
KHEMISARA KULMART et al: A NUMERICAL MODEL FOR SALINITY INTRUSION MEASUREMENT AND . . 

DOI 10.5013/IJSSST.a.21.01.01                                            1.1                              ISSN: 1473-804x online, 1473-8031 print 

A Numerical Model for Salinity Intrusion Measurement and Control Based on 
MacCormack Finite Difference Method and Cubic Spline Interpolation 

 
Khemisara Kulmart 1 and Nopparat Pochai 1,2  

 
1 Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520 

Thailand. 
2 Centre of Excellence in Mathematics CHE, Si Ayutthaya Rd. Bangkok 10400Thailand. 

 
Abstract - The purpose of this research was to develop a numerical model of one-dimensional advection-diffusion equation for 
estimating salinity level in Lower Chao Phraya River, Thailand. The main numerical technique was MacCormack finite-difference 
scheme with initial and boundary conditions approximated by cubic spline interpolation. The estimates matched satisfactorily with 
actual measurement data from several salinity monitoring stations along the river. The final model was first used by Thailand’s 
Metropolitan Waterworks Authority for planning salinity control in 2018. 
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I. INTRODUCTION 
 

Freshwater is one of the most important natural 
resources for the livelihood of humans, animals, and plants. 
In Thailand, tap water produced from freshwater along 
Chao Phraya River is consumed by millions of people in 
Bangkok metropolitan. Good quality freshwater is also 
depended on by agricultural and manufacturing industries 
situated near the river. Recently, seawater intrusion from the 
estuary into lower Chao Phraya River has become more 
aggressive, creating problems with tap water production and 
low water quality for said industries.  To counter the 
intrusion, freshwater needed to be released from an upriver 
dam. However, during dry season, the amount of freshwater 
held by the dam is low, and there is a need to strictly control 
the amount released for countering the intrusion. In 
planning out a good control strategy, fast and accurate 
salinity level readings are necessary, which may not be 
readily and timely supplied by various salinity monitoring 

stations along the river. Therefore, a numerical model that 
can accurately and immediately provide good salinity level 
estimates at key points along the river is in dire need. Our 
work is an attempt to solve this issue. 

Chao Phraya River is the major river in the central 
region of Thailand starting from a confluence of four rivers 
at Pak Nam Pho (14.23848 ,100.575364N E  ), flowing 
pass several provinces including Bangkok and down to the 
estuary (13.58 15.67 ,100.10 101.00N E     ) to the Gulf 
of Thailand for the total distance of 300 kilometers. 

Several salinity monitoring stations have been erected 
along the river. Samlae pumping station that acts as a 
salinity monitoring station and a pumping station for tap 
water production for Bangkok Metropolitan is 96 km 
upriver from the estuary (see Figure 1). The actual 
measurement data for our reference was taken from this 
station [1].   

 

 
Figure 1. Lower Chao Phraya River and levels of seawater intrusion along the river [2] 
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Recently, the use of mathematical models to calculate 
natural phenomena has become more popular due to in-
depth findings of natural phenomena processes and 
advancement in computer hardware and software. Solutions 
of complex system of equations representing natural 
processes can be approximated quickly with new numerical 
techniques. Many researchers have used water-quality 
models to approximate salinity level in rivers. Intaboot and 
Taesombat [3] investigated salinity intrusion in the area of 
the Tha Chin estuarine. They used a mathematical model 
called “MIKE-HD/AD” to predict that the maximum 
distance of salinity intrusion would reach 55 kilometers 
further up the river than it was in 2015 and provided a 
suitable freshwater flow rate to counter the intrusion of 
about 20-40 cubic meters per second. A higher flow rate 
would not help pushing salinity out any better. As another 
example, A. Owen [4] has reported a development of 
numerical modeling of salinity’s advective transport in 
coastal areas, associated with artificial diffusion using 
upstream differences. This particular model can be used 
small grids of two to four kilometers for tidal problems, 
while larger grids are used for non-tidal problems. Ralston 
et al. [5] applied Hansen and Rattray equations to simulate 
the distribution of salinity and vertical exchange flow along 
the estuary of the Hudson River. N. Pochai [6] used an 
improved finite difference scheme to solve an advection-
dispersion-reaction equation (ADRE) that takes into account 
the effect of stream’s nonuniform water flow. Two 
mathematical models, a hydrodynamic model and an 
advection-dispersion-reaction model were used to simulate 
pollution from sewage effluent. Li and Jackson [7] reported 
another case of stream water quality modeling using simple 
modifications of MacCormack and Saulyev schemes to 
solve dynamic one-dimensional advection–dispersion–
reaction equations (ADRE). The prediction accuracy was 
better than the original schemes without major loss of 
computational efficiency. 

