A Games Study of Supply Chain Decision Making with Logistics Capacity Constraints

Xiaofei Cai, Chuantao Wang, Zeyan Wu

School of Mechanical-Electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Xicheng District, Beijing 100044, China

Abstract — In this paper we focus on the two-echelon supply chain composed of one logistics service provider and the logistics service platform business and adopt the Nash game method. We consider: i) the optimum state of the system revenue under a) centralized decision and b) Nash game decision, and ii) the logistics capacity constraints with the choice to a) to investment in production or b) subcontract to junior logistics service subcontractor. The results indicate that the order quantity of the logistics service platform provider under the centralized decision is far greater than it under Nash game decision. The results are verified by numerical examples.

Keywords - Two-echelon logistics service supply chain; Nash game; Centralized decision

I. INTRODUCTION

As one of the most advanced management mode, supply chain management has become a hot research topic in the field of management. With the continuous development of the logistics service industry, scholars at home and abroad has concerned the logistics service supply chain. The logistics service supply chain, as an important branch in the field of service supply chain, has received more and more attention from scholars. The logistics service supply chain is a complex system that is connected to the end customers from the initial logistics service provider during the process of the logistics service purchasing. Logistics service supply chain is essentially a kind of service supply chain based on the cooperation of logistics capability.

Many scholars both at home and abroad have studied the logistics service supply chain. MengLijun et al[1] analyzed the coordination problem of a two-echelon logistics service supply chain with one logistics service integrator and one functional logistics service providers, and developed Stackelberg game coordination with wholesale mechanism and coordination with revenue sharing mechanism. Liu Weihua et al[2] established a basic game theoretic model for quality supervision of cooperation in logistics service supply chain, considering a two-echelon supply chain structure including a logistic service integrator and a supplier, and first presented the mixed strategy Nash equilibrium. Yao Guanxin et al[3] studied the joint coordination of the three-echelon logistics service supply chain that was dominated by capacity subcontractors. Zhang Mi et al[4] established profit models of the integrator, supplier and overall logistics service supply chain and proposed a contracting approach. Jing Youguo et al[5] studied that the revenue sharing contract can achieve the supply chain coordination between the single logistics service integrator and the two functional logistics service providers the revenue sharing coefficient of the supplier satisfies a certain function. Zhu Weiping[6] proposed a coordination model with quantity cooperation alliance in which the random variable of demand is sensitive to price to resolve the coordination of a three-echelon logistics service supply chain that is composed of logistics service integrator. Huang Han[7] analyzed the structure of the logistics service supply chain, explained the cooperation of the supply chain capacity, and finally analyzed the measure to promote the cooperation and coordination of the supply chain capacity. He Chan et al[8] proposed a forecast-commitment contract, composed by a subcontractor with single function an integrator to coordinate the logistics service supply chain. Yuan Xumei et al[9] established the logistics service supply chain quality supervision model when the integrator will be punished and then considered the multi-echelon quality supervision model caused by the competitions between the subcontractors. Through the above documents can be found that existing researches mainly focus on the coordination mechanism of two echelon and three echelon of the logistics service supply chain, the measures to promote cooperation and coordination of the supply chain logistics service capability and the logistics service supply chain multi-echelon cooperation quality supervision mechanism and so on, rarely considering measures which the logistics service provider of the two echelon logistics service supply chain with capacity constraints takes.

On the basis of the existing literatures, the paper will first consider the existence of one logistics service provider and two logistics services platform providers, and the logistics service provider serves the logistics service platform provider. The logistics service provider can choose to investment production or subcontract to junior logistics service subcontractor when its capacity constraints. The optimal state of system revenue under the centralized decision and Nash game decision was discussed, respectively.
II. THE GAME OF TWO LOGISTICS SERVICE PLATFORM PROVIDERS AND ONE LOGISTICS SERVICE PROVIDER UNDER THE LOGISTICS SERVICE PROVIDER CAPACITY CONSTRAINTS

Considering that market exists one logistics service provider \((F)\) and two logistics service providers \((R_1, R_2)\), the logistics service provider serves the logistics service platform provider. The logistics service provider can choose to investment production or subcontract to junior logistics service subcontractor when its capacity constraints. The income of interest subjects under different choices and the proportion of the logistics service supply chain revenue accounted for the optimal state are discussed below.

