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Abstract - The speed with which the state parameters can be estimated with acceptable variance is an important issue in any target 
tracking application. In most of these problems, a linear Gaussian substructure is present in the model which is made use of and 
estimation is usually done using Marginalized Particle Filter (MPF) than the most general Particle Filter (PF). An important 
parameter that affects the performance of such filters is the amount of noise present in the measurement which may not remain 
constant, varying between a low value and a high value. The main aim of this paper is to introduce a new filter known as Adaptive 
Marginalized Particle Filter (AMPF) which exploits this property of noise thereby adapting the number of particles whenever 
possible and hence improving the estimation speed. The proposed filter is able to estimate the state parameters much faster than 
the existing filters. The performance of AMPF is compared with that of MPF and PF using a typical target tracking example. From 
the simulation, it can be concluded that AMPF is better than MPF and PF in terms of execution time, without much affecting its 
performance in terms of RMSE. 
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I. INTRODUCTION 
 
In Science, in order to understand how a system works, it 

is important to get access to certain important parameters of 
the system. In most of the situations, these parameters may 
not be directly available and they need to be estimated from 
noisy measurements which may or may not be directly 
related. Dynamic state estimation is the technique by which 
these parameters can be estimated in order to find out the 
nature and properties of the system. Such problems are 
usually solved using Bayesian approach. In many 
applications like collision avoidance, surveillance and 
guidance systems, target tracking is considered as one of the 
important element.  

Target Tracking is a state estimation technique in which 
certain parameters of the system is estimated from a set of 
noisy measurements. There are several parameters that 
determine the performance of the filter such as the quality of 
the dynamic [1], [2] and measurement models, amount of 
noise present in the measurements etc. There are different 
types of models associated with target tracking problems.  It 
is very important that the model that is used must exactly 
resemble the actual system. No matter how good the filter or 
the estimation method is, if the dynamic model does not 
accurately resemble the actual system, the performance of 
the system will not be satisfactory. Other factors that affect 
the performance of the system are how effective the 
parameters can be extracted from the noisy measurement and 
also the quality of the filter that is being used. 

The main advantage of target tracking problems is that it 
can be modeled as state estimation problem. Two models are 
associated with such estimation problems known as the state 
transition model which shows how, different states of the 
target such as position, velocity, acceleration etc. evolve 
with respect to time and the measurement model that gives 
the relation between the states and observations. 

Based on the type of the model and the noise associated 
with the model different types of filter are available. If the 
model is linear and the noise associated with the model is 
Gaussian, then optimal filter like Kalman filter (KF) [3], [4] 
can be made use of. When nonlinearities are associated with 
the model, other versions of KF like Extended Kalman Filter 
can be made use of which are found to be efficient when the 
nonlinearities are small. The other versions of Kalman Filter 
are based on linearization and Gaussian approximation 
techniques. When nonlinearities are large, the performance 
of these techniques are low. In order to address such type of 
situations, another type of state estimation techniques known 
as Sequential Monte Carlo (SMC) methods are used which 
have better performance. SMC methods are also known as 
Particle Filters (PF) [5], [6]. 

A set of weighed samples known as particles are used to 
represent the aposterior probability density function in 
Particle filters. PF will obtain the optimal estimate when the 
distribution is represented using large number of particles. 
The performance of PF is satisfactory if the state variable 
dimension is small and it provides the most general solution. 
However, the performance of PF deteriorates beyond the 
acceptable level as soon as the system dimension increases. 
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There is a special type of PF known as the Gaussian Particle 
Filter [7], [8] which is found to be effective as well as it 
reduces the complexity of PF when the system is nonlinear 
and the noise associated with the model is Gaussian. 

Another problem that affects the performance of PF is 
Degeneracy, in which the weights associated with the 
particles reduce to zero, which makes those particles 
ineffective in the estimation process. The solution to this 
problem is obtained by a technique known as resampling [9], 
[10] in which a new set of particles are created. Resampling 
process of PF is unavoidable in most of the situations, which 
increases the complexity of the filter. 

When the model associated with the system is composed 
of a linear Gaussian substructure there is a possibility of 
improvement in the performance. There is a special type of 
PF known as Marginalized Particle Filter [11], [12], [13] 
which is based on marginalization or Rao-Blackwellization 
process. In this technique, the state vector is partitioned into 
linear and non-linear parts that are estimated as two 
independent processes. The final result is obtained by 

combining the two results. Suppose tx  represent the state 

vector consisting of both linear and non-linear dynamics, 
then in MPF it will be portioned as: 

 
 
  

l
t

t n
t

x
x =

x
 

where l
tx  and n

tx represents linear and non-linear state 

variable vector respectively. In this paper superscript l and n 
are used to denote linear & nonlinear components. Many 
engineering applications such as passive target tracking, 
bearing only tracking, positioning, collision avoidance, 
spiraling Ballistic Missile state estimation etc. [14], [15], 
[16] contains this type of model. MPF [12] is a filter that 
utilizes this structure present in the model to obtain estimates 
having less variance when compared to that of standard PF. 
In MPF, Kalman filter is used to estimate the linear state 
variables and complex PF estimates the non-linear state 
variables. This process makes sure that the dimension of PF 
is small thereby reducing the overall complexity of MPF. 
The main advantages of MPF, when compared to that of 
standard PF, is that MPF has less complexity as well as the 
estimates obtained will be much better than that obtained 
from Particle Filters. 

