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Abstracts - This paper presents a simulation scheme for water distribution systems based on loop flows algorithms. Water networks 
are large scale and non-linear systems. The operational control of such system has posed difficulties in the past to the human 
operator that had to take the right decisions, such as pumping more water or closing a valve, within a short period of time and 
quite frequently in the absence of reliable measurement information such as pressure and flow values. Computer simulations of 
such systems have alleviated these difficulties. They allowed ‘what-if’ scenarios to be run by the human operator, giving him the 
possibility to know in advance the operational problems that can arise in the real-life networks due to malfunctions of valves or 
burst in pipes. However these computer simulations are generally relying on solving a system of equations and the nodal heads 
variables have been the most frequently used variables in these computer simulations. More recently the numerical algorithms 
based on loop corrective flows have started to receive more attention due to the reduce size of the matrixes involved in the 
numerical computations, which relies on the loop structure of the water network rather than the nodes. This can improve the 
numerical properties of the algorithms that model the real-time behaviour of the network. It is shown that such an efficient 
simulation scheme can be developed in the context of the loop flows algorithms and some problems that appear from doing this are 
successfully solved. 
 
Keywords - Modeling and simulation, state estimation, network systems, loop flows algorithms. 
 
 

I. INTRODUCTION 
 
Water network simulation provides a fast and efficient 

way of predicting the network behavior, calculating pipe 
flows, velocities, head-losses, pressures and heads, reservoir 
levels, reservoir inflows and outflows and operating costs.  

Simulation of real water distribution systems, that do not 
consist of a single pipe and cannot be described by a single 
equation, consists of solving a system of equations. The first 
systematic approach for solving these equations was 
developed by Hardy Cross (Cross, 1936). The invention of 
digital computers allowed powerful numerical technique to 
be developed that set up and solve the system of equations 
describing the hydraulics of the network in matrix form. 
These numerical methods can be classified as the numerical 
minimization methods (Contro & Franzetti, 1982), the 
Hardy-Cross method (Chenoweth & Crawford, 1974), the 
Newton-Raphson method (Donachie, 1974) and the Linear 
Theory method (Collins & Johnson, 1975). The last three 
classes include methods used for the solution of systems of 
non-linear equations, while the first deals with the search of 
minimum of a non-linear convex function under linear 
equality and inequality constraints. Irrespective of the 
numerical procedure used, the simulation of water networks 
has led to the development of many methods of network 
flow analysis using various types of decompositions. Each 
decomposition expresses the resulting system of equations 
in terms of a specific type of independent variables: the link 
flow Q (Wood & Charles, 1972), the loop corrective flows 
Ql (Epp & Fowler, 1970; Gofman & Rodeh, 1982), and the 

nodal heads H (Jeppson, 1975).  In order to asses the 
relative merits of the different formulations for solving large 
pipe network problems, the comparison can be made in 
terms of simplicity of input, initial solution, size of the 
system of linear equations and efficiency of solution of the 
system of equations. The balance of these merits made the 
combination of the nodal heads and the Newton-Raphson 
algorithm to be the most frequently used procedure for 
solving water networks (Rahal, 1980; Powell et al., 1988). 
Extended time simulations which are used to evaluate 
system performance over time and allows the human 
operator to model tanks filing and draining, valves opening 
and closing, have been implemented based on nodal heads 
equations (Rao et al. 1978).  However the use of nodal 
equations in network flow analysis has disclosed a couple of 
weaknesses. In (Nielsen, 1989) it has been reported that 
nodal heads based algorithms have weak convergence for 
the parts of water network containing low pipe flows. 