A. The logistics service provider with capacity constraints choose investment production

When the initial capacity of the logistics service provider constraints and less than the order quantity of the logistics service platform provider, the logistics service provider choose investment production.

1) Model hypothesis

Considering that the two-e chelon logistics service supply chain was composed of two logistics service platform providers \((R_1, R_2)\) and one logistics service provider \((F)\), the logistics service provider serves the logistics service platform provider. Because of the logistics service provider with capacity constraints, that is the initial capacity less than the order quantity of the logistics service platform provider, it needs to choose investment production to satisfy the order quantity of the logistics service platform provider. Customer demand is random, assuming that the distribution function is \(F(x)\), the density function is \(f(x)\), and mean value is \(\mu\).

\[\Pi = \text{expected revenue of the logistics service supply chain under the centralized decision.}\]

\[\Pi_1 = \text{expected revenue of the first logistics service platform provider under the Nash game decision.}\]

\[\Pi_2 = \text{expected revenue of the second logistics service platform provider under the Nash game decision.}\]

\[\Pi_r = \text{the revenue of the logistics service provider under the Nash game decision.}\]

Letter \(p\) is the price that the logistics service platform provider offers to the unit logistics service.

Letter \(g\) is the unit penalty cost of the logistics service platform provider when the demand of the logistics customer can’t be satisfied.

Letter \(c_1\) is the marginal cost of the logistics service platform provider \(R_1\); letter \(c_2\) is the marginal cost of the logistics service platform provider \(R_2\); letter \(c_3\) is the marginal cost of the logistics service provider \(F\).

Letter \(w_1\) is the wholesale price of the unit logistics capability that the logistics service provider offer to the logistics service platform provider \(R_1\); letter \(w_2\) is the wholesale price of the unit logistics capability that the logistics service provider offer to the logistics service platform provider \(R_2\).

Letter \(r_1\) is the unit subsidy price of \(F\) offering to spare capacity when \(R_1\) extra capacity; letter \(r_2\) is the unit subsidy price of \(F\) offering to spare capacity when \(R_2\) excess capacity.

Letter \(Q_1\) is the order quantity of the logistics service platform provider \(R_1\); \(Q_{10}\) is the optimal order quantity of \(R_1\) under the centralized decision; \(Q_1\) is the optimal order quantity of \(R_1\) under the Nash game decision.

Letter \(Q_2\) is the order quantity of the logistics service platform provider \(R_2\); \(Q_{20}\) is the optimal order quantity of \(R_2\) under the centralized decision; \(Q_2\) is the optimal order quantity of \(R_2\) under the Nash game decision.

Letter \(e_1\) is the service level that the logistics service provider \(F\) offers to the logistics service platform provider \(R_1\); letter \(e_{10}\) is the best value of service level that the logistics service provider \(F\) offers to the logistics service platform provider \(R_1\) under the centralized decision; letter \(e_1\) is the best value of service level that the logistics service provider \(F\) offers to the logistics service platform provider \(R_1\) under the Nash game decision.

Letter \(e_2\) is the service level that the logistics service provider \(F\) offers to the logistics service platform provider \(R_2\); letter \(e_{20}\) is the best value of service level that the logistics service provider \(F\) offers to the logistics service platform provider \(R_2\) under the centralized decision; letter \(e_2\) is the best value of service level that the logistics service provider \(F\) offers to the logistics service platform provider \(R_2\) under the Nash game decision.

Letter \(B\) is the fixed cost that the logistics service provider invests in the production.

Letter \(A\) is the initial capacity of the logistics service provider.

Letter \(R\) is the coefficient of variation which cost follows production.

Assuming that the effort cost of the logistics service platform provider is \(c(e) = \frac{1}{2} e^2\), when its service level is \(e\).