Noise present in the measurement data is another 
important parameter that determines the performance of 
these filters. In a practical situation, the amount of noise 
present in the measurement may not always be the same. 
Sometime the noise may be very low and other times, it may 
be very high, which makes the filter difficult to operate. 
Filters like MPF and PF are designed to operate with a 
constant number of particles. However, as the performance 
of MPF is better than PF hence there is a possibility to make 
use this aspect of noise present in the measurement. Based 
on the varying nature of measurement noise, a new filter is 

proposed known as the Adaptive Marginalized Particle Filter 
(AMPF) which adapts itself according to the amount of the 
noise present. The proposed filter will be able to perform 
estimation much faster than the existing MPF with an 
acceptable increase in the variance. 

This paper is involved in the development & 
performance analysis of AMPF in the case of models 
containing a Linear-Gaussian substructure. The performance 
of AMPF is much better than MPF and PF, in terms of speed 
of execution and it does not much affect the variance of the 
estimate. In this paper, the analysis of the performance of 
AMPF is done with the assumption that, there is no signal 
propagation delays and both measurement and process noise 
are assumed to be independent of each other. The effect of 
signal propagation delays and dependent noise processes in 
the case of PF is discussed in [17,18] 

Section 2 gives a brief discussion about the related work, 
Section 3 explains the basic idea behind AMPF in the case 
of general linear/nonlinear state space models. An important 
model class is discussed in section 4. To illustrate the 
performance of AMPF, a typical target tracking application 
is considered in section 5, simulation results are given in 
section 6 and section 7 vividly comprehend the conclusions. 

 
II.RELATED WORK 

 
Kalman filter, Particle filter and Marginalized Particle 

Filter are the most popular three algorithms that dominated 
state estimation problems. Of which Kalman filter obtained 
the optimal estimate in the case of linear systems, while 
Particle Filter obtained state estimates in most general linear/ 
nonlinear models. Presence of linear Gaussian substructure 
in the models of state estimation problems have made 
Marginalized Particle Filter a better choice when compared 
to the standard particle filter and Kalman filter where 
nonlinearity cannot be handled.  Complexity of Particle filter 
is an important factor that decides the applicability of the 
algorithm in different state estimation problems. When 
compared to PF, MPF is much less complex and at the same 
time achieve state estimation with reduced variance. The 
complexity analysis MPF and PF from a theoretical point of 
view based on floating point operations is best explained in 
[19]. Noise is another important parameter that determines 
which types of these algorithms is used in state estimation. 
While Kalman filter and Marginalized Particle Filter can 
handle only Gaussian type of noise, Particle filter being a 
standard filter can work well in the presence of both 
Gaussian and Non Gaussian Noise.  Noise Tolerance 
capabilities of Marginalized Particle Filter and Particle Filter 
in the case of Non-Maneuvering trajectory in terms of 
Constant RMSE simulation, Constant Execution Time 
simulation and Different Measurement noise covariance’s is 
well discussed in [20]. In order to understand the effect of 
noise present in the measurement on the performance of 
MPF & PF, a detailed analysis including Different 
Measurement Noise Covariance’s and Effect of 
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Measurement Noise Spike is done in [21]. The noise 
tolerance property of MPF obtained in [20] & [21] is the 
motivation behind the proposed algorithm. 

 
III. ADAPTIVE MARGINALIZED PARTICLE FILTER 

 
The amount of noise present in the observation is an 

important parameter which affects the performance of the 
filter. In practical scenarios it can be noted that the amount 
of noise affecting the observations may not be same at all the 
time, varying between a low value and a high value. The 
main reason behind the reduction of complexity of MPF 
when compared with that of PF is that, the particles in MPF 
have lesser dimension. Thus, if the number of particles in 
MPF can be reduced furthermore, then the complexity can 
be further reduced. As the noise tolerance property of MPF 
is much better than PF, when the amount of noise present in 
the observations is low, the number of particles associated 
with the filter can be reduced thereby reducing the 
complexity. As MPF is more tolerant to noise, the effect of 
reducing the number of particles on the performance will be 
less. The noise tolerant property of MPF [20,21] is the basic 
idea behind AMPF. 

In AMPF, the number of particles associated with the 
filter adapts itself according to the amount of noise present 
in the observations. So whenever there is a scope for 
improvement AMPF will adapt itself thereby producing 
estimates faster without affecting its variance much. AMPF 
has all the advantages of MPF with further reduced 
complexity. AMPF reduces the complexity compared to that 
of MPF and PF by the adapting itself according to the 
amount of noise present in the measurement data. So 
whenever the amount of noise is low, the number of particles 
is reduced which results in the reduction of the complexity. 
This reduction in the number of particles will not affect the 
performance of the filter much, due to the re-initialization 
step of AMPF. 

The detailed algorithm of AMPF is explained by 
considering the general model. Consider the general model 
[12] given below. 

 n n n n n l n n n
t+1 t t t t t t t tx f (x )+ A (x )x + (x )v= G 2a) 
l l n l n l l n l
t+1 t t t t t t t tx = f (x ) + A (x )x + G (x )v  (2b) 

n n l
t t t t t t ty = h (x )+ C (x )x + e  (2c) 

where n l n l
t+1 t+1 t tx , x , x , x are the nonlinear and linear state 

variables for ( 1)tht  and 
tht time interval, ty represents the 

measurement vector at 
tht  time interval, 

n n l n n n l n n
t t t t t t t t t tA (x ), A (x ),G (x ),G (x ),C (x ) represents 

constant matrices, n n l n n
t t t t t tf (x ), f (x ),h (x )  represents 

functions related to nonlinear, linear and measurement 
variables, the process noise and measurement noise  

affecting the system is represented by t tv ,e ,  is assumed to 

be Gaussian white noise  with distribution: 
 

     (3) 
 

                   (4) 

Furthermore, l
0x   represents initial linear state variables that 

is assumed to be Gaussian and tR , tQ  are the variance of 

measurement noise and process noise respectively. 
 