Several researchers have used Cubic Spline interpolation 
technique to approximate data related to salinity intrusion 
and level in rivers. R.M. Corless [8] detailed a connection 
between cubic splines and a popular compact finite 
difference formula, claiming that a compact approach with 
nonuniform meshes provides some advantages while the 
approach with uniforms meshes helps treat edge effects. 
Ariffin and Karim [9] used two types of cubic spline 
functions—cubic spline interpolation with 2C continuity 

and Piecewise Cubic Hermite Spline (PCHIP) with 1C
continuity for interpolating data. Both cubic splines were 
numerically compared with each other as well as with linear 
spline and achieved good results. In a paper by Ahmad et al. 
[10], a mathematical model of teeth of a child was 
compared with cubic spline method to see which one 
produced a minimum error in showing the general form of 
normal teeth and created a better view of the nature of 
orthodontic wires. The cubic spline method showed a more 

symmetrical teeth’s shape; the curves of a tooth were more 
symmetrical than the normally asymmetrical curves. An 
example was provided to show how efficient, accurate, and 
simple the cubic spline method actually was. 

In this research, we began by developing a mathematical 
model using an extension of one-dimensional advection-
diffusion equation to simulate seawater intrusion 
counteracted by flow of freshwater released from an upriver 
dam, with MacCormack scheme and Cubic Spline 
interpolation to approximate field data—salinity levels at 
initial and left boundary conditions. 
 

II. ONE-DIMENSIONAL SALINITY INTRUSION 
MODEL 

 
A. Governing Equation 
 
The mathematical model that we used to describe 

transportation and diffusion processes of salinity in a river 
is a one-dimensional advection-diffusion-reaction equation 
(ADRE) [4, 11, and 12]. 
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  for all  0 x L    and    

0 t T  ,                                                               (2.1) 
where ( , )S x t  is the salinity concentration (g/l); U  is 

the water flow velocity  in the x -direction (m/s); D  is the 
salinity diffusion coefficient (m2/s); L  is the length of 
lower Chao Phraya river; and T  is the simulated time 
period.    

Letting   

  ,s wU u ku                               (2.2) 

where su  is the salinity  flow velocity; wu  is the fresh 

water flow velocity released by the diversion dam; and k is 
the dilution rate of salinity by fresh water, for all
 00 , .Tx L t  

Substituting Eq. (2.2) into Eq. (2.1), we get 

 
 

2

2
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u ku D

t x x
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       (2.3) 

 
B. Initial and Boundary Conditions  
 
The salinity intrusion in Chao Phraya estuary, which is 

likely to become more severe in the future, are caused by 
high ocean tide. In calculation, initial salinity level can be 
different depending on the time and distance from the 
estuary.      

 
B1. The Initial Condition 
 
The initial condition is assumed to be:  

 ,0 ( ),S x f x
 
for all   0 ,x L              (2.4) 

where ( )f x  is a given salinity level function along the 
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river.  
 