2) The logistics service provider which choosing investment production under the centralized decision
Taking the two logistics service supply chain service platform and a logistics service provider as a whole, the system maximum revenue is analyzed so as to calculate the optimal order quantity and the service level of logistics capability. The expected revenue of the logistics service supply chain under the centralized decision model is:

\[
\Pi = \left[x_1(Q,e) + x_2(Q,e) \right] - c_1Q - c_2Q
\]

\[
= \left\{ \begin{array}{ll}
B + R(Q + A) - [g_1(Q,e) + g_2(Q,e)] - c(e) - c(e) \\
(p + g - c - R)Q + (p + g - c - R)Q - (p + g)e_1 \int_0^{c(e)} F(x)dx \\
- (p + g)e_2 \int_0^{c(e)} F(x)dx -(c_1 - R)A - B - g(e_1)e_2 - c(e) - c(e)
\end{array} \right.
\]

The second derivation of the \(\Pi \) about \(Q \) is:

\[
\frac{\partial^2 \Pi}{\partial Q^2} = \frac{-p + g}{e_1} \int \left(\frac{Q}{e_1} \right) - c'(e) , so the second-order derivative is less than zero, and using that the first order derivative is zero can evaluate that the best order quantity is:
\]

\[
Q_{0} = e_1 F^{-1}(p + g - c_1 - R).
\]

The second derivation of the \(\Pi \) about \(e_1 \) is:

\[
\frac{\partial^2 \Pi}{\partial e_1^2} = \frac{Q(p + g)}{e_1^3} \int \left(\frac{Q}{e_1} \right) - c'(e) , so the second-order derivative is less than zero, and using that the first order derivative is zero can evaluate that the optimal value of \(e_1 \) satisfies:
\]

\[
c'(e_1) = \frac{Q(p + g)}{e_1^3} \int \left(\frac{Q}{e_1} \right) - (p + g) \int_0^{c_1} F(x)dx - g = e_{10}.
\]

The same can be obtained respectively below:

The optimal order quantity of the logistics service platform provider \(R_1 \) is \(Q_{20} = e_2 F^{-1}(p + g - c_2 - R) \); and the best service level that the logistics service provider offers to the logistics service platform provider satisfies:

\[
c'(e_2) = \frac{Q(p + g)}{e_2^3} \int \left(\frac{Q}{e_2} \right) - (p + g) \int_0^{c_2} F(x)dx - g = e_{20}.
\]

Making decision based on the principle of maximizing the benefit of the logistics service supply chain under the centralized decision situation, the order quantity of the logistics service platform provider respectively are \(Q_{0} \) and \(Q_{20} \), obtaining that the revenue of the logistics service supply chain reaches to a best state when the service level of the logistics service platform provider are \(e_{10} \) and \(e_{20} \).

3) The logistics service provider which choosing investment production under Nash game decision

The expected revenue of the logistics service platform provider \(R_1 \) is:

\[
\Pi_i = p_1(Q,e) - c_1Q - w_1Q - g_1(Q,e) + r_1I(Q,e)
\]

\[
= (p + g - c_1 - w_1)Q - (p + g - r_1)e^{r_1/0} F(x)dx - ge_1 e
\]

The second derivation of the \(\Pi_i \) about \(Q \) is:

\[
\frac{\partial^2 \Pi_i}{\partial Q^2} = \frac{p + g - r_1}{e_1} \int \left(\frac{Q}{e_1} \right) . For r_1 < p , the second-order derivative is less than zero, and using that the first order derivative is zero can evaluate that the best order quantity is:
\]

\[
Q_{i1} = e_1 F^{-1}(p + g - c_1 - w_1).
\]

The expected revenue of the logistics service platform provider when choosing investment production is:

\[
\Pi_2 = p_2(Q,e) - c_2Q - w_2Q - g_2(Q,e) + r_2I(Q,e)
\]

\[
= (p + g - c_2 - w_2)Q - (p + g - r_2)e^{r_2/0} F(x)dx - ge_2 e
\]

The same can be obtained that the best order quantity is:

\[
Q_{i2} = e_2 F^{-1}(p + g - c_2 - w_2).
\]

The expected revenue of the logistics service platform provider when choosing investment production:

\[
\Pi_f = w_1Q + w_2Q - c_3A - [B + R(Q + Q - A)]
\]

\[
= -r_1I(Q,e) - r_2I(Q,e) - c(e_1) - c(e_2)
\]

\[
= (p + g - c_3 - w_3)Q - (p + g - r_3)e^{r_3/0} F(x)dx - ge_3.
\]

The second derivation of the \(\Pi_f \) about \(Q \) is:

\[
\frac{\partial^2 \Pi_f}{\partial Q^2} = \frac{p + g - r_3}{e_3} \int \left(\frac{Q}{e_3} \right) - c'(e_3) , so the second-order derivative is less than zero. Obviously, \(\Pi_f \) is convex function about \(e_1 \), so there exists the best value. Basing that the first order derivative is zero can evaluate that the best service level that the logistics service provider offers to the logistics service platform provider satisfies:
\]

\[
c'(e_3) = \frac{Q(p + g)}{e_3^3} \int \left(\frac{Q}{e_3} \right) - (p + g) \int_0^{c_3} F(x)dx - c(e_1) - c(e_2).
\]