	 	 	 												ሺ5ሻ	

where  ,o ox P  are the mean value and covariance matrix of 

the initial linear state variables.  

The probability density of n
0x  is assumed to be known and 

arbitrary. The linear state variables from ( )p t tx Y is 

marginalized out and Bayes theorem is applied giving: 

 
0

t

i

n n
t i(X = x ) . 

 

, , ) )( ) ( (t t

OPTIMAL KF PF

p p pn n n
t tt

l
t

l
t tX Y X Yx x X Y




Here the probability density ( , )tp t

l n

t X Yx  is analytically 

tractable. That means, the probability density 

( , )tp t

l n

t X Yx can be estimated using Kalman filter and 

Particle Filters are used to estimate ( )tp n

tX Y .  The 

dimension of ( )tp n

tX Y  is less than ( , )tp t

l n

t X Yx  i.e., the 

dimensional requirement of AMPF is less compared to that 
of PF which is the reason behind the improvement in its 
performance. The general formulation of the AMPF can be 
explained as follows. Initialization step of AMPF draws N 
particles from a normal distribution having initial mean and 
covariance values. This step also initializes other variables 

used in the AMPF algorithm like countt , cumulative ( 2

wtc ) 

and average cumulative variance ( 2

wtavgc ) of weights to 

zero. Once initialization step is over, next step is evaluation 
of importance weights which is done whenever a 
measurement is available. Importance weight is an indication 
of how good the measurement data is. That is, if the 
measurement data contains less noise (accurate data) then 
the weights will have large value and spread throughout the 
distributions, i.e. variance of weight will be large and if the 
noise affecting the measurement data is more. which means 
useful information is less, then all the weights will have 
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value closer to zero and hence the variance of importance 
weight will be less. 

Thus the variance of importance weight is an indication 
of the quality of the measurement data, i.e. more the 
importance weight variance better the measurement data. 
This idea is incorporated in the adaptations step of AMPF 
which in turn is done by calculating the cumulative and 
average cumulative variance of importance weight. Average 
cumulative variance of importance weight is evaluated using 
the cumulative variance of weights over different time 
samples. Average cumulative variance of weights is 
evaluated to get a stable indication regarding the quality of 
measurement data. When the average cumulative variance of 
weight is large enough, which is a clear indication that the 
amount of noise affecting the filter is less over the time 
samples, there is a scope for reduction in the number of 
particles, thereby reducing the complexity and hence making 
the filter faster. This improvement in the execution speed 
does not affect the performance as the noise affecting the 
system is less. 

The reduction in the number of particles depends on two 
parameters. First, the value of variance of weights that 
determines the noise affecting the system is less, which is 

defined as the variance threshold value ( 2

wtthresval ). That is, 

if the variance of weights is above the 2

wtthresval  , it shows 

that the noise affecting the system is less and a value less 

than 2

wtthresval , indicates that the noise is more and it is not 

possible to reduce the number of particles without affecting 

the performance of the filter. 2

wtthresval   lies between 0 and 

1. If 2

wtthresval  is  0 then it means that AMPF always works 

with reduced number of particles while a value of 1 indicates 
that it will work with maximum number of particles of the 

system. The 2

wtthresval  depends on the required accuracy of 

the filter, i.e. performance. Variance threshold value is a 
tradeoff between speed and performance. A value closer to 0 
improves speed but affects performance while a value closer 

to 1 improves performance but affects speed. Thus threshold 
value is chosen based on the applications requirement. 

Second parameter that determines the reduction in the 
number of particles is improvement factor. Improvement 
factor indicates the maximum improvement in speed that can 
be achieved. The number of particles will be reduced 
depending upon the improvement factor. Improvement 
factor is an integer value greater than 1. A value of 1 
indicates no reduction in the number of particles. If 
improvement factor is 2, then it indicates the number of 
particles will be reduced by a factor of 2, thereby increasing 
the speed by a factor of 2. i.e. 50 % reduction in the number 
of particles which will result in a maximum of 50 % 
improvement in execution speed. Thus number of particles 
will be varied between 50 % and 100 % of the total number 
of particles depending upon on the amount of noise present 

in the measurement data which is determined by 2

wtthresval . 

Improvement factor depends on the improvement in speed 
required by the application. 

Updated number of particles are calculated based on the 
2

wtthresval and improvement factor. Once the updated number 

of particles is calculated re-initialization step is done creating 
a new pdf with updated number of particles. Re-Initialization 
step has two effects, first it changes the dimension of 
particles to the updated number of particles and secondly, as 
a new distribution is created, the accumulated noise will be 
removed and thereby improving the performance of the filter 
further. 

Once the distribution is re-initialized using the updated 
number of particles, importance weight is again calculated 
and measurement update is done. Resampling is done if the 
particle degeneracy problem occurs. After resampling, 
Kalman filter measurement update is done to update the 
linear state variables. The distribution is propagated by 
performing particle filter and Kalman filter time update 
which will predict the next time sample values of state 
variables. Thus prediction and correction are done in tandem 
to perform estimation process. Summary of AMPF algorithm 
is given below. 