Finally, the combination of the Newton-Raphson method 
and the loop corrective flows is called the loop system of 
equations. Over the last decade the numerical simulations 
based on loop equations have received an increased 
attention. It has been shown that using the loop equations is 
a suitable framework for the inclusion of pressure-
controlling elements without specifying the operational state 
of the network (Andersen & Powell, 1999b). Moreover a 
rapid convergence has been reported (Andersen & Powell, 
1999a; Rahal, 1995) for the simulations of water networks 
based on the co-tree formulation that is derived from the 
loop equations method. 
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Fig. 1. Operational control of water distribution systems using the loop equations in the simulation algorithms. 

 
Although the results were encouraging, no further 

efforts have been made for developing a fully integrated 
simulation scheme for on-line monitoring of water networks 
based on loop equations. This simulation scheme should act 
as a decision support system that would assist the 
operational engineer in taking the right decision (e.g. 
open/close valve) with regard to the status of the 
distribution system. In this paper we develop such a 
simulation scheme based on loop flows algorithms.   

 
II. OPERATIONAL CONTROL BASED ON LOOP 

FLOWS ALGORITHMS 
 

The operational control of water systems (e.g. decisions 
concerning water pumping schedules, pressure control 
measures, leakage monitoring) is a challenging problem 
because the models are non-linear and large scale and the 
measurement information (i.e. pressure and pipe flows or 
predictions of nodal consumptions) is noisy and frequently 
incomplete.  

In this paper the operational decision system for water 
networks is to be attempted by the block diagram shown at 
Fig. 1 above. The figure consists of four simulation blocks: 
(1) Co-tree flows simulator; (2) Telemetry block; (3) State 
estimation; and (4) Confidence Limit Analysis (CLA) 
algorithms. In the following section, each of the blocks will 
be shortly presented.   

  
A. Co-Tree Flows Simulator Algorithm 
 
A simulator algorithm represents a snapshot in time and 

is used to determine the operating behavior of the water 

network for a set of nodal demands. The simulation 
algorithm shown here is based on a co-tree flows 
formulation, which is derived from the loop corrective 
flows algorithm, defined for a water distribution system 
with n-nodes, l-loops, and p-pipes.  
 

 
Fig. 2. Water Network from Gofman and Rodeh (1982). 

 
We note with Anp (n x p) the topological incidence matrix 
that has a row for every node and a column for every branch 
(component) of the network. The non-zero entries for each 
row +1 and –1 indicate that the flow in pipe j enters or 
leaves node i. 
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The co-tree flows simulator algorithm is based on the 
decomposition of the water network in a spanning tree. A 
spanning tree for a network (with n nodes and p pipes) is a 
subnetwork (with n1 nodes and p1 pipes) such that n = n1 
and the subnetwork contains at least one pipe and no loops, 
and is said to be connected. A network is connected if for 
every pair of different nodes n1 and n2, there is a path 
between them. A path represents a finite sequence of nodes 
and pipes between the initial node n1 and the terminal node 
n2 and no node or pipe is repeated in the path. The pipes 
that do not belong to the spanning tree and are called co-tree 
pipes or chords (e.g. dashed arrows in Fig. 3), and are 
providing the loop information. 

Different search strategies can be employed in order to 
produce the spanning tree. In this paper the Depth First 
(DF) search has been used to obtain the network 
information (i.e. the spanning tree, the loop and the 
topological incidence matrixes) (Gofman & Rodeh, 1982; 
Andersen & Powell, 1999b). Concomitant with building the 
spanning tree, new labels are assigned to pipes and nodes 
during the search of the water network so that to model the 
topological incidence matrix as an upper form tree 
incidence matrix T and a co-tree incidence matrix C (i.e. Anp 
= [T   C]).     

 

 
Fig. 3. a) Spanning tree for the water network from Fig. 2, 

b) New labels for pipes and nodes. 