4) Example analysis

Assuming that the demand of the logistics service obeys \([0, 100]\) uniform distribution, and \(p = 20, g = 1, c_1 = 2, c_3 = 3, c_6 = 6, w_1 = 13, w_2 = 12, r_1 = 3, r_2 = 2, B = 3000, R = 9, A = 600.\)

Under the centralized decision, inputting parameters can be obtained: \(\mu = 50 \). The optimal logistics capability order quantity of the logistics service platform provider \(R_1 \) is \(Q_{10} = 8948.8 \), and the optimal service lever is...
$e_{10} = 188$; while the optimal logistics capability order quantity of the logistics service platform provider R is $Q_{20} = 6143.3$, and the optimal service lever is $e_{20} = 143.2$. So the optimal revenue of the system is $\Pi = 26691.1$.

Under the Nash game decision, the optimal logistics capability order quantity of the logistics service platform provider R is $Q_{1} = 555.6$, and the expected revenue is $\Pi_{1} = 826.3$; while the optimal logistics capability order quantity of the logistics service platform provider R is $Q_{2} = 315.8$, and the expected revenue is $\Pi_{2} = 446.2$; the optimal logistics service value which the logistics service provider offers to R is $e_{1} = 16.7$, and its offering to R_{2} is $e_{2} = 1402.1$.

By comparison, it can be found that the system revenue under the Nash game decision has not reached the optimal state of the system revenue under the centralized decision, that is $\Pi_{1} + \Pi_{2} < \Pi$. Further calculation shows that the system revenue under Nash game decision accounts for 10 per cent of the biggest system revenue under the centralized decision. So the system revenue under the Nash game decision has not reached the best state when the logistics service provider chooses to invest in production.

But the data above also can be seen that the logistics service capacity order quantity of the logistics service platform provider under centralized decision is far more than its under the Nash game decision. Decision-making subject under the centralized decision only pursues the maximization of system revenue, without considering that the maximum system revenue may bring the waste of resources.

B. The logistics service provider with capacity constraints choose to subcontract the insufficient part

When the initial capacity of the logistics service provider constraints and less than the order quantity of the logistics service platform provider, the logistics service provider choose to subcontract the insufficient part to junior subcontractor.

1) Model hypothesis

Considering that the three-echelon logistics service supply chain was composed of two logistics service platform providers (R_1, R_2) , one logistics service provider (F) and one logistics service subcontractor S . Because of the logistics service provider with capacity constraints, that is the initial capacity less than the order quantity of the logistics service platform provider, it needs to choose to subcontract the insufficient part to junior subcontractor to satisfy the order quantity of the logistics service platform provider. Customer demand is random, assuming that the distribution function is $F(x)$, the density function is $f(x)$, and mean value is μ .

Let e_{1} is the marginal cost of the logistics service platform provider R_{1} ; letter e_{2} is the marginal cost of the logistics service platform provider R_{2} ; letter c_{1} is the marginal cost of the logistics service provider F ; letter c_{2} is the marginal cost of the logistics service subcontractor.

Letter w is the wholesale price of the unit logistics capability that the logistics service provider offers to the logistics service platform provider R_{1} ; letter w_{2} is the wholesale price of the unit logistics capability that the logistics service provider offers to the logistics service platform provider R_{2} .

Formula $w = w_{1} + Ke_{1}$ is the wholesale price of the unit logistics capability that the logistics service subcontractor S offers to the logistics service provider, and coefficient K is a constant.

Letter e_{1} is the service level that the logistics service provider F offers to the logistics service platform provider R_{1} ; letter e_{2} is the best value of service level that the logistics service provider F offers to the logistics service platform provider R_{1} under the centralized decision; letter e_{3} is the best value of service level that the logistics service provider F offers to the logistics service platform provider R_{2} under the Nash game decision.

Letter e_{4} is the service level that the logistics service subcontractor S offers to the logistics service provider F .