 
Algorithm: Adaptive Marginalized Particle Filter (AMPF) 
 
1. Initialization of the particles, i = 1,2…N, N is the number of particles: 

  

where countt is the number of time samples taken to calculate the average cumulative variance of weight (
2

wtavgc ), 
2

wtc  is the cumulative 

variance of weight. 
 
2. For i=1, 2, …N, evaluate the importance weights 
 

 
( ) ,( )

1( , )i n i
t t t tw p y X Y    

3. Updating the number of particles 



SANIL JAYAMOHAN et al:  A NOVEL ADAPTIVE MARGINALIZED PARTICLE FILTER FOR MIXED LINEAR / . .  

DOI 10.5013/IJSSST.a.19.06.54                                            54.5                            ISSN: 1473-804x online, 1473-8031 print 

3.1  Calculate the cumulative variance of weight, 2

wtc  

 
1

2 2 2

wt wt wtc c  


   

3.2    Calculate the average cumulative variance of weight, 2

wtavgc  

 
2

2 wt

wt

c
avgc

countt


   

3.3    Update N 

 2 2;  
 wt wtNew avgc thresval

N
N if

improvement factor
     

 
2 2;  

1 wt wt

New
avgc thresval

count count

N N
if

t t
 




 
 

   

where 0 < 
2

wtthresval < 1,  improvement factor >1 and NewN  is the updated number of particles. 

3.4    Re-Initialization of particles 

 Do step 3.4 for NewN N   

 Re-Initialization of the particles, i = 1,2… NewN : 

             

3.5            
,( ) ,( ),( ) ,( ) 2

1 1 1 1
ˆ ˆ ˆ ˆ , , , 0, 0.u u

wt

l i n il i n i
New avgc countt t t t t t t tset N N x x x x t          

 where 
,( ) ,( )
1 1

ˆ ˆ,u ul i n i
t t t tx x  represents the updated distribution of linear & non-linear state variables respectively. 

   

4. For i=1,2…..N, evaluate the importance weights ( ) ,( )
1( , )i n i

t t t tw p y X Y   and normalize 

 

( )
( )

( )

1

i
i t

t N
i

t
j

w
w

w





   

5. PF measurement update (resampling): Resample N particles with replacement 
,( ) ,( ) ( )

1Pr( )n i n j i
tt t t tx x w     

6. PF time update and KF: 
6.1   KF measurement update: 

 

1 1

1

1

1
1

ˆ ˆ ˆ( )l l l
t t t tt t t t t t

T
t t tt t t t

T
t t t tt t

T
t t tt t

x x K y h C x

P P K M K

M C P C R

K P C M

 








   

 

 



 

6.2   PF time update (prediction): for i=1, 2, … N, predict new particles: 

  

6.3   KF time update: 



SANIL JAYAMOHAN et al:  A NOVEL ADAPTIVE MARGINALIZED PARTICLE FILTER FOR MIXED LINEAR / . .  

DOI 10.5013/IJSSST.a.19.06.54                                            54.6                            ISSN: 1473-804x online, 1473-8031 print 

 

ln 1
1

1

1

1

ln 1

ˆ ˆ ˆ( ) ( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

l l l l T n n l n l
t t t t t t t t t tt t t t t t

l l T l l l T T
t t t t t t t tt t t t

n n T n n n T
t t t t t tt t

l n T
t t t tt t

n n
t t t

l l l T n n n
t t t t t t t

l l
t t

x A x G Q G Q z f L z A x

P A P A G Q G L N L

N A P A G Q G

L A P A N

where

z x f

A A G Q G Q A

Q Q












    

  

 



 

 

 ln 1 ln( ) ( )T n
t t tQ Q Q

  

7. Set time, 1t t   and repeat from step 2. 
 

Note: If the cross-covariance ln
tQ  between the two noise 

sources n  and l
t tv v  is zero , then  and l l l l

t t t tA A Q Q  . 

Variance threshold value and improvement factor are the 
two parameters that are chosen based on the application and 
maximum amount of noise that can affect the measurement 
in the system. Improvement factor of 2 indicates 50% 
reduction in the number of particles which is taken as a 
limiting case in the simulation as further reduction in the 
number of particles increases the chance of filter getting 
diverged. Threshold value determines the quality of the 
measurement data which is used to determine whether there 
is a scope for improvement or not. Typical value of variance 
threshold value used in simulation is 0.04. 
 

IV. IMPORTANT MODEL CLASS 
 

The model given by (2) is the general model used in state 
estimation problems. Sometimes there will be a situation 
when models will have state equations which are linear and a 
nonlinear measurement equation. This is a special case of the 
general model which is very important as it is very common 
in several state estimation problems such as positioning, 
target tracking and collision avoidance. Important special 
case model [12] is given below: 

t
n
n,t

n n n l n n
t+1 t l, t t tx x + A x + A v= G a
l l n l l l l
t+1 n,t t l,t t t tx = A x + A x + G v b

               n
t t t ty = h (x ) + + e c

where  represents the process 

noise, ,n l
t tQ Q are the covariance of nonlinear and linear 

component of process noise, ll
l,t n,

n n
l tt t n,, AA ,A A , , ,  denotes 

constant matrices related to linear and nonlinear variables. 

te  is assumed to be known with arbitrary distribution. The 

measurement equation (7c) given in the above model does 
not have any information regarding the linear state variable 

l
tx  .The detailed description about the important special 

model is given in [12]. 