 
Based on the DF search the topological and the loop 

incidence matrixes are obtained. The co-tree flows 
simulator algorithm requires that the initial flows Qi to 
respect the mass continuity equation (i.e. the amount of 
flow that enters to a node equals the amount of flow that 
leaves the node plus the water consumption in the 
respective node). This is because the governing system of 
equations of the co-tree flows simulator algorithm does not 

account either implicitly or explicitly for continuity. The 
initial flows QTi in tree pipes can be calculated as follows:  

                  QTi = T -1 d          (3) 

The co-tree flows simulator algorithm consists of the 
energy equation that has to be satisfied, that is the vector of 
loop head losses residuals H (l x 1) must be equal to zero:  

                                H=0                           (4)         

The vector of loop head losses residuals H can be 
written as:  

                         H=Mlph                      (5)    
 
 where h (p x 1) is the vector of pipe head losses 

described by the Hazen-Williams equation: 

                               h=k nQ
~

                    (6)                      

Here k (p x 1) is the vector of pipe resistance 

coefficients and Q
~

 (p x 1)  is the vector of pipe flows that 

we want to determine. Equation (5) is solved with the 
Newton-Raphson method which is a well-known numerical 
method for solving a system of non-linear equations.                                  
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The matrix 
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 (l x l) is the Jacobian matrix, that is 

the derivatives of the loop head losses residuals H with 

respect to the loop corrective flows 
tl

Q  at the t-th step of 

the Newton-Raphson process.  
For the co-tree flows simulator algorithm the solution is 

given by vector of pipe flows Q
~

: 

                            Q
~

= Qi + Mpl Ql        (8)                      

where Mpl (p x l) is the transpose of the loop incidence 
matrix and Ql (l x 1) is the vector of loop corrective flows.  

While for the well maintained water distribution systems 
the normal operating state data can be found in abundance 
the instances of abnormal events (e.g. leakages) are not that 
readily available. In order to observe the effects of abnormal 
events in the physical system one sometimes is forced to 
resort to deliberate closing of valves or opening of hydrants 
(to simulate leakages) (Carpentier & Cohen, 1993). 
Although such experiments can be very useful to confirm 
the agreement between the behaviour of the physical system 
and the mathematical model, it is not feasible to carry out 
such experiments for all pipes and valves in the system 
during the whole day or days as might be required in order 
to obtain the representative set of labeled data.  
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It is an accepted practice that, for processes where the 
physical interference is not recommended or even 
dangerous, mathematical models and computer simulations 
are used to predict the consequences of some emergencies 
so that one might be prepared for quick response. In 
conclusion the co-tree flows simulator algorithm from Fig. 
1 is used not only to simulate the normal operational point 
of a water network but also to predict the consequences of 
some emergencies so that one might be prepared for quick 
response. 

Furthermore the accurate pressure and flow values 
obtained from the co-tree flows simulator algorithm are 
input into the “telemetry” block where random errors, with 
values defined by the accuracy of meters and the maximum 
variability of consumptions, are added to accurate 
measurements to simulate the noisy environment of the real 
water distribution system. These noisy measurements are 
sent to the “estimation” block that calculates, for a given 
measurement set, the state estimates. 

 
B. Loop Flows State Estimator  
 
In the operational decision support of water networks, 

state estimation is an important element that enables 
processing of diverse measurements obtained via the real-
time telemetry systems and facilitates calculation of the best 
approximation of the operational state of the system. 

The state estimation can be viewed as the process of 
optimization of a suitably chosen cost function and the least 
square (LS) criterion where the sum of the squared 
differences between the measured and estimated values is 
minimized, has been intensively used in the operational 
control of water networks. 

The nodal heads equations have been predominantly 
used as the state variables in the LS state estimators. 
Although the mathematical model is accurate, it leads 
sometime to difficulties in modelling and simulation of 
realistic water networks (Nielsen, 1989; Gabrys & Bargiela, 
1996; Sterling & Bargiela, 1984; Powell et al., 1988; 
Hartley and Bargiela, 1993). An alternative to the nodal 
heads equations are the loop corrective flows. This can be 
an advantage because of the smaller size of the matrixes 
involved in the numerical computations. A WLS state 
estimator based on the loop equations and the state variables 
were the unknown nodal demands was presented in 
Andersen and Powell (1999a). The minimization problem 
was solved using a Lagrangian approach. A LS state 
estimator was shown in Arsene and Bargiela (2001) that 
employed both the variation of nodal demands and the loop 
corrective flows as independent variables. The novel state 
estimator is briefly depicted in the following paragraph.  