2) The logistics service provider which choosing to subcontract under the centralized decision

Taking the two logistics service supply chain service platform and a logistics service provider and a logistics service subcontractor as a whole, the system maximum revenue is analyzed. The expected revenue of the logistics service supply chain under the centralized decision model is:

$$\Pi = \int_{0}^{\infty} F(x) dx - (p + g - c_{1} - c_{2})Q_{1} - c_{1}A - c_{2}(Q_{1} + Q_{2} - A)$$

The second derivation of the Π about Q_{1} is

$$\frac{\partial^{2} \Pi}{\partial Q_{1}^{2}} = - \frac{p + g}{e_{1}} f \left(\frac{Q_{1}}{e_{1}} \right) .$$

There is that the second-order derivative is less than zero. Π is convex function about Q_{1} , and using that the first order derivative is zero can evaluate the optimal value of Q_{1} , $Q_{10} = e_{1}F^{-1}(\frac{p + g - c_{1} - c_{2}}{p + g})$.
The second derivation of the Π about e_i is

$$\frac{\partial^2 \Pi}{\partial e_i^2} = \frac{-Q_i((p+g) + e_i)}{\left(\frac{Q_i}{e_i}\right)} - c'(e_i),$$

so the second-order derivative is less than zero, and using that the first order derivative is zero can evaluate that the optimal value of e_i satisfies:

$$c'(e_i) = e_{10} = \frac{Q_i((p+g) + e_i)}{e_i} F\left(\frac{Q_i}{e_i}\right) - (p+g)\int_0^{e_i} F(x)dx - g\mu$$

The same can be obtained respectively below:

The optimal order quantity of the logistics service platform provider R_1 is:

$$Q_{r1} = e_{10} F^{-1}\left(\frac{p+g - c_2 - w_4}{p+g - r_1}\right)$$

The expected revenue of the logistics service platform provider 1 is:

$$\Pi_1 = pS(Q,e) - c_2Q_2 - w_4Q_2 - gL(Q,e) + r_1I_1(Q,e)$$

$$= (p + g - c_2 - w_4)Q_2 - (p + g - r_1)e_i\int_0^{e_i} F(x)dx - ge\mu$$

The second derivation of the Π_1 about Q_2 is:

$$\frac{\partial^2 \Pi_1}{\partial Q_2^2} = \frac{p + g - r_1}{e_i} F\left(\frac{Q_2}{e_i}\right).$$

For $r_1 < p$, the second-order derivative is less than zero, and basing that the first order derivative is zero can evaluate that the best order quantity is:

$$Q_{r1} = e_{10} F^{-1}\left(\frac{p+g - c_2 - w_4}{p+g - r_1}\right).$$

The expected revenue of the logistics service platform provider R_2 is:

$$\Pi_2 = ps(Q,e) - c_2Q_2 - w_4Q_2 - gl(Q,e) + r_1I_1(Q,e)$$

$$= (p + g - c_2 - w_4)Q_2 - (p + g - r_1)e_i\int_0^{e_i} F(x)dx - ge\mu$$

The same can be obtained that the best order quantity is:

$$Q_{r2} = e_{10} F^{-1}\left(\frac{p+g - c_2 - w_4}{p+g - r_2}\right).$$

The expected revenue of the logistics service provider when choosing to subcontract is:

$$\Pi_x = w_1Q_1 + w_2Q_2 - c_2A + r_1I(Q,e) - r_2I_2(Q,e)$$

$$= (w_1 - K_e_3)Q_1 + (w_2 - K_e_3)Q_2 - (c_2 - K_e_3)A$$

$$= -r_2\int_0^{e_i} F(x)dx - r_2e_i\int_0^{e_i} F(x)dx - c(e_i) - (c_2).$$

The second derivation of the Π_x about e_i is:

$$\frac{\partial^2 \Pi_x}{\partial e_i^2} = \frac{-r_2}{e_i} F\left(\frac{Q_2}{e_i}\right) - e_i F\left(\frac{Q_2}{e_i}\right).$$

Making decision only based on the principle of maximizing the expected revenue of the logistics service provider satisfies:

$$c'(e_i) = e_{10} = \frac{Q_2((p+g) + c_2 - w_4)}{e_i} F\left(\frac{Q_2}{e_i}\right) - (p+g)\int_0^{e_i} F(x)dx - g\mu$$