 
V. TYPICAL TARGET TRACKING EXAMPLE 

 
A typical target tracking example [19-21] is considered 

in this section in order to check the performance of AMPF. 
In this example, a 2D model having constant acceleration is 
used to estimate the position and velocity of an aircraft. Here 
it is assumed that the height of the aircraft is constant i.e., a 
level flight is considered. Also it is assumed that the range 
and bearing angle are the two measurements applied to the 
filter.  It can be seen from the dynamic state space model of 
the aircraft that, the model consists of linear state equations 
and nonlinear measurement equation. 

The dynamic state space model of the target tracking 
example is given below; the height component is discarded 
as a level flight is considered. 

2
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y

x
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r

p

p


 
  

      
       

t ty e    (8b) 

where ( , , , , , )T
x y x y x yp p v v a atx   i.e. position, 

velocity, acceleration is the state vector, r is the range and    
is the bearing angle. For simulation purpose the sampling 

time is assumed to be 1 sec, i.e. T=1 sec. Here t te ,v  

represents measurement noise and process noise and are 
assumed to be Gaussian having zero mean and covariance 

 cov 100,0.01diag R e    (9a) 

and  
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  (100,100)cov diag n nQ v   (9b) 

  (2,3,0.09,0.09)cov diag l lQ v    (9c) 

 
respectively. 

Here the two position states [ , ]x yp p are nonlinear and 

the remaining states [ , , , ]x y x yv v a a  are linear. Therefore, 

by marginalizing out the linear state variables, 

,

x

x y

y x

y

v

p v

p a

a

 
           
 

ln
t tx x     (10) 

The model given by (8) is similar to the important model 

mentioned in section 3 with the terms l n
n,t tA x zero. 

Comparing with the model, 

          
2 2 4 4;X X n l

t tG I G I                  

1 0 1 0 0.5 0
;

0 1 0 1 0 0.5

   
    
   

n n
n,t l,tA A     

4 2

1 0 1 0

0 1 0 1
;

0 0 1 0

0 0 0 1

X

 
 
  
 
 
 

l l
n,t l,tA A0

    (11) 

AMPF given in section 3 is applied to this target tracking 
model. 
 

VI. SIMULATION RESULTS 
 

In order to vividly comprehend the benefits of AMPF 
when compared to that of MPF let us consider an aircraft 
target tracking example whose state space model is given by 
(8). A stable estimate of the state variables is obtained using 
Monte Carlo (MC) simulations. With an aim to compare the 
performance of AMPF the same aircraft target tracking 
example is applied to both MPF and PF, and simultaneously 
the performance of all the three filters are compared. For 
simulation purpose, an aircraft trajectory (assuming level 
flight) and corresponding bearing angle and range 
observations have been generated using (8a) and (8b) for 600 
samples of time. Table 1 gives the parameters used for 
generating the model, trajectory unless specified. 

Two types of aircraft trajectories are generated using the 
model, one in which aircraft follows a straight line path and 
other in which the aircraft is performing some Maneuvering. 
AMPF, MPF and PF are applied to both aircraft trajectory 
and its performance is analyzed. 

The performance of the filters is compared using Root 
mean square error (RMSE), which is given by 

1
2

2

2
1 1

1 1 ˆ( )
N

MCNN

MCt j
N

 

 
 

 
  true (j)

t tx x    (12) 

 
TABLE I. PARAMETER VALUES 

Parameter Values 

Number of Monte Carlo Simulations 200 

Initial Position , ][ x yp p in m [-1000*10,1000*5] 

Initial Velocity [ , ]x yv v  (in m s ) 56 

Acceleration [ , ]x ya a  (in 
2m s )  0.4 

Initial state covariance Po  
diag(0.01,0.01,0.01,0.01
,0.01,0.01) 

Measurement Noise Covariance R diag(100,0.01) 

Process Noise Covariance Q n 
(nonlinear) 

diag(200,200) 

Process Noise Covariance Q l  
(linear) 

diag(2,3,0.2,0.2) 

 

where true
tx  represents the true location at time t, ˆ (j)

tx  gives 

the estimated location at time t in the thj  simulation, N is 

the number of samples and  MCN  represents the number of 

MC simulations used. MC simulations are used to obtain a 
stable estimate. To get a clear picture about the performance 
of the filter two types of analyses are done. 
 
1. Execution Time Analysis. 
2. Performance Analysis.  
 

From the above two analyses, it can be concluded that 
AMPF being an advanced version of MPF is better than 
MPF and PF in terms of speed of execution.  This 
improvement in the execution speed is achieved without 
much affecting the filter performance mainly due to the 
noise tolerance property of MPF [20,21] which is the basic 
idea behind AMPF. Execution time and performance of the 
filter will be evaluated in terms of time improvement factor 
and performance index respectively. The results are obtained 
using 1000 (Non-Maneuvering) & 5000 (Maneuvering) 
particles for 600-time samples. In the simulations execution 
time is mentioned in seconds (s), RMSE of position in 

meters (m) and RMSE of Velocities in m s   .Fig. 1(a) and 

Fig. 1(b) represents the non - Maneuvering trajectory and 
Maneuvering trajectory where the aircraft is assumed 
initially at coordinates [-1000*10, 1000*5] traveling with 

constant acceleration of 0.4 2m s . 
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Figure 1. Different target trajectories, black line (solid line), observer at 
origin shown as ‘*’. (a) True Non Maneuvering Target Trajectory, (b) True 

Maneuvering Target Trajectory. 
 