B2.The Boundary Condition 
 
The left boundary condition is assumed to be  

   0, ,    S t g t for all 0 ,t T                (2.5) 

where ( )g t  is a given salinity level function at the first 

monitoring station, closest closed to the estuary. The right 
boundary condition is assumed to be  

0( , ) ,
S

L t k
x





 for all   0 ,t T             (2.6) 

where 0k  is  the rate of change of salinity level at the 

last monitoring station, located furthest upriver from the 
estuary.  
 

III. NUMERICAL TECHNIQUES 
 

The solution to the set of equations in Section 2 is 
numerically approximated by an explicit finite difference 
method, MacCormack scheme for advection, below.  

 
A. MacCormack Scheme for Advection 
 

We can approximate ( , )i nS x t  by n
iS , the value of the 

difference approximate of ( , )S x t at point x i x   and 

,t n t   where 0 i n   and 0 .n N   The grid point 

 ,n nx t  is defined by ix i x   for all  0,1,2,...,i M  

and nt n t   for all 0,1,2,...,n N in which M  and N  

are positive integers.  
 
The First Step of the MacCormack scheme is to 

approximate equation (2.3) by forward time and forward 
space scheme (FTFS) as follows: 
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Substituting (3.1) into (2.3), we get: 
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                                       (3.2) 

for 1 i M   and 0 1.n N   Simplifying (3.2) to: 

 
1

1 1 12
2 .
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                              (3.3) 

 

Define  1iC  by LHS of (3.3), we have:  

     1 1 121
2n n n n n

i i i i i i

U D
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                         (3.4) 
and     
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                         (3.5) 
Let           
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We obtain: 
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so we have 

          
 

1 1 1 2 3 1.
n n n
i i ii

C A S A S A S                    (3.6)  

For the left boundary, where 1,i   we obtain 

    
 

1 1 2 2 1 3 0

1 2 2 1 3 0 .

n n n

n n

C A S A S A S

A S A S A S

  

  
      (3.7) 

For the right boundary, where ,i M  substitute the 
approximate unknown value of the right boundary with 

forward difference approximation to 0.
S

x





 Let: 

1,M MS S   we have:  

    1 2 1 3 21

n n n
M M M MC A S A S A S             (3.8) 

  1 2 1 3 2
n n
M MA A S A S               (3.9)

  
we obtain a MacCormack predictor step formulation: 
 

  
 1

1
.n n

i i iS S C t   
          

(3.10) 

 
The Second Step of the MacCormack scheme is to 

approximate equation (2.3) with a backward time and 
backward space scheme (BTBS) as follows, 
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Substitute (3.11) into Eq. 2.3, we get 
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Simplify (3.12) to  
1 1 1 1 1 1

1 1 1
2

2
.

( )

n n n n n n n
i i i i i i iS S S S S S S

U D
t x x

     
        

          

        

(3.13) 

Define  
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for left boundary, where 1i  .  
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For right boundary, where i M , the unknown values 
are approximated by backward difference approximation to 

0.
S

x





 Let 1 ,M MS S   we have  

  1 1
2 1 2 3 1( ) .n n
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From the first and second steps, the MacCormack 
scheme takes on following form: 

    1

21
.

2
M n
i i i i

t
S S C C 

                   (3.18) 

The stable conditions for this scheme are the following, 

condition 
2

0.5,
( )

D t

x





                     (3.19) 

and  0.9.
( )

U t

x





       (3.20) 

  
 
B. Interpolation Technique for the Initial and Boundary 

Conditions 
 
B1. Cubic Spline Interpolation 
 
Salinity measurement data were collected as discrete 

points in time and space. To construct a continuous model 
based on those discrete data, some interpolation was 
necessary. A cubic spline interpolation method could do this 
interpolation job well. A cubic spline interpolation is a 
piecewise polynomial approximation, representing the 
interpolated points in a subinterval with a unique cubic 
equation. A necessary condition for cubic spline 
construction is that the first and second derivatives of a 
cubic spline must be continuous [13, 14]. 