The second derivation of the Π_x about e_i is:

$$\frac{\partial^2 \Pi_x}{\partial e_i^2} = -c'(e_i).$$

The second order derivative is less than zero. Basing that the first order derivative is zero can evaluate that the best service level that the logistics service provider offers to the logistics service platform provider 2 is:

$$e_2 = c'(e_i) = e_{10} F^{-1}\left(\frac{Q_2}{e_i}\right) - r_2\int_0^{e_i} F(x)dx$$

The expected revenue of the logistics service platform provider 2 is:

$$\Pi_2 = ps(Q,e) - c_2Q_2 - w_4Q_2 - gl(Q,e) + r_1I_1(Q,e)$$

$$= (p + g - c_2 - w_4)Q_2 - (p + g - r_1)e_i\int_0^{e_i} F(x)dx - ge\mu$$

The same can be obtained that the best order quantity is:

$$Q_{r2} = e_{10} F^{-1}\left(\frac{p+g - c_2 - w_4}{p+g - r_2}\right).$$

The second derivation of the Π_x about e_i is:

$$\frac{\partial^2 \Pi_x}{\partial e_i^2} = -c'(e_i).$$

The second order derivative is less than zero. Basing that the best value of e_i satisfies:

$$c'(e_i) = K(Q_1 + Q_2 - A).$$

4) Example analysis

Assuming that the demand of the logistics service obeys $[0,100]$ uniform distribution, and $p = 20$, $g = 1$, $c_1 = 2$, $c_2 = 3$, $c_4 = 6$, $c_5 = 5$, $w_1 = 13$, $w_2 = 12$, $w_3 = 11$, $r_1 = 3$, $r_2 = 2$, $A = 600$.

Under the centralized decision, inputting parameters can be obtained: $\mu = 50$. The optimal logistics capability order quantity of the logistics service platform provider R_1 is $Q_{r1} = 27820.6$, and the optimal service lever is $e_{10} = 417.1$; while the optimal logistics capability order quantity of the logistics service platform provider R_2 is $Q_{r2} = 21807.4$, and the optimal service lever is...
So the optimal revenue of the system is \(\Pi = 61306.2 \).

Under the Nash game decision, the optimal logistics capability order quantity of the logistics service platform provider \(R_1 \) is \(Q_1 = 555.6 \), and the expected revenue is \(\Pi_1 = 826.6 \); while the optimal logistics capability order quantity of the logistics service platform provider \(R_2 \) is \(Q_2 = 315.8 \), and the expected revenue is \(\Pi_2 = 446.2 \); the optimal logistics service value which the logistics service provider offers to \(R_1 \) is \(e_{11} = 16.7 \), and its offering to \(R_2 \) is \(e_{21} = 10 \). According to \(e_1 = \max(e_{11}, e_{21}) \), we can obtain \(K = 0.06 \), and the expected revenue is \(\Pi_F = 3587.9 \); while the service level which subcontractor \(S \) offering is \(e_3 = e_{11} = 16.7 \) and the expected revenue is \(\Pi_3 = 1760.4 \).

By comparison, it can be found that the system revenue under the Nash game decision has not reached the optimal state of the system revenue under the centralized decision, that is \(\Pi_1 + \Pi_2 + \Pi_F + \Pi_3 < \Pi \). Further calculation shows that the system revenue under Nash game decision accounts for 10.8 per cent of the biggest system revenue under the centralized decision. So the system revenue under the Nash game decision has not reached the best state when the logistics service provider chooses to invest in production.

III. CONCLUSION

In this paper, we mainly consider that market exists one logistics service provider and two logistics service providers, and the logistics service provider offers the logistics service to two logistics service platform providers. Considering the supply chain decision game with logistics capacity constraints and adopting Nash game method, not only the optimum state of the system revenue under the centralized decision and Nash game decision but also logistics capacity constraints choosing to investment production or subcontract to junior logistics service subcontractor are discussed respectively. The study indicates that the order quantity of the logistics service platform provider under the centralized decision is far greater than it under Nash game decision. This paper only considered the single market circumstance of one logistics service provider, but it has not considered the condition of multiple logistics service providers competing. Multi-stage supply chain decision is also worthy of further discussion.

ACKNOWLEDGMENT

The study was supported by the Scientific Research Project of Beijing Educational Committee (No.SQKM201610016016), and the Science and Technology Project of Beijing (No.Z1611000011160008).

REFERENCES