A. Execution Time Analysis of AMPF 
 

The main aim of AMPF is to reduce the execution time 
when compared to existing filters. From this section, it will 
be concluded that AMPF is able to find the estimate much 
faster than other filters without much affecting the 
performance of the filter. 

 
A1. Execution Time of AMPF with respect to different 
MC simulations 
 
The execution time of AMPF is compared with that of 

MPF and PF in the case of both Non-Maneuvering & 
Maneuvering Trajectory. Here the execution time is plotted 
for different Monte Carlo simulations and from the 
simulation, it will be clear that AMPF is able to find the 
estimates much faster than MPF and PF. 

In Fig. 2, the execution time of AMPF (blue line / line 
with diamond shape) is much less when compared to that of 
MPF (red line / line with square shape) and that of PF 
(black line / line with circle shape) which indicates that 
AMPF is able to find the estimates much faster when 
compared to other filters. Similar results are obtained in the 
case of both Non-Maneuvering and Maneuvering 
Trajectory. The average execution time of AMPF, MPF & 
PF for 600-time samples are given below in table II & III. 
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Figure 2. Execution time of AMPF (blue / diamond shape), MPF (Red / 
Square shape) & PF (Black / Circle shape) for different MC Simulations. 
(a) Execution time of filters for different MC Simulations in the case of 
Non- Maneuvering Trajectory, (b) Execution time of filters for different 

MC Simulations in the case of Maneuvering Trajectory. 
 

From Table II & III it is clear that the execution time of 
AMPF is less compared to that of MPF and PF without 
affecting the performance of the filter. Here when PF took 
0.3514 (Non-Maneuvering), 1.1239 (Maneuvering) sec to 
complete estimation, MPF took 0.2222, 1.0361 sec and the 
proposed method was able to estimate the parameter much 
faster in 0.1567 sec in the case of Non-Maneuvering and 
0.5999 sec in the case of Maneuvering trajectory thereby 
introducing a considerable reduction in the execution time. 
This reduction in the execution is achieved without affecting 
the performance of the filter much. 
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TABLE II. SIMULATION RESULT OF PF, MPF, AMPF IN THE CASE 

OF NON-MANEUVERING TRAJECTORY WITH 1000 PARTICLES 

Parameter PF MPF AMPF 

Execution Time 0.3514 0.2222 0.1567 

RMSE X Position 25.9988 23.3155 24.1375 

RMSE Y Position 27.5476 25.8006 26.0678 

RMSE X Velocity 3.7726 3.0209 3.2242 

RMSE Y Velocity 3.9646 3.1396 3.4406 

 
TABLE III. SIMULATION RESULT OF PF, MPF, AMPF IN THE CASE 

OF MANEUVERING TRAJECTORY WITH 5000 PARTICLES 

Parameter PF MPF AMPF 

Execution Time 1.1239 1.0361 0.5999 

RMSE X Position 13.4459 13.2284 13.3823 

RMSE Y Position 10.6721 10.4522 10.6264 

RMSE X Velocity 3.4284 3.3178 3.4078 

RMSE Y Velocity 3.2449 3.1391 3.2080 

 

A2. Comparison of Execution Time of AMPF in terms of 
Time Improvement factor. 

 
A Little more insight about the execution time of AMPF 

is obtained by introducing a new parameter known as Time 
Improvement Factor. Time Improvement Factor (TIF) is 
defined as the ratio of the difference between execution time 
of reference filter and AMPF to the execution time of 
reference filter. Reference filter can be either PF or MPF. 
The value of TIF depends mainly on two factors. First, it 
depends on the improvement factor of AMPF, and secondly, 
the variation of the amount of noise present in the 
measurements. 
 

1 AMPF
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      
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                                                                 (c)                                                                                                    (d) 

Figure 3. Percentage Time Improvement factor in terms of number of particles. (a) Percentage TIF with respect to PF as reference filter in the case of Non-
Maneuvering Trajectory, (b) Percentage TIF with respect to MPF as reference filter in the case of Non-Maneuvering Trajectory, (c) Percentage TIF with 

respect to PF as reference filter in the case of Maneuvering Trajectory, (d) Percentage TIF with respect to MPF as reference filter in the case of Maneuvering 
Trajectory. 
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Time Improvement factor of 0 indicates that execution 
time of AMPF is same as that of Reference filter while Time 
improvement factor closer to 1, which is desirable indicates 
that AMPF is faster than Reference filter. Higher the Time 
Improvement Factor better the filter performance. Time 
improvement factor can also be expressed in percentage as 
given below. 

1  100 %AMPF

ReferenceFilter

ExecutionTime
TIF X

ExecutionTime

 
   
 

   

TABLE IV. COMPARISON OF PERFORMANCE OF AMPF WITH 

RESPECT TO PF AND MPF IN TERMS OF PERCENTAGE TIF. 

