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Abstract - This paper presents a study of multiple target localization in Wireless Sensor Networks(WSNs). A localization method 
which combines compressive sensing (CS) theory with the alternate iteration method is proposed to improve the localization 
accuracy. The proposed method firstly divides the location area into discrete grid and transforms multiple target localization 
problem to the CS problem. And then, traditional localization algorithm based on CS is presented to obtain rough position 
estimation according to the received signal strengths (RSSs). Finally, the alternate iteration method is presented to further refine 
the position estimation of target. During alternate iteration process, diamond search is employed to find the positions of targets 
accurately. Simulation results show that the proposed algorithm overcomes the limitation of traditional CS-based localization 
algorithms which can only recover targets in the center of grid, and obtains good multiple target localization performance on 
localization accuracy. 
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I. INTRODUCTION 
 
Target localization based on WSNs is becoming one of 

the hot research topics [1-3]. Wireless sensor localization 
system, a special self-organizing network which fuses 
wireless communication technology, sensor technology and 
distributed computing, can be deployed in hazardous area 
and provides long-term and real-time monitoring and 
convenient processing of localization data. Localization 
technology based on WSNs has been widely used in a variety 
of different fields, such as robot navigation, geographic 
routing, public safety, environmental monitoring and vehicle 
tracking, etc. However, challenges come from the limitations 
of computing ability, communication capacity and energy of 
the network nodes because of a large number of low-cost 
sensors, which put a lot of pressure on WSNs. 

CS theory [4-7] rising in recent years has brought new 
opportunities to the field of target localization in WSNs and 
proves an idea of localization target using the CS theory via 
spatial sparsity [8, 9]. In target localization algorithm based 
on CS, sensor nodes firstly only sample a small number of 
data and complete data compression simultaneously, which 
is superior to a large number of high-speed sampling based 
on Nyquist-Shannon sampling theorem. Hence, it reduces the 
requirement for sensor nodes to simple and cheap. Then, the 
target locations are recovered from sampling data in data 
fusion center, which is not limited by the energy and 
computing ability. By dividing the localization area into 
discrete grid, the limited number of targets localization 
problem can be effectively transformed into sparse target 
localization problem, that provides a certain proof that the 
CS theory can be applied to the WSNs target localization. 

In recent years, numerous research work has been 
conducted by many scholars [10-16]. Zhang et.al [10] strictly 

confirmed the rationality of applying CS theory into 
localization. They divided WSNs monitoring region to N 
discrete grid and modeled the positions of target grids to a N-
dimensional vector with K-sparse. The greedy matching 
pursuit method (GMP) was employed to reconstruct sparse 
signal. Feng et.al [11-13] systematically studied indoor 
localization technology based on RSS and CS, and proposed 
a multiple target localization method based on preprocessing 
of RSS sampling data and l1 norm optimization. When 
targets were not in the center of grid, the center of candidate 
localization result set was selected as the target location, that 
was a rough estimate method and brought estimation error. 
He et.al [14] used CS-based method to reduce the 
communication overhead from M×K to M (M is the number 
of sensor nodes, K is the number of target), and proposed 
iteration backtracking localization algorithm based on CS for 
the targets that were not in the center of grid, which 
improved the accuracy of localization. While the 
performance was significantly affected by noise, and when 
the target was close to the sensor nodes, the localization 
result was not accurate. 

In this paper, a new method of multiple target 
localization based on RSS in WSNs is proposed, which 
combines the CS theory with the alternate iteration method. 
The main idea of the proposed method includes two stages: 
coarse localization stage and fine localization stage. In the 
coarse localization stage, CS theory is presented to collect a 
small amount of data as far as possible, and l1 norm 
optimization was used to recover the rough position of target. 
In fine localization stage, alternate iteration method is used 
to further refine the location of the target. The proposed 
method has good performance when targets are not in the 
center of grid and solves the problem of the mutual 
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interference between the adjacent target, so that improves the 
localization accuracy. 

The rest of this paper is organized as follows. In Section 
II, we describe the system model and signal attenuation 
model of multiple target localization. In Section III, 
traditional CS-based localization algorithm is introduced and 
the proposed method is described in details in Section IV. 
Simulation results are showed, analyzed and compared with 
other algorithms in Section V. Section VI concludes the 
paper. 