An additional set of variables has been considered, that 
is the variation of nodal demands d. Hence the hydraulic 
model g() for head, flow and demand measurements 
becomes a function of both the loop corrective flows Ql 
and the variation of nodal demands d. The advantage of 

using the variation of nodal demands is that we are able to 
write the network equations based on the topological 
information obtained from the spanning tree.   

The pipe flows will be written function of the loop 
corrective flows Ql and the variation of nodal demands d 
as follows: 

                 Q
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equations which will be used to describe the hydraulics of 
the water network.  

The first set of equations states that the loop head losses 
around the loops are equal to zero:  

              0),(  dQH l                         (10)                      

where the loop head losses residuals H are a function 
of the loop corrective flows y (Ql) and the variation of 
nodal demands x (d) and are calculated from equation (5).  

 The second set of equations states that the 
total amount of inflow/outflow from the water network 
carried out through the fixed-head nodes should equal the 
variation of nodal demands. This equation can be written as 
follows: 

 d = Bnl Ql                                 (11)                     
 
The matrix Bnl (n x l) from equation (11) has a non-zero 

element equal to 1 which corresponds to the main root node 
and -1 for each of the fixed-head nodes.  

The equations (10) and (11) represents the hydraulic 
function that describes the water network. It can be written 
as a system of equations: 
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If we denote with )ˆ,ˆ( yxg  the non-linear equation that 

describes the residuals in the loop head losses and the 
variation of nodal demands then the variation of the state 
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nodal demands) during the Newton-Raphson method is 
calculated as: 
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The matrix J represents the jacobian matrix (i.e. first 
derivative of function g) and it has been presented in Arsene 
and Barigela (2001). 
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 where Inn is the square identity matrix of size n.  
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iterative process with the consecutive state estimates 
calculated with the following equation:  
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process are lower or equal to a predefined convergence 
accuracy, the iteration procedure stops. Otherwise, a new 
correction vector is calculated using equation (15) with: 
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Both the co-tree flows simulator and the loop flows state 
estimator have been tested on real water networks and the 
numerical results have shown good convergence (Arsene & 
Barigela, 2001; Bargiela, Arsene & Tanaka, 2002).  

 
C. Confidence Limit Analysis - Loop Flows Approach 
 
The measurement uncertainty has an impact on the 

accuracy with which the state estimates are calculated. It is 
important, therefore, that the system operators are given not 
only the values of flows and pressures in the network at any 
instant of time but also that they have some indications of 
how reliable these values are. The procedure for the 
quantification of the inaccuracy of the state estimates 
caused by the input data uncertainty was developed in the 
late 1980s and termed Confidence Limit Analysis (CLA) 
(Bargiela & Hainsworth, 1989). Rather than a single 
deterministic state estimate, the CLA enables the calculation 
of a set of all feasible states corresponding to a given level 
of measurement uncertainty. The set is presented in the 
form of upper and lower bounds for individual variables and 
hence provide limits on the potential error of each variable 
(Gabrys & Bargiela, 1996).   

This section addresses the problem of CLA based on the 
loop flows state estimator and the co-tree flows simulator 
algorithm shown in the previous paragraphs. 

In normal use, deterministic state estimators produce 
one set of state variables for one measurement vector. Used 
in this way, they give no indication of how the state 
variables may be affected by the fuzziness of input data. 
Alternatively, if a deterministic state estimator is used 
repeatedly for each measurement modified with its defined 
maximum variability, then a matrix Se can be determined as:  

             

j

ie

z

x
S




  i=1,…n; j=1,…m        (16)                      

where i=1,…n is the index for the state vector denoted with 
xt (nodal heads and in/out flows) and j=1,…m is the index 
for the measurement vector denoted with zt. The 
measurement vector zt comprises the estimates for the water 
consumptions and the fixed-head nodes. It can be 
augmented with real pressure and flow meters.  