Suppose 0 0 1 1 2 2( , ), ( , ), ( , ),..., ( , )n nx y x y x y x y are 1n   

node pairs where 0 1 ... .na x x x b     Function ( )S x  

approximating the values between each pair of nodes is 
called a cubic spline if there exist n  cubic polynomials that 
satisfy these conditions. 

(1) ( )S x  is a cubic polynomial on each subinterval 

 1,i ix x   where 0,1,..., 1i n    
2 3( ) ( ) ( ) ( ) ,i i i i i i i iS x a b x x c x x d x x            (3.21) 

, , ,i i ia b c  and id  are unknown constant coefficients of 

the cubic polynomial of each subinterval, 
 
(2) 1 1 1( ) ( )i i i iS x S x    where 0,1,..., 2 ,i n        (3.22) 

(3) ' '
1 1 1( ) ( )

ii i iS x S x    where 0,1,..., 2 ,i n        (3.23) 

(4) '' ''
1 1 1( ) ( )

ii i iS x S x    where 0,1,..., 2 ,i n        (3.24) 

(5) Boundary conditions to be satisfied and interpolated 
by this cubic spline are the following:  

 
(i) '' ''

0( ) ( ) 0nS x S x   (natural boundary),                  (3.25) 

(ii) ' '
0 0( )S x y  and ' '( )n nS x y  (clamped boundary). (3.26) 

 
For the natural boundary condition, there are n  linear 

equations for coefficients 0 1 2, , ,..., nc c c c  so we can solve the 

solution for ic  from a tridiagonal linear system Tx = b, 

where T is a tridiagonal matrix of n n  as follows: 
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and x =  

0

1 .

n

c

c

c

 
 
 
 
 
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
                                             (3.29) 

 
Then b and x are vectors of dimension ,n   

1 ,i ih x x                                          (3.30) 

1 1
1

3 3
( ) ( )i i i i i

i i

a a a a
h h

  


     for 1,2,..., 1.i n   (3.31)  

,i ia b  and id  can be calculated by the following 

equations,  

i ia y  where 0,1,..., ,i n               (3.32) 

1 1( ) ( 2 )

3
i i i i i

i
i

a a h c c
b

h
  

   where 0,1,..., 1,i n   (3.33) 

and 1( )

3
i i

i
i

c c
d

h
 

  where  0,1,..., 1.i n        (3.34) 

The cubic function on  1,i ix x  , 0,1,..., 1i n  , with 

these coefficients can always be written as: 
2 3( ) ( ) ( ) ( ) .i i i i i i i iS x a b x x c x x d x x            (3.35) 

 
 

IV. NUMERICAL EXPERIMENT 
 
A. Cubic Spline Interpolation based on Field Data  

 

 
Figure 2. Cubic spline interpolated initial condition ( ,0)S x (g/l) 
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Figure 3. Cubic spline interpolated left boundary condition (0, )S t (g/l) (the left boundary was the sea) 

 
B. Approximation of Salinity Intrusion by MacCormack Scheme  
 
B1. 4.2.1 Fig. 4–9 are MacCormack generated graphs of salinity level versus distance in space, when su was varied from 0.13, 

0.25 and 0.5 m/s and was wu  varied from 0.52, 0.72, 0.82 and 0.92 m/s, at 4, 8, 12, 16, 20 and 24 hours after the initial time 

point. The graphs were produced in order to find the optimum value of ݑ௦	ܽ݊݀	ݑ௪ for the model. 
 

 

Figure 4. Approximated salinity intrusion levels (g/l) when 0.13su  and at time 4, 8,12,16,20 and 24 hrs after the initial time point 
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Figure 5. Approximated salinity intrusion levels (g/l) when 0.25su  and at time 4, 8,12,16,20 and 24 hrs after the initial time point 

 

 

Figure 6. Approximated salinity intrusion levels (g/l) when 0.5su  and at time 4, 8,12,16,20 and 24 hrs after the initial time point 
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Figure 7. Approximated salinity intrusion levels (g/l)  when 0.5su  and at time 4, 8,12,16,20 and 24 hrs after the initial time point 

 

 

Figure 8. Approximated salinity intrusion levels (g/l) when 0.5su  and at time 4, 8,12,16,20 and 24 hrs after the initial time point. 