 
II. PROBLEM MODELING 

A. System Model 

The system model of CS-based localization is shown in 
Figure 1. Firstly, K targets whose positions are unknown are 
located in a rectangle area, which is evenly divided into a 
discrete grid with N points. At the same time, there are M 
independent sensors whose positions are known in the whole 
area. The goal is to determine the positions of targets. So the 
localization problem is transformed into the problem of 
targets localization based on grid, that is, determine the index 
of grid point for these targets simultaneously, using the 
signal intensity received by sensors. 

Firstly, targets send signals periodically which are 
independent and not synchronized. Sensors need to receive 
signals sent by all the targets in the location area 
periodically. The sensors collect and accumulate the signals 
intensity with periodic T. At the end of a cycle, sensors 
transmit the accumulated signal intensity to the data fusion 
center respectively, which uses CS-based localization 
algorithm to determine the specific positions of targets. 

 

 

 

targets
sensors

 
Figure 1.  System Model 

B. Signal Attenuation Model 

The signal intensity inclines with the increase of distance 
during transmission, due to the influence of environment 
factors such as obstacle blocking, multipath propagation and 
so on. According to the difference between the intensity of 
the sent signal and the received signal, the transmission loss 
of the signal is calculated, which can be converted to the 
distance value by using the theoretical or empirical model. A 
large number of experimental results show that the 

relationship between the average RSS and the signal 
transmission distance can be expressed as [17]: 

 0 010 lg( / )pP P n D D    (1) 

Where P  is the average RSS (dBm), P0 is the RSS in 
reference to the transmission distance D0, np is the coefficient 
for path loss (usually between 2 and 4), and D is the real 
signal transmission distance. 

Thus, the RSS sent by target n and received by sensor m 
is: 

 , 0 , 010 lg( / )m n p m nP P n D D   (2) 

Where Pm,n is the RSS received by sensor m and sent by grid 
target n, Dm,n is Euclidean distance of sensor m and target n 
in the grid: 

 2 2
, ( ) ( )m n m n m nD x x y y     (3) 

Where xm and ym are the coordinates of sensor m, xn and yn 
are the coordinates of target n. 

Finally, the Gauss white noise is superimposed on the 
measurement result. This mathematical model assumes that 
the spatial distribution of the RSS is isotropic, that is, there is 
no difference in RSS in different directions. 

 
 

III. COMPRESSIVE SENSING LOCALIZATION ALGORITHM 
 
Assume that the locations of targets over the grid are 

denoted by:  

 1 1 2[ , , , ]N n NX x x x x  ，L L  (4) 

Where n is the index of the grid point, and when there is a 
target in the n-th grid point, 1nx  ,else, 0nx  . Y are the 
RSS measurements in an M-dimensional space through 
accumulating signals intensity collected by sensors. The 
measurement matrix Φ is conducted through signal intensity 
received by sensors and sent by targets in each grid. 
According to the CS theory, the relationship of the 
measurement matrix M N  , the measured value 1MY   and 
signal 1NX   to be recovered can be described as: 

 1 1=M M N NY X    (5) 

Y can also be seen as linear projection of signal X under 
the measurement matrix Φ. The general process of CS-based 
localization algorithm can be described as: recover signal X 
from the measurement result Y. 

The CS-based localization algorithm mainly consists of 
two stages [4,5]: compressive sampling stage and signal 
reconstruction stage. In compressive sampling stage, only a 
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small number of RSS measurements in an M-dimensional 
space are collected, that are the elements of Y, and Φ is 
constructed. The reconstruction stage is to reconstruction X 
according to the measurement matrix Φ and the 
measurement result Y. 

A. Compressive Sampling 

Φ is an M×N matrix, and elements ,m n  is the RSS of 
sensor m and sent by target n n N （1 ）: 

 , ,    1 ,1m n m nP m M n N       (6) 

The procedure of compressive sampling can be described 
as: 
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Where the compressive measurements Y are obtained by 
multiplying the measurement matrix Φ on signal X, 

(1 )my m M   is the sum of the RSS, the number of sensors 

obeys = ( log( / ))M O K N K  with M N= . X is a N 
dimensional vector with K-sparsity, when a target is in the 
grid n n N （1 ）, 1nx  , otherwise, 0nx  . So, the 
multiple target localization problem is transformed into the 
CS problem that reconstruct N dimension sparse vector based 
on M measurement results. 

There are two ways to generate the measurement matrix 
Φ. One is generating a measurement matrix according to 
signal attenuation model. Another method is obtaining the 
measurement matrix according to the actual test result. In 
this paper, the measurement matrix Φ is generated based on 
the signal attenuation model (2). 

