specific applications would be developed in 
the following research. 
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