The loop flows state estimator has been the deterministic 
state estimator used to obtain the Experimental Sensitivity 
Matrix. Matrix Se is called the Experimental Sensitivity 
Matrix (ESM) because is obtained through a number of 
successive simulations. It expresses the variation, x, of the 
i-th element, xi, of the true state vector, xt, because of a 
perturbation, z, in the j-th element, zj, of the true 
measurement vector zt. The true state of the system is not 

known but instead the best state vector available x̂  is used 
in the process of determining the sensitivity matrix and the 
confidence limits.   

Having found matrix Se, we can carry out the 
maximization process expressed by equation (17) in order to 
obtain the confidence limits for the state variables. For the i-
th state variable, calculating its error bound xcli is done by 
maximizing the product between the i-th row of the 
experimental sensitivity matrix si and the vector z. The 
maximization process is performed separately for each row 
of the sensitivity matrix determined in the previous section.  

                            xcli = max siz                (17) 

The method presented here gives comparable results 
with the confidence limits analysis algorithms developed in 
the context of the nodal heads state estimator (Arsene, 
2004). 
 

III. NUMERICAL RESULTS 
 

While for the well maintained water distribution systems 
the normal operating state data can be found in abundance, 
extended time simulations (i.e. simulations that stretch over 
longer periods of time) or instances of abnormal events are 
not that readily available. In order to observe the effects of 
abnormal events in the physical system one sometimes is 
forced to resort to deliberate closing of valves or opening of 
hydrants (to simulate leakages) (Carpentier & Cohen, 
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1993). Although such experiments can be very useful to 
confirm the agreement between the behavior of the physical 
system and the mathematical model, it is not feasible to 
carry out such experiments for all pipes and valves in the 
system during the whole day or days.  

It is an accepted practice that, for processes where the 
physical interference is not recommended or even 
dangerous, mathematical models and computer simulations 
are used to predict the consequences of some emergencies 
so that one might be prepared for quick response. The block 
diagram depicted at Fig. 1 was used to generate data 
covering 24 hour period for the water distribution network 
shown at Fig. 4. The reason for choosing this network is 
that we were able to compare the numerical results obtained 
in the context of loop algorithms with the numerical results 
presented in Gabrys (1997) for the same water network and 
operational testing conditions in the context of the nodal 
heads equations. 

 

 
Fig. 4. 34-Node water network 

 
At each step in the series of extended time simulations, a 

new set of nodal demands dnew and head values at the 
boundary nodes of the network are usually provided. In the 
context of the loop flows algorithms this would require re-
calculation of the initial pipe flows, the loop and the 
topological incidence matrix. This would further imply that 
we would have to carry out at each step in the extended time 
simulation the time consuming process of rebuilding the 
spanning tree. This is unfavorable if we compare it with the 
implementation based on the nodal heads equations which 
does not require the re-calculation of the loop and 
topological incidence matrixes. However, by simple matrix 
operations we can avoid this drawback.   

The new set of initial conditions (i.e. initial pipe flows, 
incidence matrixes) are determined with the following 
equation:  

               
newnew

Ti
dTQ 1                (18)    

where 
new

Ti
Q are the initial tree pipe flows calculated at 

each step in the extended time simulation. The loop and the 
tree incidence matrixes are readily obtained based on the 
direction of the new tree pipe flows. If the direction of 

initial flows 
new

Ti
Q has changed then the loop and the tree 

incidence matrixes are updated as follows: 
                                            

      ),:1()1(),:1( klMklM
lp

new

lp
          (19)                      