 
B. Signal Reconstruction 

 
Signal reconstruction stage is to reconstruct signal X by 

the measurement result Y and measurement matrix Φ. Φ is 
an M×N matrix, and the number of equations is much smaller 
than the unknown number (dimension of X is much larger 
than the dimension of Y), that is a problem of 
underdetermined linear equations to solve, and the equation 
has no definite solution. Since the signal X is K-sparsity (K is 
much smaller than N), if Φ meets the Restrict Isometry 
Property(RIP) [18], signal X can be well recovered by 
solving the l1 norm minimum optimization problem through 
measurement value Y: 

 1
= arg min ,   . . Y= XestX X s t   (8) 

RIP condition is the sufficient but not necessary 
condition for the exact reconstruction of the signal. Feng et al 
[11-13] proposed a sparse target localization algorithm based 
on Orth. The proposed algorithm preprocess signals by Orth, 
so that the new measurement matrix satisfies the RIP 
property. The signal preprocessing procedure of the sparse 
target localization algorithm based on Orth is listed as 
follows: 

 'Y TY  (9) 

Where 'Y  is the received matrix after pretreatment. Let T be 

a preprocessing operation on Y, T QA , where (⋅)+ is 

pseudo inverse transform of matrix and orth( )T TQ A , 
where A is the measurement matrix Φ in this paper, orth(⋅) is 
standardized orthogonal operation of matrix, and (⋅)T is the 
transpose operator of matrix. Matrix Q is an orthogonal 
transformation matrix, which can satisfy the RIP property, so 
as to improve the performance of signal reconstruction, and 
ultimately improve the accuracy of multiple target 
localization. 

The CS theory indicates that the signal X can be well 
recovered given the compressive sampling 'Y , only via an 
the l1 norm minimum optimization. In this paper, Basis 
Pursuit (BP) is employed for the recovery problem from 
compressive sampling 'Y . 

 
 

IV. THE PROPOSED LOCALIZATION ALGORITHM 
 
In traditional CS-based localization algorithm, 

reconstruction matrix is the same as the measurement matrix 
in signal reconstruction stage. It is noticed that measurement 
matrix is formed in the actual process of sensors’ perception 
of the intensity of the target signal. If targets are in the center 
of grid, reconstruction matrix structured according to (2) is 
equal to actual measurement matrix; while if targets are not 
in the center of grid, reconstruction matrix structured 
according to (2) has deviation compared with the actual 
measurement matrix, which leads to localization error. 
Moreover, the recovered targets may locate in the vicinity of 
real grid because of noise and other environmental factors. 

In order to solve the shortcomings above, we improve the 
algorithm to increase the accuracy of localization. The main 
idea of the proposed method is to combine coarse 
localization and fine localization. In coarse localization 
stage, reconstruction matrix structured according to (2) and 
traditional CS-based localization method is used to obtain the 
initial positions of targets, which are possible range targets 
may exist. In fine localization stage, the alternate iteration 
method is presented to constantly revise reconstruction 
matrix, so that reconstruction matrix is gradually close to the 
actual measurement matrix. The diamond search algorithm is 
presented during the alternate iteration process to search the 
actual positions of targets in grid. 
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Now, we introduce the core idea of alternate iteration 
method. Firstly, select a grid from recovered result of rough 
localization, and a diamond search method is conducted to 
find the next candidate. The point whose reconstruction error 
is minimum in diamond search is chosen as the next 
candidate position of a target. Meanwhile, a correction of 
reconstructed matrix based on the candidate is presented. 
Then, another grid from recovered result is selected to repeat 
the steps above, until all the recovered result are searched. 
By now, one iteration process is finished. Finally, steps 
described above are repeated to adjust the targets positions 
constantly, so that the reconstruction matrix is gradually 
close to the actual measurement matrix, until the number of 
iterations meets the default maximum number of iterations or 
search of small diamond search pattern (SDSP) of all 
recovered result are finished. 

There are two kinds of search patterns in diamond search 
method, one is large diamond search pattern (LDSP) 
composed of nine detection points, the second is small 
diamond search pattern (SDSP) composed of five detection 
points, as shown in figure 2. 