Parameter 

Non-Maneuvering 
Trajectory 

Maneuvering 
Trajectory 

PF MPF PF MPF 

TIF 55 28 49 41 

 
Percentage Time Improvement factor indicates how 

much faster the proposed filter is when compared to the 
reference filter. From Table IV, Percentage Time 
improvement factor obtained with PF as reference filter is 
55% in the case of Non-Maneuvering Trajectory which 
indicates that the proposed filter is 55% faster than PF. In the 
same situation with MPF as reference filter Percentage Time 
Improvement factor is 28%, which indicates that proposed 
filter is 28% faster than MPF. A similar result is obtained in 
the case of Maneuvering Trajectory. Thus it is clear that 
proposed filter is 25 – 55 % faster than the existing filter for 
the typical target tracking application. 

 The effect of total number of particles on Time 
improvement factor is analyzed in Fig.3. It can be seen from 
simulation that, as the total number of particles of the system 
is increased, the time improvement factor also increases and 
reaches a maximum value which is determined by the 
Improvement factor given in step 3 of AMPF algorithm 
given in section 2. 

From Fig. 3, it can be concluded that if the number of 
particles of the system is more, then the time improvement 
factor of adaptive marginalized particles filter is more 
thereby resulting in considerable improvement in the 
execution time when compared to other filters. 
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Figure 4. Tracking of Non- Maneuvering trajectory by AMPF (Blue / Solid 

line). 
 

B. Performance Analysis of Adaptive Marginalized Particle 
Filter. 
 

In section VI.A, it was concluded that AMPF was able to 
perform estimation much faster than existing filters. Here the 
performance of the AMPF is compared with that of MPF and 
PF. The analysis will be done in the case of both Non-
Maneuvering Trajectory and Maneuvering Trajectory as 
shown in Fig. 1. The range and the bearing angle 
corresponding to the trajectory are calculated and both are 
applied as measurement inputs to all the three filters and 
their performance are compared in terms of execution time 
and RMSE value of X, Y position and velocity. 
 
B1. Performance Analysis of AMPF in the case of Non-
Maneuvering Trajectory. 
 

The Non-Maneuvering Trajectory is given in Fig. 1 (a) 
shows an aircraft traveling along a straight line which is 
shown by black line (solid line) and the observer is assumed 
to be at the origin and is represented by a star symbol (red 
star). The calculated range and bearing angle are applied as 
an input to the filter. 

The comparison between the performance of AMPF, 
MPF and PF is given in Table 5. The simulation is done with 
1000 particles and 200 Monte Carlo simulations are done. 
 
TABLE V. SIMULATION RESULT OF PF, MPF, AMPF IN THE CASE 

OF NON-MANEUVERING TRAJECTORY WITH 1000 PARTICLES 

Parameter PF MPF AMPF 

Execution Time 0.3380 0.2127 0.1515 

RMSE X Position 25.3804 23.5876 24.6464 

RMSE Y Position 27.4016 25.5923 26.6510 

RMSE X Velocity 3.7457 2.9731 3.2763 

RMSE Y Velocity 3.9628 3.1920 3.5124 
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                                                                   (c)                                                                                                                       (d) 
Figure 5. RMSE in X, Y position and velocity coordinates in the case of Non-Maneuvering Trajectory between 20th and 50th time samples of AMPF (blue / 
diamond shape), MPF (Red / Square shape) & PF (Black / Circle shape). (a) RMSE in X position coordinate, (b) RMSE in Y position coordinate, (c) RMSE 

in X velocity coordinate, (d) RMSE in Y velocity coordinate.. 

 
From table V, it is identified that the AMPF is able to 

perform the estimation process much faster than the MPF 
and PF and also RMSE of AMPF is comparable with that 
MPF and PF. Fig 4 given below shows the performance of 
AMPF for 600-time samples. The figure shows the plot 
between X position and Y position. Black line (dashed line) 
shows the actual trajectory, Blue line (solid line) shows the 
performance of AMPF. From the figure it is clear that 
AMPF is able to track the trajectory. Black line (dashed line) 
which shows the actual trajectory is not visible in Fig 4 as 
AMPF perfectly tracks the actual trajectory. In order to get a 
clear picture about the filter performance, the RMSE of X 
and Y Position with respect to time samples is plotted in the 
case of three filters. 

From Fig. 5, it is evident that there is not much increase 
in root mean square error introduced in X, Y position and 
velocity parameters. In the figure blue line (line with 
diamond shape) denotes AMPF, red line (line with square 
shape) indicates MPF and PF is represented by black line 
(line with circle shape). Thus it can be concluded from 
figures and tables that AMPF is able to track the trajectory 
without much increase in RMSE at the same time AMPF is 
able to track much faster than MPF and PF. 
 
B2. Performance Analysis of AMPF in the case of 
Maneuvering Trajectory. 
 

In order get a vivid picture about the performance of 
AMPF, the filter is applied in a scenario where an aircraft is 
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assumed to make a number of maneuverings which is more 
relevant than Non-Maneuvering trajectory as in most of the 
practical situations, aircrafts will be going through such 
movements. Such a Maneuvering trajectory is given in Fig. 1 
(b). Similar to the Non- Maneuvering case the range and 
bearing angle measurements are calculated and applied to 
these filters. 

Table VI shows the performance of the filter in the case 
of Maneuvering Trajectory with 5000 particles and from the 
table, it can be seen that similar to the Non-Maneuvering 
case AMPF is able to perform the estimation process much 
faster than other two filters without causing much increase in 
the RMSE value. 
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Figure 6. Tracking of  Maneuvering trajectory by AMPF (Blue / Solid 

line). 
 

