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Abstract — In order to further improve the whole vehicle economy of a novel plug-in hybrid electric vehicle (PHEV), considering 
two main factors, which are the driving working conditions and the driving distance, influencing the whole vehicle economy, a 
control strategy based on fuzzy self-adaptive online recognition is provided. A fuzzy working condition recognition algorithm is 
designed to online recognize the working condition types of actual driving of the vehicle. According to a minimum equivalent fuel 
consumption control algorithm and a battery electric quantity balance control method, corresponding optimal control parameters 
are called combining with a working condition recognition result, and real-time optimizing calculation is carried out on power 
distribution on an engine and a battery to control the whole vehicle. Finally, simulation analysis is carried out on an energy 
management control strategy of the whole vehicle. The result shows that under the new European driving cycle (NEDC) working 
condition at an equal driving distance, compared with a fixed parameter energy management strategy, the fuzzy self-adaptive 
online recognition energy management strategy can lower the whole vehicle equivalent fuel consumption per hundred kilometers 
by above 5%, and thus the whole vehicle economy of the PHEV is improved. 
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I. INTRODUCTION

That the hybrid electric vehicle reasonably distributes 
the energy among all system parts in the premise of 
meeting the power performance indexes of the whole 
vehicle so as to acquire the optimal energy management 
strategy depended by the optimal performance is a focus 
and hotspot of research in recent years[1]. Factors, 
including the driving distance and the driving working 
condition of the vehicle, can directly influence distribution 
of power sources and partition of working modes of the 
PHEV, and thus influencing the whole vehicle economy of 
the PHEV. Chen uses a matrix partition (DIRECT) global 
optimization algorithm to carry out optimized analysis on 
values of main control parameters of the PHEV energy 
management strategy, and a conclusion that the key 
factors, influencing the whole vehicle economy of the 
PHEV, include the driving working condition and the 
driving distance of the vehicle is obtained[2]. Stephen 
carries out global optimization analysis on the energy 
management strategy of the PHEV under different cycle 
working condition by adopting the Bellman principle and a 
particle swarm optimization (PSO) algorithm to obtain a 

conclusion that formulation of the PHEV energy 
management strategy must consider the influence of the 
driving working condition and the driving distance of the 
vehicle, but all of them do not propose a concrete 
solution[3]. Zhang establishes a road model for vehicle 
driving by adopting a neural network algorithm according 
to GPS, GIS, history and real-time traffic data and apply to 
the PHEV energy management strategy, but the method 
needs a great quantity of traffic data and is unuseful at the 
present stage[4]. The neural network algorithm is adopted 
to carry out vehicle driving working condition recognition 
and is applied to the energy management strategy of the 
hybrid electric vehicle (HEV), but the influence of the 
driving distance of the vehicle is not considered[5-10]. 

Aiming at the above problems, in this paper, the new 
European driving cycle working conditions for example, 
the real-time optimization control strategy based on fuzzy 
self-adaptive online recognition is provided. Firstly, the 
typical working conditions, according with the local actual 
driving road characteristics, is constructed based on a 
hybrid electric vehicle data collecting and monitoring 
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system which is independently developed by a research 
group; and secondly, the fuzzy recognition algorithm is 
designed to recognize the actual working condition of the 
vehicle online, a working condition self-adaptive control 
strategy is formulated combining with the minimum 
equivalent fuel consumption control algorithm and the 
battery electric quantity balance control method, the 
powers of the engine and the motor are optimally 
distributed in real time, and the advantage of the self-
adaptive control strategy can be fully exerted when the 
adaptation of a hybrid electric bus is improved and the 
online real-time calculation amount[11,12]. 

II. PROBLEM FORMULATION 

In this paper, the control strategy based on driving 
working condition recognition is that typical cycle 
working conditions with a certain amount are selected, 
possible driving working condition types of a vehicle are 
covered, and off-line optimization is carried out on an 
energy management strategy of the typical cycle working 
conditions; and when the vehicle actually runs, the typical 
cycle working condition, similar to the current driving 
working condition, is obtained through working condition 
recognition, and the control strategy is regulated online. 

When the vehicle starts, data of the driving working 
conditions of the vehicle begins to be collected; once a 
sampling time reaches a certain recognition period (the 
recognition period is selected to be 200s according to a 
relationship between the recognition period and the 
recognition accuracy in a document [13]), characteristic 
parameters of the driving working condition of the vehicle 
are extracted, and then contrastive analysis is carried out 
on the characteristic parameters and characteristic 
parameters of the typical cycle working conditions 
through fuzzy pattern recognition to determine the type of 
the driving working condition of the vehicle. 