The main idea of diamond search method can be 
described as: if there is a potential target in a grid, search for 
the actual position of the target in the vicinity of the grid, and 
the position with minimum reconstruction error is selected as 
a candidate. In detail, the main idea can be described into 
following steps. Firstly, the search step size g is determined 
according to the localization accuracy requirement, which 
divides a grid into a finer grid. Next, the LDSP is carried out 
to find the next candidate. Reconstructed matrix, recovered 
signal and reconstruction error are calculated respectively in 
corresponding nine positions. One-time search process is 
complete. And then, point in 9 which has the minimum 
reconstruction error is selected as the next LDSP search 
center, and the described search process above is carry out to 
further narrow the scope of the target area. During the search 
process, the LDSP search is repeated, once minimal 
reconstruction error points appear in the position of the 
center point, which means the optimal matching point in the 
region is found. Finally, LDSP search is used for final 
localization in the optimal matching point. The point in 5 
which has the minimum reconstruction error is selected as 
the final target position. 

 

 

 

 

 

（a）LDSP                        （b）SDSP
 

Figure 2.  Diamond Search Mode 
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  between the actual 

reconstruction result and ideal reconstruction result is 
constructed for the reconstruction error. Ideal reconstruction 
result is 0 or 1. En is the deviation between reconstruction 
result element xn and ideal result, which follows [14]:  
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The value of the reconstructed signal is related to the 
probability that the target exists in the grid. The bigger the 
value, the more likely there is a target in the grid. So we only 
concentrate on the signal which is larger than the threshold 
value TH, to reduce the complexity of the algorithm. 

Assuming that the initial position of a target ( ,1) ( ,1)( , )n nX Y  

in grid point n is the center of the grid ( , )Gn GnX Y , the grid 

width is G, and g is the search step size. In - ( 1, 2,3, )i th i  L  
iteration, the position of the target is adjusted to: 

 ( , 1) ( , 1) ( ) ( )( , ) ( , )n i n i n nX Y X Y g grid    
  (11) 

Where grid represents the lattice point for diamond template. 
The lattice point of large diamond search template can be 
described as: 

 



(0, 2) ( 1, 1) (1, 1) ( 2,0) 

          (0,0) (2,0) ( 1,1) (1,1) (0,2)

grid      


  (12) 

The lattice point of small diamond search template can be 
described as: 

  (0, 1) ( 1,0) (0,0) (1,0) (0,1)grid     (13) 

The flow chart of alternate iteration is shown in figure 3. 
The steps are written as follows: 

Step1 Select a target from result of coarse localization, 

initialize target position: ( ,1) ( ,1)( , ) ( , )n n Gn GnX Y X Y . 

Step2 Calculate the reconstruction error 
1

N
nn

E
 . if 

1

N
nn

E ET


  (ET is the tolerance threshold of the error), 

the target is not recovered accurately, go to step 3, on the 
other hand, go to step 1. 
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Initialize:  
number of iteration i=0
number of target n=0

Start

i≥ Maximum initialize  number 
or search complete

All targets are selected

Select a target n，
initialize target position

Run DS search method，
adjust target position

Revise reconstruction matrix

i=i+1

Output localization result

End

n=n+1

N

N
Y

Y

 

Figure 3.  Flow Chart of  Alternate Iteration Method 

Step3 The target position is adjusted to the corresponding 
position according to (11) through the diamond search mode 
respectively, and the reconstruction matrix, the recovered 
signal X and the reconstruction error are calculated. The 
point corresponding to the minimum reconstruction error is 
taken to adjust the target position. It is noticed that if the 
point of minimum reconstruction error in previous iteration 
is in the center position, then SDSP search is used now; if the 
SDSP search is used in previous iteration, then the search of 
the target is completed, the target position is not adjusted. 

Step4 Revise reconstruction matrix according to the 
adjusted position. 

Step5 Select another point, repeat step 1 to step 4, until 
all targets searching is completed. By now, one iteration 
process is finished. 

Step6 Repeat steps 1 to 5, until the number of iterations 
meets the maximum number of iterations or search of small 
diamond search pattern (SDSP) of all recovered result are 
finished. 

Step7 Output the localization result. 
Compared with the traditional CS-based localization 

algorithm, alternate iteration method solves the problem 

when targets are not in the center of grid and recovered 
positions locate in the vicinity of real grid through 
continuous correction to the reconstruction matrix, which 
improve the localization accuracy and reduce the mutual 
interference between targets, but at the increased cost of 
computation. At the same time, the localization accuracy of 
proposed method is determined by the search step. LDSP is 
used first for finding candidate, which avoids searching 
tending to a region at the very start to lead the search process 
trapped in a local minimum. SDSP mode can improve the 
accuracy. In addition, the diamond search method is not 
limited to search in one grid, which is very effective when 
the target positions are recovered in the vicinity of real grid. 