 



KHEMISARA KULMART et al: A NUMERICAL MODEL FOR SALINITY INTRUSION MEASUREMENT AND . . 

DOI 10.5013/IJSSST.a.21.01.01                                            1.9                              ISSN: 1473-804x online, 1473-8031 print 

 

Figure 9. Approximated salinity intrusion levels (g/l) when 0.5su  and at time 4, 8,12,16,20 and 24 hrs after the initial time point 

 
TABLE I APPROXIMATION OF THE SALINITY INTRUSION CONCENTRATIONS (G/L) OF THE MACCORMACK SCHEME SOLUTION WHEN

su  AS VARIED FROM 0.13, 0.25 AND 0.5 M/S AND wu WAS VARIED FROM 0.52, 0.72, 0.82 AND 0.92 M/S, 0.1D  , 0.1wk 
 
AT DISTANCE 

12, 35, 64, 91, 96,102,111 AND 130 (KM) AND AT TIME 4 HRS. 
 
 

Monitoring Station/ 
Distance (km) 

Salinity Intrusion Concentrations at time 4 hrs. 0.1D  , 0.1wk    
Real data 

Salinity (g/l) 
04-01-2018 

0.52wu   ,
 

0.13su   

0.52wu   ,
 

0.25su   

0.52wu   ,
 

0.5su   

0.72wu   ,
 

0.5su   

0.82wu   ,
 

0.5su   

0.92wu   ,
 

0.5su   

Phra Nakhon Tai/12 22.8212 22.8431 22.8850 22.8818 22.8802 22.8786 21.84 
Khlong Lat Pho/35  16.2369 16.3253 16.5049 16.4908 16.4837 16.4766 12.60 

Wat Sai Ma Nuea/64  4.5998 4.6564 4.7743 4.7649 4.7602 4.7555 5.53 
Wat Makham/91  1.0339 1.0563 1.1014 1.0979 1.0961 1.0944 0.49 

Samlae Pump Station/96  0.5046 0.5237 0.5642 0.5610 0.5593 0.5577 0.25 
Wat Phai Lom/102  0.1749 0.1809 0.1940 0.1929 0.1924 0.1918 0.16 

Wat Pho Taeng Nuea/111  0.1387 0.1362 0.1314 0.1317 0.1319 0.1321 0.15 
Wat Ban Paeng Temple/130  0.1395 0.1442 0.1546 0.1537 0.1533 0.1528 0.13 

 
TABLE II. APPROXIMATION OF THE SALINITY INTRUSION CONCENTRATIONS (G/L) OF THE MACCORMACK SCHEME SOLUTION 

WHEN su  AS VARIED FROM 0.13, 0.25 AND 0.5 M/S AND wu WAS VARIED FROM 0.52, 0.72, 0.82 AND 0.92 M/S, 0.1D  , 0.1wk 
 
AT 

DISTANCE 12, 35, 64, 91, 96,102,111 AND 130 (KM) AND AT TIME 24 HRS. 
 
 

Monitoring Station/ 
Distance (km) 

Salinity Intrusion Concentrations at time 24 hrs. 0.1D  , 0.1wk    
Real data 

Salinity (g/l) 
04-01-2018 

0.52wu   ,
 

0.13su   

0.52wu   ,
 

0.25su   

0.52wu   ,
 

0.5su   

0.72wu   ,
 

0.5su   

0.82wu   ,
 

0.5su   

0.92wu   ,
 

0.5su   

Phra Nakhon Tai/12 22.8711 22.9695 23.0632 23.0613 23.0599 23.0583 22.77 
Khlong Lat Pho/35  16.5191 17.0368 18.0532 17.9751 17.9358 17.8964 13.55 