TABLE VI. SIMULATION RESULT OF PF, MPF, AMPF IN THE CASE 

OF MANEUVERING TRAJECTORY WITH 5000 PARTICLES 

Parameter PF MPF AMPF 
Execution Time 1.0481 0.9528 0.5546 

RMSE X Position 13.4770 13.4309 13.4027 

RMSE Y Position 10.6557 10.4314 10.5649 

RMSE X Velocity 3.4289 3.3150 3.4248 

RMSE Y Velocity 3.2468 3.1335 3.1898 

 
Fig 6. Shows the tracking of an aircraft in the case of 

Maneuvering trajectory by AMPF. In the figure, the actual 
trajectory is shown as a black line (dashed line) and the path 
tracked by AMPF is shown by blue line (solid line). It is 
clear from the figure that AMPF is able to track the 
trajectory. 

Fig. 7, shows the RMSE in X, Y position and velocity 
parameter in the case of Maneuvering trajectory. From the 
figure, it is can be concluded that the RMSE in the case of 
AMPF is not increased much which is similar to the result 
obtained in the case of Non-Maneuvering Trajectory. Here 
also it can be seen that the filter is able to find the estimates 
much faster than the existing filters. 

 
B3. Comparison of performance of AMPF in terms of 
Performance index. 
 

In order to get more insight into the performance of 
AMPF, a new parameter known as performance index is 
defined. Performance index (PI) is defined as the ratio of the 
difference between RMSE of reference filter and that of 
AMPF to the RMSE of reference filter (PF / MPF). 
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Figure 7. Root mean square error in X, Y position and velocity coordinates in the case of Maneuvering Trajectory between 20th and 50th time samples of 
AMPF (blue / diamond shape), MPF (Red / Square shape) & PF (Black / Circle shape). (a) RMSE in X position coordinate, (b) RMSE in Y position 

coordinate, (c) RMSE in X velocity coordinate, (d) RMSE in Y velocity coordinate. 

 

ReferenceFilter

1 AMPFRMSE
PI

RMSE
      

A value of performance index ‘0’ indicates that both 
AMPF and reference filter have the same amount of RMSE 
and a value ‘1’ indicates that RMSE of AMPF is zero. A 
negative value of performance index indicates that RMSE of 
AMPF is greater than that of reference filter. The real 
advantage of using PI is that it clearly shows how much 
close the performance of AMPF is with respect to the 
reference filter. 

By calculating the Performance index, a clear picture 
about the performance of AMPF is obtained compared to 
existing filters. Performance index with respect to PF and 
MPF is simulated in the case of both Non-Maneuvering 
Trajectory and Maneuvering Trajectory. 

Table 7 show the Performance Index with respect to PF 
& MPF of X Position Coordinate and Y Position Coordinate. 
From table 7, it can be noted that Performance Index with 
respect to PF of X position is 0.06335 and with MPF is -
0.05268 in the case of Non-Maneuvering Trajectory. A 
negative Performance Index with respect to MPF indicates 
that the RMSE of AMPF is larger than that of the RMSE 
introduced in the case of MPF. 
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TABLE VII. COMPARISON OF PERFORMANCE OF AMPF WITH 

RESPECT TO PF AND MPF IN TERMS OF PI.. 

Parameter 

Non-Maneuvering 
Trajectory 

Maneuvering 
Trajectory 

PF MPF PF MPF 

PI (X Position) 0.0633 -0.05268 0.360 -1.09 

PI (Y Position) 0.0507 -0.04591 0.386 -1.495 

 
Also, a positive PI with respect to PF indicates that 

RMSE of AMPF is lesser than that of PF. Similar results can 
be noticed in the case of PI of Y position. In the case of 
Maneuvering trajectory also, a similar behaviour is obtained. 
It can be also interpreted that the RMSE of AMPF lies in 
between that of MPF and PF. Thus using performance index, 
it can be concluded that the error introduced in AMPF, due 
to the reduction in the number of particles is only slightly 
more than the existing MPF. This result is similar to the one 
obtained in section 5.2.1 and 5.2.2. 

Execution Time Analysis and Performance Analysis are 
performed to evaluate the performance of the proposed 
Adaptive Marginalized Particle Filter. These analyses are 
done in the case of both Non-Maneuvering and Maneuvering 
trajectory. Filter performance is also expressed in terms of 
performance index and time improvement factor. From the 
simulation, it can be concluded that the proposed filter is 
able to find the estimates much faster than existing filters 
without affecting the performance of the filter much. The 
amount of improvement in the execution speed depends on 
the amount of noise present in the measurement at different 
instant of time samples. This is in line with the expected 
result as proposed in the case of AMPF. Thus the proposed 
AMPF is better than MPF and PF in terms of speed of 
execution which find immense potential in applications like 
missile tracking, target tracking where execution speed is an 
important criterion. 
 

VII. CONCLUSION 
 

In this paper, a new filter known as Adaptive 
Marginalized Particle Filter is proposed. Various simulation 
scenarios are considered in order to check the performance 
of the proposed filter. The performance of AMPF is 
compared with that of existing filters like, MPF and the 
general PF. From the simulation, it is clear that the proposed 
filter is able to find the estimates much faster than the other 
two filters. Also, it was noted that this improvement in 
execution time is obtained without much affecting the 
performance of the filter. Thus it can be concluded that 
Adaptive Marginalized Particle Filter has a faster mode of 
operations than Marginalized Particle Filter and Particle 
Filter which is very useful in missile tracking, aircraft 
tracking, collision avoidance etc. 
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