 
V. SIMULATION RESULTS AND ANALYSIS 

 
Simulations in MATLAB are conducted to study and 

analyze the effectiveness and properties of the proposed 
localization approach based on CS theory. Localization 
errors with respect to the number of targets and measurement 
noise are considered. BP is employed for reconstruction. An 
50m×50m area is divided into 14×14 grid. The sensor 
number M is 49, and the maximum iteration number is 6. For 
the employed signal strength and distance model: P0=-
40dBm, np=2, D0=1.  
A. Targets are in the Center of Grid 

In the first simulation, 15 targets whose locations are 
unknown are located on the center of grid randomly. Y are 
obtained by 49 sensors accumulating the RSS from these 15 
targets. The CS-based localization algorithm is used to 
calculate the index of grid point under three different 
situations (absence of noise, SNR=5dB and SNR=20dB). 
The simulation result in figure 4 shows that the CS-based 
localization algorithm can achieve a high level accuracy 
under three situations. With the noise is increased, the 
localization effect is getting poor, but all the targets can be 
located to the real grid or adjacent grid. The localization 
result is worse when the targets gather together, because of 
the mutual influence of the targets. 
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Figure 4.  Localization Result when Targets Are in the Center of Grid 

under Different SNR 
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The curve of the localization error varies with the target 
number under different signal to noise ratio is obtained by 
200 Monte-Carlo experiments. The number of sensors is 
fixed at 49, and the number of target ranges from 1 to 20. 
The localization error is defined as the average Euclidean 
distance between the real positions and the recovered 
positions. Figure 5 shows that localization error increases as 
the number of targets increases. Meanwhile, localization 
error increases as the SNR decreases. Sparsity of the signal 
becomes worse as the increase of number of targets, that is, 
CS-based localization algorithm can obtain higher 
localization accuracy in less number of targets which has 
high degree of sparsity. When target number is fixed at 20, 
the localization error is about 1.2m in noise free case; under 
low noise interference, the localization error reaches about 
1.5 meters; under the strong noise interference, positions can 
be recovered within 1.7m localization error. 
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Figure 5.  Curves of Localization Error Changing with Target Number 

under Different SNR3. 
 

B. Targets are not in the Center of Grid 

 
For the case that targets are not in the center of grid, the 

iteration backtracking algorithm [14], the traditional CS-
based localization algorithm and the proposed algorithm in 
this paper are employed and compared to examine the 
performance of proposed method this paper. SNR is equal to 
25dB, and target number is fixed at 7. Figure 6 shows that 
the proposed algorithm in this paper achieves better accuracy 
than other techniques under the same parameter settings. The 
traditional CS-based localization algorithm can only recover 
the targets accurately which are on the center of grid, and the 
localization error is high when the targets are not in the 
center of grid. The iteration backtracking algorithm can 
obtain good result when targets are not in the center of grid, 
but it only searches target in one grid, which cannot solve the 
case when a target is recovered in adjacent grid of actual 
target in rough localization. The proposed algorithm avoids 
the limitation of searching in one grid, which can search 
target in the vicinity of grid where is likely to exist target. At 
the same time, the position of the target is constantly updated 

in the process of alternate iteration, which reduces the 
interference of the mutual influence on the localization 
precision. 
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Figure 6.  Comparison of Localization Result of Different Localization 

Algorithms. 
 
 

VI. CONCLUSION 
 
In this paper, we have proposed a new method of 

multiple target localization based on CS theory in WSNs, 
which combines the CS theory with the alternate iteration 
method. The proposed method divides localization process 
into two stages: coarse localization stage and fine 
localization stage. Traditional CS-based localization 
algorithm is presented for coarse localization firstly. In fine 
localization stage, alternate iteration method is proposed for 
searching accurate positions, which combined diamond 
search to find the target accurately. The influence of target 
number and SNR on the target localization performance have 
been analyzed by simulation, and the localization 
performance of the traditional CS-based localization 
algorithm, the iteration backtracking algorithm and the 
proposed algorithm have been compared. The simulation 
results have demonstrated that the proposed method 
outperforms the algorithms described above. In the future, 
we will work towards reducing the computational 
complexity. 
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