A. Selection of typical cycle working condition and 
characteristic parameter 

Selection of the typical cycle working condition is 
crucial to recognition of the driving working condition of 
the vehicle. In this paper, the selected representative cycle 
working conditions are a New York City cycle (NYCC) 
working condition, a UDDS cycle working condition, an 
NEDC cycle working condition and an HWFET cycle 
working condition. 

According to the influences of the characteristic 
parameters on the whole vehicle economy, this paper 
selects the following five characteristic parameters which 
are cyclic average vehicle speed mu  (an average speed of 

the vehicle in the whole driving cycle), an average 
running vehicle speed mru  (an average speed of the 

vehicle except the parking time), a parking time ratio  , 

an average acceleration acc  and an average deceleration 

dec . 

In this paper, the selected characteristic parameters of 
the typical cycle working conditions are shown as 
Equation (8). Seen from the Equation (8), the 
characteristic parameters have the gradation performance 
and can well reflect the actual running working condition 
of the vehicle. 

B. Extraction of characteristic parameters of driving 
working condition 

After the vehicle starts, the characteristic parameters 
of the driving working condition of the vehicle can be 
extracted according to the real-time vehicle speed and the 
corresponding time node data, and calculation formulas 
are respectively shown as follows: 

m mrd / ,  d / du u t t u u t t t     (1)

( d ) / 100%t t t t     (2)
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in the formulas, u is the real-time vehicle speed; t is 

the running time of the vehicle; t  is the running time of 
the vehicle when the vehicle speed is not 0; acct  is the 

accelerated running time of the vehicle; and dect  is the 

decelerated running time of the vehicle. 

C. Fuzzy pattern recognition of driving working 
conditions 

Based on a system optimization fuzzy set theory[14], 
driving working condition recognition is carried out by 
adopting a fuzzy recognition algorithm. 

The 5 characteristic parameters after extraction of the 
characteristic parameters of the driving working 
conditions form a sample matrix to be recognized, so that 
a ample has 5 indexes, and the index vector is 

T
m mr a d[ ]v v a a . As the matrix needs to carry out 

normalization processing, only one group in the matrix 
cannot realize normalization processing, and 4 groups of 
parameters of the standard working conditions are added, 
but only the first group is recognized during recognition. 
An index characteristic value matrix of the matrix to be 
recognized is expressed as follows: 

m mr acc dec( , , , , )u u   Y  (5)

In the formula: ijx  is a characteristic value of j 

indexing i, and i=1,2,…,5. 
As the characteristic values of five indexes have 

differences in dimension grade, and normalization 
processing needs to be carried out. 
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In the formula, maxix  and minix  are the maximum 

characteristic value and the minimum characteristic value 
of the ith index; and ijr  is a normalized value of ijr  with 

the range to be larger than or equal to 0 and smaller than 
or equal to 1. 

According to the formula (3), a relative membership 
degree matrix is calculated by substituting the formula (2) 
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With f index characteristic values in 4 types as a such 
clustering center, the index characteristic values in 4 types 
can be expressed by using the fuzzy clustering center 
matrix. 
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In the formula: ihS  is a normalized number of the 

characteristic value of the index i in type h and is larger 
than or equal to 0 and smaller than or equal to 1. 

According to the maximum subordination principle of 
fuzzy pattern recognition, the larger the Euclid approach 
degree value is, the closer the two kinds of driving 
working conditions is, so that the driving working 
condition belongs to which kind of typical cycle working 
condition can be determined by utilizing an Euclid 
approach degree formula, and then the control strategy of 
the corresponding typical cycle working condition is 
adopted. 

III. CONTROLLER DESIGN 

An SLAM algorithm[15,16] based on EKF mainly 
comprises two steps: a prediction process and an 
observation updating process. A system model is 
established firstly, and space environment is expressed by 
utilizing a combined state vector containing a k moment 
vehicle characteristic ( )vx k  and a road condition 

characteristic ( )mx k , namely, 

( ) [ ( ), ( )]T
v mx k x k x k  (9)

A corresponding state covariance matrix is as follows: 

T
v vm

vm m

P P
P

P P

 
  
 

 (10) 

wherein, vmP  expresses the correlation degree of the 

vehicle state vector and the road condition characteristic 
vector. 