       ),:1()1(),:1( knTknT new              (20)                      

where k is the pipe with the reversed flow and new

lp
M and 

newT are the new loop and tree incidence matrixes used in 

the extended time simulation. The block diagram shown at 
Fig. 1 has been successfully run for a 24 hours extended 
time simulation. The Central Processing Unit (CPU) times 
were similar with the times obtained for the implementation 
of the same block diagram based on the nodal heads 
equations (Gabrys & Bargiela, 1996; Gabrys, 1997). The 24 
hour profiles of consumptions and inflows that characterize 
the normal operating states throughout the day were similar 
with the ones reported in Gabrys (1997).  

In the co-tree flows simulator algorithm, the leakage was 
modeled as an additional demand lying midway between the 
two end nodes of a pipe. The additional demand was not 
modeled as a pressure dependent variable and thus could be 
set to any desired value. By systematically working through 
the network, ten levels of leaks were introduced, one at a 
time, in every single pipe for every hour of the 24 hour 
period. Since there are 38 pipes multiplied by 10 levels of 
leakages and plus the normal operating status gives 381 
patterns of state estimates for each hour. For a full day this 
gave a set of experimental data of 9144 patterns of state 
estimates, see Table I below,  computed for  measurements 
and leakages ranging from 0.002 to 0.029 [m3/s].  

The total CPU time for generating the 9144 set of data 
based on re-building the spanning tree for each of the 9144 
patterns of data was 15 minutes. However by using graph 
and simple matrix operations as the one described by 
equations (18), (19) and (20) we were able to reduce the 
computational time to 40 seconds which is comparable with 
the CPU times obtained with the nodal heads equations. 
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TABLE I. PARAMETERS USED DURING GENERATION OF THE 
9144 NUMERICAL DATA SET. 

Head measurements 1, 2, 4, 8, 11, 15, 17, 19, 22, 29, 30, 31 

Fixed-head inflow 
measurements 

27, 28, 29, 30, 31, 32, 33, 34 

Water consumptions All nodes 

Fixed-head measurements  27, 28, 29, 30, 31, 32, 33, 34 

Leak levels 
0.002, 0.005, 0.008, 0.011, 0.014, 0.017, 

0.020, 0.023, 0.026, 0.029 [m3/s] 

Parameters used in confidence limit analysis  

Accuracy of head 
measurements at load nodes 

+-0.1[m] 

Accuracy of inflow 
measurements  

+-1% 

Variability of consumptions +-10% 

 
 

IV. CONCLUSIONS 
 

The purpose of this paper was to investigate the 
implications of the loop equations formulation of the 
simulator algorithm, state estimation procedure and 
confidence limit analysis for the implementation of decision 
support systems in the operational control of water 
networks. The nonlinear models and large scale of the water 
distribution systems made them both a challenging problem 
to be tackled and a very good validation example for a 
prototype decision support system useful in other utility 
systems.  

The paper has been divided in two distinctive parts. In 
the first part, we used the loop equations for the 
implementation of a co-tree flows simulator algorithm, we 
presented a novel loop flows state estimator, and a 
confidence limits analysis algorithm based on the loop 
flows variables. A particular emphasis has been placed on 
the fast calculation of the initial input data (the incidence 
matrixes and the initial pipe flows), enhancement and 
accuracy of the results and good convergence properties for 
the numerical algorithms.   

The second part of the paper was concerned with 
combining the numerical algorithms in an efficient 
simulation block scheme for a 34-node water network. It 
has been shown that instead of carrying out the time 
consuming process of re-building the spanning for each 
simulation in the series of extended time simulations or for 
leakage simulations, graph and matrix operations can be 
used in order to drastically reduce the CPU times. We can 
conclude that all the developed modules have been 
successfully integrated into an efficient simulation scheme 
that has been used to generate numerical data for a realistic 
34-node water network without having to actually carry out 
experiments for pipes and valves in the real-life system 
during the whole day or days.    
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