Wat Sai Ma Nuea/64  4.8035 5.1683 5.9919 5.9233 5.8891 5.8550 4.37 
Wat Makham/91  1.1023 1.2292 1.4699 1.4516 1.4424 1.4331 1.27 

Samlae Pump Station/96  0.5781 0.7043 0.9829 0.9608 0.9497 0.9386 0.58 
Wat Phai Lom/102  0.2026 0.2517 0.3996 0.3854 0.3784 0.3715 0.16 

Wat Pho Taeng Nuea/111  0.1330 0.1223 0.1168 0.1163 0.1161 0.1160 0.15 
Wat Ban Paeng Temple/130  0.1739 0.2010 0.2511 0.2480 0.2464 0.2447 0.13 

 
C. The Approximation of the Salinity Intrusion Concentrations of a Simple Advection-Diffusion Equation Numerical Simulation using the MacCormack 

Scheme. 
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(a): Delta x = 1, Delta t = 0.1, Us = 0.13, Uw = 0.52, kw = 0.1, D = 0.1 

 

 
(b): Delta x = 1, Delta t = 0.1, Us = 0.25, Uw = 0.52, kw = 0.1, D = 0.1 
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(c): Delta x = 1, Delta t = 0.1, Us = 0.5, Uw = 0.52, kw = 0.1, D = 0.1 

 

 
(d): Delta x = 1, Delta t = 0.1, Us = 1, Uw = 0.52, kw = 0.1, D = 0.1 

 
Figure10. The salinity intrusion concentrations (g/l) of the MacCormack Scheme solution with cubic spline interpolation to the initial and boundary 

conditions as shown in Surfaces (a), (b), (c), and (d). 
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V. DISCUSSION 
 
In this paper, the approximation of the salinity intrusion 
concentrations of a simple advection-diffusion equation 
numerical simulation using the MacCormack Scheme is 
shown in Figures 10. The numerical technique is tested by 

changing parameters ( wu , su ), which affected the change in 

salinity intrusion concentrations in six different cases used 
in this study. We used the same points of time throughout 
every case, which are at 4, 8,12,16,20 and 24 hrs. 
respectively. In the first case (Figure 4), the parameters are 

when 0.1D  , 0.1wk  , 0.52wu  and
 

0.13,su   In the 

second case (Figure 5), the parameters are when 0.1D  ,

0.1wk  , 0.52wu  and
 

0.25,su   In the third case (Figure 

6), the parameters are when 0.1D  , 0.1wk  , 0.52wu 

and 0.5,su 
 
 In the fourth case (Figure 7), the parameters 

are when 0.1D  , 0.1wk  , 0.72wu  and, 0.5,su   In the 

fifth case (Figure 8), the parameters are when 0.1D  ,

0.1wk  , 0.82wu  and 0.5,su 
 
In the sixth case (Figure 

9), the parameters are when 0.1D  , 0.1wk  , 0.92wu 

and 0.5,su  the salinity intrusion concentrations is show in 

Table 1-2. 
 
 

VI. CONCLUSION 
 

The MacCormack Scheme with the cubic spline 
interpolation to the initial and boundary conditions 
technique is one-dimensional form of finite difference 
method. The numerical experiment shows that the 
calculated results are reasonable approximations. The 
interpolation technique is suitable to be used to solve the 
real-world problems because it is easy for computer-coding. 
According to the field salinity data collected at monitoring 
stations, the initial and boundary conditions are in the form 
of functions. The results are very satisfactory because we 
found that the salinity intrusion concentrations of each 
monitoring station incline towards the same trend with the 
actual salinity concentrations measured at each station. The 
computed results are verified by the numerical accuracy. In 
summary, the numerical model for salinity intrusion control 
using the MacCormack finite difference method with Cubic 
Spline interpolation can be applied with problems in the 
real-world situations. If there are more parameters, the 
measured data will be even more accurate. This numerical 
model is not only easy to analyze, but also save more time 
and cost to do the field work. Most importantly, the results 
can be used to support the water management plans in the 
future. 
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