The prediction process: defining ( )u k , serving as an 

arbitrary k moment control signal and ( )z k , ( )Q k  and 

( )R k , serving as observation values of a sensor, as 

corresponding covariance matrixes respectively. A 
prediction equation is as follows: 

( 1/ ) ( ) ( | ) ( )x k k F k x k k u k    (11) 

( 1 | ) ( ) ( 1| )z k k H k x k k    (12) 

( 1 | ) ( ) ( | ) ( ) ( )TP k k F k P k k F k Q k    (13) 

wherein, ( )F k  and ( )H k  are a state transition matrix 

and an observation matrix of a k moment system 
respectively. 

A fuzzy algorithm is to regulate a value of the 
covariance matrix R of observation noise online. The 
nature of the algorithm is to regulate the size of the 
covariance matrix R of observation noise by utilizing a 
fuzzy system according to the difference of an innovation 
actual covariance matrix and a theory covariance matrix. 
An equation of the innovation actual covariance matrix 

ln nkC  is as follows: 
T

ln ( ) ( )nkC v k v k  (14) 
Our objective is to enable the difference value 

between the actual covariance matrix ln nkC  and the theory 

covariance matrix ( )S k  to be minimum, namely enable 

ln nkC  to be minimum: 

ln ln ( )nk nkC C S k    (15) 
The single-input and single-output fuzzy system is 

used in here. Input of the system is a diagonal element 

ln ( , )nkC j j  of ln nkC , and output is a diagonal element 

variable ( , )R j j  of the observation noise covariance 

matrix R. Input of the fuzzy system adopts three 
membership functions which are a negative value (N), a 
zero value (Z) and a positive value (P). Three fuzzy rules 
are as follows: 

ln 1IF ( , ) is N THEN ( , ) ,nkC j j R j j w    

ln 2IF ( , ) is N THEN ( , ) ,nkC j j R j j w    

ln 3IF ( , ) is N THEN ( , ) ,nkC j j R j j w    

The three fuzzy rules adopt Guassian type and are 
guass1 (a1,b1), guass2 (a2,b2) and guass3 (a3,b3) 
respectively. Therefore, values, needing to be determined, 
in the fuzzy system are 1 2 3 1 2 3 1 2 3, , , , , , , ,a a a b b b w w w . 

IV. SIMULATION RESULTS 

Long distance working condition is chosen for the 
optimization of fuzzy control management strategy, since 
PHEV has the highest requirement for energy 
management strategies. Thus, 15 of CYC_US06_HWY 
are selected as optimization working condition.  
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Let 
0.729 8w  , 1 2 1.496 2c c  , 1 000T  ,

( , ) 0.5 (0.005)r i d rand  , 20N  , ( ) 0.999idC t  ,

0.5iM   and the original value of the particle is 

(2 () 1)d iM rand    . Non-interface ADVISOR2002 is 

operated at Matlab command window. 
The data in Table 1 derives from the imitation of 

original fuzzy control strategy and the one after 
modification. It can be drawn from Table 1 that after 
modification the oil consumption has decreased 0.31L 
every one hundred kilometer (saving 5.14% oil) and CO 
emission also has a reduction of 0.084g/km (decreasing 
9.84%). NOx and HC exhaust lower slightly as well. The 
reason can be expressed in Figure 1 that the engine 
operates where is more concentrated in optimization 
range.  Therefore, the battery charging curve almost keeps 
the same shape during the global optimization, which 
indicates that fuzzy energy management strategy can help 
avoid the forced-discharge effectively. 

 
TABLE 1. THE OPTIMIZED RUNNING EFFECT 

 
Oil 

consumption 
L/100 km 

power-
consumption 

kW • h 

CO 
emission 

g/km 

NOx 
emission 

g/km 

HC 
emission 

g/km 

before 
optimization 

6.03 4 0.853 0.204 0.125 

after 
optimization 

5.72 4 0.769 0.181 0.119 

 

 
Figure 1.The engine operating point. 

 

V. CONCLUSION 

Aiming at the energy management strategy of some 
novel PHEV based on the rules, the control strategy based 
on fuzzy self-adaptation is provided, and a fuzzy 
recognition method is designed to online recognize the 
running working condition of the vehicle; and the optimal 
control parameter, corresponding to the current driving 
working condition of the vehicle, is called and updated in 
real time to be used for optimizing calculation in real time, 
and thus control parameters of the engine and the motor 

are obtained. It could be known by applying 
MATLAB/Simulink to carry out simulation contrastive 
analysis that relative to the fixed parameter energy 
management strategy, the fuzzy self-adaptive energy 
management strategy can effectively reduce the whole 
vehicle equivalent fuel consumption per hundred 
kilometers by above 5%, and thus the feasibility and the 
superiority of the fuzzy self-adaptive energy management 
strategy are verified. 
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